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Abstract

This paper discusses a revised form of decision tree pruning that is sensitive to the relative
costs of the misclassification of examples. A brief overview of existing decision tree pruning
methods is given together with the rationale behind these techniques. Then, the two types of
misclassifications, false negatives and false positives, are defined and related to three concepts
from statistical pattern recognition: the receiver operating characteristic (ROC) curve; stat-
istical hypothesis testing; and the Neyman-Pearson method. Details of the implementation of
two cost-sensitive pruning algorithms, based on the well known Pessimistic and Minimum Er-
ror pruning techniques, are discussed. Results are then presented for both these techniques on
two machine learning datasets and related to ROC curves and the Neyman-Pearson method.
Thus we show that decision trees can be made to conform to specified operating criteria given
in terms of the probabilities of false negatives and false positives. As a result of this analysis,
it is noted that, on the data sets chosen, unequal misclassification costs actually increased the
overall accuracy of the classification scheme. It is concluded that the application of the ROC
curve, from statistical pattern recognition to machine learning, and to decision tree pruning
in particular, can provide increased flexibility and accuracy.

Index Terms — Decision Trees, Pruning Methods, Cost-sensitive pruning, Receiver Operating
Characteristic, Neyman-Pearson method.

1 Introduction

Decision tree pruning has been an active area of research for the past decade [3,6,9,11,12,13,
14], with many empirical comparisons being carried out in that time [5,10,13]. However, the
idea of cost-sensitive pruning has received much less investigation [3,8,15] and, as this paper
demonstrates, allows for additional flexibility and even increased performance to be obtained
from a pruning strategy.

This work arises from the development a new machine learning technique, the Multiscale
Classifier [2], and an investigation into pruning strategies to be used in conjunction with



itl. Our motivation has come from the differing misclassification costs associated with the
automated diagnosis of cervical cancer. Here, the cost associated with wrongly classifying
an abnormal slide as normal is high (the abnormality may go untreated), whilst, there is a
lesser cost associated with wrongly predicting a normal slide as abnormal (the slide has to
be screened again by a Cytologist). The need to control misclassifications of this type is, in
general, important in machine learning and the use of cost-sensitive pruning is a logical way
to do this in decision trees.

1.1 Background

Decision trees are constructive learning algorithms in that they generate new nodes that
partition feature space to classify the training data. Tree growth terminates either when all
of the training data is correctly classified or when it is decided that no extra information
can be obtained by adding nodes to the tree. When the training data is noisy or uncertain
the resulting decision trees tend to be very large, as nodes are created for very few training
examples. This is known as “over-specialisation,” since the decision tree usually has poor
performance on new, previously unseen data [3].

There are two solutions to the problem of over-specialisation, either tree growth is termin-
ated before it over-specialises, called (pre-pruning), or the over-specialised tree is pruned to
remove error prone nodes, called (post-pruning). Pre-pruning will not add a branch when it
adds no information, however, subsequently the branch may be found useful when combined
with another. Post-pruning, does not suffer from this problem of localised information and
has been shown, in general, to be superior [3]. Tree Pruning is of use in data domains that
represent relatively simple underlying relationships [16] and are not deterministic [10]. Most
“Real World” data sets are likely to be of this type [7] and therefore pruning of some kind
will, in general, be required.

2 Decision Tree Pruning

The idea behind decision tree pruning (post-pruning) is to identify the least reliable nodes
of the tree and remove them. This produces a simplified tree that reflects the underlying
structure of the data. Pruning will increase the number of classification errors on the training
set, but will in general, improve classification accuracy on new, unseen, data.

Pruning methodologies can be separated into two groups, those that estimate the probabil-
ity of misclassification of a subtree, and therefore which leaves to prune, using an independent
test set e.g., Error-Complexity Pruning [3], Critical Value Pruning [9], Reduced Error Pruning
[13], and Iterative Growing and Pruning [6], and those that prune only on the information
gained when the tree was constructed, i.e., from the training data e.g., Pessimistic Pruning
[12], and Minimum Error Pruning [11]. Quinlan [13] has also examined a method of simplify-
ing decision trees by translating the tree structure into a single level rule set, or decision list,
removing irrelevant input terms from these rules. These production rules are then in a form
more amenable to human comprehension than standard decision trees.

By partitioning the data into a training set and pruning set, the accuracy of the classifier
may be reduced because of the reduced amount of training data. Although, cross-validation
[3] or iterative growing and pruning [6] can be used to alleviate this problem, it will slow

1The current Microsoft Windows executable version of The Multiscale Classifier is available via anonymous ftp
(ftp.cssip.elec.uq.oz.au:pub/cssip/software/msc).



the whole training process down. The error estimates obtained using an independent test
set are unbiased and, if the test set is large enough, reliable. However, the error estimates
obtained using only the training data are biased?. Statistical correction techniques can, and
are, used to remove the bias from this error estimate. A pruned tree will have decision nodes
(leaves) that contain training examples of more than one class. So, instead of a class being
associated with a leaf, the leaf now has a class distribution is associated with it. This means
that classifications now have a level of certainty associated with them depending on this class
distribution.

2.1 Pruning and the Multiscale Classifier

The Multiscale Classifier (MSC) [2] is an incremental decision tree construction algorithm. It
works by successively splitting feature space in half, using finer levels of resolution as required
to separate points in decision space. It is termed a consistent learning algorithm, in that, it
constructs a tree to fit the training data exactly. Therefore, a pruning strategy is of vital
importance if the MSC is going to be consistent with Bayes risk classification [20]. The MSC
also has a non-binary tree structure, decisions being made on more than one attribute at each
branch. Each branch may lead to, up to 2 leaves, where N is the number of input attributes.

Despite these differences from conventional decision trees [3,14], Mingers’s finding, that
there is no significant relationship between tree creation method and pruning performance [10],
means that the pruning techniques already described and empirically tested in the literature
can be applied to the MSC. Conversely, the results reported here, will also apply to other
decision tree construction algorithms. The methodology of cost-sensitive decision tree pruning
being completely general. For this work, we chose to implement the revised forms of Pessimistic
[14] and Minimum error [4] pruning, because they do not require a separate test set, are simple
to implement, and are computationally light. Also, in comparative studies they were found
to perform at least as well as the other techniques [5,10,13]. Cost-sensitive decision tree
construction cannot easily be applied to the MSC because it uses a binary rather than a
statistical splitting criterion at the tree construction stage [2].

3 Cost-Sensitive Pruning

When pruning a decision tree the expected error rate of a subtree is calculated with the as-
sumption that all the classes are equally probable and equally important. Minimum Error
pruning was extended to take into account different a priori class probabilities [4], estim-
ated from the distribution of the training data. However, in most “real world” classification
problems there is also a cost associated with misclassifying examples from each class, C..
For binary classification problems these errors are called false positives and false negatives.
In the field of statistical hypothesis testing they are referred to as Type I and Type II errors
[21]. A Type I error is the rejection of the null hypothesis when it is true and a Type II error
is the acceptance of the null hypothesis when it is false. The analogous false positive is a
classification of positive given to an example that is actually negative, and a false negative is
the negative classification of an example that is actually positive. They are defined as follows:

P(False Positive) = P(Classify Positive | Negative), (1)
P(False Negative) = P(Classify Negative | Positive). (2)

2 As pruning always reduces classification accuracy on the training data.



In general the probability of a false positive, (denoted «), is referred to as the level of
stgnificance of a test, and the probability of a false negative, (denoted 3), the power of a test.
Two related accuracy measures are then the sensitivity, (1 — 3), and the specificity, (1 — a)
of a test. In signal detection theory the plot of a versus 1 — 8 is known as the “Receiver
Operating Characteristic” or ROC curve [17]. In this domain it is used to measure how well a
receiver can detect signal from noise, but in general it measures the ability to classify positive
from negative examples. In statistical pattern recognition, this method of treating the two
types of errors separately is called the Neyman-Pearson method [20]. Here, we fix one of
the class error probabilities, usually from a performance specification, and then minimize the
other class error probability with this constraint. Because of the difficulties in solving this
constrained minimization, a practical approach to the Neyman-Pearson criterion is to vary the
decision threshold between two class distributions and plot the locus of the points obtained
for a and 1 — 8 i.e., a ROC curve, choosing an operational point from that.

Treating the two types of errors separately means that we can associate a cost with each
type of error. Normally, a classification scheme will be specified in terms of an operational
point that defines limits on both types of errors, and therefore minimizes the overall cost
[22]. This operational point can then be extended to an operational characteristic that gives
a system a number of different operational modes. Again, in the case of screening for cervical
cancer, an automated screener can be used in one of two roles: as a primary screener, which
initially screens all of the incoming slides, with a ~ 50%, 8 < 1%; and as a quality control
checker which “double checks” only those slides conventionally screened and passed as normal,

with a < 10%, 8 ~ 5% [1].

3.1 Implementation

We have already shown why it is important to take relative misclassification costs into con-
sideration when deciding which leaves of a decision tree should be removed. So, the expected
error rate, E., as determined using the Minimum error [4] or Pessimistic [14] pruning, should
be weighted by a measure of the misclassification cost for that class, C..

EK.=E,-C. (3)

This concept is directly related related to Error-Complexity Pruning [3] where the actual size
of the decision tree is used as an additional cost in the pruning strategy. It should be noted
that the Pessimistic pruning algorithm has to be slightly modified, this is because the class of
a replacement node for a subtree is no longer always the most frequently occurring class, but
is the class with the smallest weighted error estimate (FK,.). This condition is already the
case for the Minimum Error algorithm, where the a prior: class probabilities have a similar
effect on the error estimates.

The error estimates of a subtree for each of the pruning strategies are now weighted using
the misclassification cost associated with each class. So, for Pessimistic pruning, Ucr(E, N)is
upper limit on the probability of error of a subtree, with confidence level C F3. For a subtree
classifying N cases correctly and E wrongly, the cost-sensitive error is given by:

EK.=Ucr(E,N)-C,, (4)

For Minimum Error pruning, for a subtree covering N examples, of which n, are in class ¢,

3Based on the Binomial distribution.



and class ¢ having an a priori probability of p,., the cost-sensitive subtree error is given by:

N_nc‘|'(]-_pac)m
N+m

EK, = - C.. (5)
Here, the parameter m controls the amount of pruning that takes place and is related to the
amount of noise in the data domain. Similar cost-sensitive pruning equations for the original
Minimum Error, and Pessimistic algorithms, plus a number of other pruning strategies can
be found in Knoll et al [8]. In addition Breiman, et al show the use of misclassification costs
both when constructing and pruning CART decision trees [3].

4 Experimental Work

In this paper we wish to demonstrate that cost-sensitive pruning of decision trees can be
used to control the number of false positive and false negative classifications. Thus providing
the required classification modes and additional flexibility. It should be noted that we are
assuming an operational point will be specified prior to construction of the decision tree. The
ROC curve being used to find suitable values of relative misclassification cost to position the
pruned decision tree at, or near to, the specified operational point. The two data domains
chosen for this study were:

1. BREAST: Diagnosing breast cancer [23]. There are 9 integer inputs, each with a value
between 1 and 10. The two output classes, benign and malignant, are non-uniformly
distributed (65.5% and 34.5% respectively).

2. PIMA: Diagnosing diabetes among female Pima Indians [19]. There are 8 continuously
valued inputs, 2 non-uniformly distributed output classes (65.1% and 34.9%) and a total
of 768 data points.

The actual datasets and further information regarding them can be obtained from a machine-
readable data repository at the University of California, Department of Information and Com-
puter Science (ftp:ics.uci.edu:pub/machine-learning-databases).

4.1 Experimental Procedure

The experimental procedure used consisted of the following steps:

1. Randomly partition the data into two sets: a training set, comprising 70% of the data;
and a test set containing the remaining 30%. This partitioning is done so that the class
distributions in each set remained approximately equal [22].

Note: For the PIMA domain the input data contained continuous attributes that, for
MSC, required scaling to the range [0,1). This was done by a linear transformation using
the maximum and minimum values of each attribute as follows:

¢ — min(z)

y= (6)

max(z) — min(z)

2. Train the MSC on each training set in turn until 100% accuracy is achieved on the
training set, then store the decision tree.



3. Use Minimum error pruning on the decision tree with the following, approximately log-
arithmic scale, relative misclassification costs (shown as false negative:false positive):

(1:8,1:4,1:2,1:1.5,1:1.25,1:1,1.25:1,1.5:1,2:1,4:1,8:1,16:1,32:1).
After pruning with each cost, note the number of false positive and false negative clas-
sifications.

4. Repeat steps 1 to 3, 9 more times and average the results for both datasets. Repeat this
process for Pessimistic pruning.

Both Minimum Error and Pessimistic pruning require the specification of a pruning para-
meter, m and the confidence level, ¢f, respectively. Default values of m = 8 and c¢f = 1 were
used in all cases.

5 Results
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Figure 1: ROC curve for the breast can- Figure 2: ROC curve for the Pima In-
cer data. dian’s diabetes data.

Figures 1 and 2 show ROC curves for the breast cancer and Pima diabetes data sets respect-
ively. The diagonal line from (0,0) to (1,1) shows the point of no discrimination between the
two classes, i.e., where the probability of a true positive (1 — 3) equals the probability of a
false positive (). The location of equal misclassification cost is shown on the curves with an

‘x’.

6 Discussion

Figures 1 and 2 show that as the costs were varied the position of the classifier on the ROC
curve varied. Though our method of constructing a ROC curve is based on predefined vari-
ations in misclassification cost, systematic approaches have been proposed [15] that reduce
computational complexity. If one class has a high relative cost (greater than 16:1), the decision
tree reduces to a single leaf of the class with the lowest cost. The resultant classifier is not
of any practical use, but the reduction is sensible, since it indicates that it is too costly to
predict any example as being from the high cost class.



It should be noted that the classifier can only be positioned at discrete points on the ROC
curve. This is not due to the discrete steps in the costs used when pruning, but to the pruning
methodology itself. When the decision tree is pruned, a subtree is reduced to a single leaf of
the class with the minimum error. This single leaf can then subsequently lead to a number of
false positive or negative classifications, so, the error rises in discrete steps. In the case of the
non-binary MSC tree this effect could be reduced by further revising the pruning strategies
to allow for partial removal of subtrees, i.e., by allowing some of the leaves on a subtree to
be merged. In this way a subtree would be replaced by a smaller subtree rather than by a
single leaf. This strategy may also increase the overall accuracy of pruning, as erroneous single
leaves can now be removed.

The point of perfect classification on the ROC curveisat a = 0,1—8 = 1, the lowest overall
error rate being obtained when the classifier is positioned as near to this corner as possible.
Figures 1 and 2 show that equal costs, as indicated by the ‘x’, do mot necessarily provide
the lowest overall probability of error. In fact, for both pruning methods on both datasets, a
slightly higher (= 1:1.5) false positive cost actually increased the overall accuracy. However, as
we have already discussed, overall accuracy is not, on its own, a good measure of performance.
Measures such as sensitivity, specificity, and overall misclassification cost are more preferable
[3,22]. This paper recommends that for the full evaluation of a machine learning technique,
a ROC curve should always be plotted. Then, if a “single number” evaluation is required, a

measure such as the area under the ROC curve [18], or the x? value from the confusion matrix
[21] should be used.

7 Conclusions

We have expanded Minimum Error and Pessimistic decision tree pruning so that they are
sensitive to the cost of misclassifying examples from different classes. We have demonstrated
the need for this type of pruning in order to produce different classification modes in decision
trees. We have also shown how this information may be analysed using the ROC curve,
a technique previously used in statistical pattern recognition. We recommended that ROC
curves become more widely used in machine learning.
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