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Abstract�H�andel� in a recent correspondence� provides an
alternate analysis to that of Clarkson� Kootsookos and Quinn�
of Kay�s linear predictor frequency estimator� claiming that
his proof is more concrete� We show� in fact� that his proof
is in error� and emphasise the care needed when carrying
out such analyses�

I� Introduction

The analysis of Kay�s estimator in ��� showed that the es�

timator was unbiased� and evaluated bounds on the vari�
ance of the estimator� The authors believe that this is
the �rst occasion on which it has been able to do this for
any frequency estimator� Often it is possible to derive a
central limit theorem for an estimator of frequency� and
to identify the variance in this limiting distribution as the
�asymptotic variance� of the estimator� More often� and er�
roneously� some type of Taylor series expansion is carried
out� approximations are made� and a �proof� of �asymp�
totic variance� results� There is no theoretical basis for
such proofs� H	andel claims that what his �approach lacks
in elegance it gains in concreteness�� On the contrary� we
shall demonstrate that our approach is the only one that
leads to precise results� and that H	andel�s approach is in�
valid�

II� H�andel�s Analysis

Starting out with the model

sn 
 Aei�n � zn n 
 �� � � � � N � � 
��

where the complex amplitude A and the frequency � are
unknown� and fzng is zero mean complex Gaussian with
variance ��� the weighted linear predictor is given by ����
���� ���
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The essence of H	andel�s proof is to expand bR� and subse�
quently b� about the parameters they estimate� consider�
ing only �rst order terms� The problems with his analysis
are due to the fact that the zn are iid complex Gaussian
random variables� and� as such� take on all values in the
complex plane� regardless of the value of ���
Thus bR takes on all values in the complex plane� In fact�

although it is possible to obtain a Gaussian central limit
theorem for bR� with asymptotic variance small for high
SNR� the fact of the matter is that H	andel�s equation 
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is valid only when
���R
R

�� � �� which is not true� with nonzero
probability� for any SNR� This error is compounded by the
fact that H	andel� along with many others� believe that writ�
ing an estimator b� of � in the form

b� 
 � � �� � ��

where the variance of �� is easily obtained and � is of
lower order in magnitude� allows bounds to be placed on
the variance of b�� Here is a simple counter�example� Let
XN 
 ��ZN � �

N
Y� where the second moment of ZN con�

verges to zero� but Y is distributed as standard Cauchy

 Y therefore does not have a mean or variance�� Then�
although fXNg converges to � in probability� as conver�
gence in mean square implies convergence in probability�
the variance of XN does not exist for any N� and there�
fore does not exist in the limit� If� however� it can be
shown that the distribution of

p
NZN converges to that of

a zero mean random variable with variance� say� ��� it is

true to say that the �asymptotic variance� of XN is �
�

N
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N 
XN � �� has a distribution which converges to that
of a zero mean random variable with variance ��� This ar�
gument may be applied in the above context� with care�
and is valid only in the limit as N ��� Firstly� one must
show� from H	andel�s equation 
��� that �� admits a Gaus�
sian central limit theorem 
has an asymptotic Gaussian
distribution as N � ��� What was done in ��� was quite
di�erent� The authors there� through careful and �concrete�
analysis� placed bounds on the exact variance of Kay�s es�
timator for �xed SNR and N�

III� Conclusion

The authors have demonstrated the need for care in ob�
taining bounds to the variances of estimators� There is

�
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quite a di�erence between asymptotic bounds on the vari�
ances of estimators and bounds on asymptotic variances�
It is not enough to do �rst order Taylor series expansions
and hope for the best� The authors believe that if statis�
tical analysis is carried out� it should be done rigorously�
as there is no guarantee that anything less will yield the
correct results�
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