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In this paper we propose a technique for classifying images by modeling features extracted at di�erent

scales. Speci�cally, we use texture measures derived from Pap smear cell nuclei images using a Grey

Level Co-occurrence Matrix (GLCM). For a texture feature extracted from the GLCM at a number

of distances we hypothesise that by modeling the feature as a continuous function of scale we can

obtain information as to the shape of this function and hence improve its discriminatory power. This

hypothesis is compared to the traditional method of selecting a given number of the best single

distance measures. It is found, on the limited data set available, that the classi�cation accuracy can

be improved by modeling the texture features in this way.

1 INTRODUCTION

Scale is of vital importance in the analysis and understanding of signals. The adage \You can't

see the woods for the trees" is a classic example of a problem of scale. A forest can only be

recognised as such within a particular range of distances (scales). If you are too close, the forest

appears as a single branch, piece of bark or collection of molecules. From a distance of hundreds

of kilometers the forest just becomes a small part of the shape and texture of the landscape.

The idea that all the information in a signal is not contained at only one scale is of crucial

importance. It has been shown that to fully analyse the structure of the signal it is necessary to

relate information from a number of di�erent scales. A method of combining this information,

proposed by Witkin [15], is to treat scale as a continuous variable rather than a parameter.

Signal features measured at di�erent scales can then be related if they lie on the same feature

path in \scale-space". In the computer vision community, a variety of image structures have

been analysed at di�erent scales by using this multi-scale representation [8]. A classic example

of this scale-space analysis is in signal matching [14].

In this paper we have applied this same principle to the investigation of measures of image

texture at varying scales, most measures of texture being determined at a number of scales or

distances [3]. We propose a method to incorporate the information from all these scales in a

meaningful way, hence signi�cantly reducing the dimensionality of the data, whilst maintain-

ing as much useful information as possible. The application we have chosen to illustrate this

technique is cervical cell texture analysis using a Grey Level Co-occurrence Matrix (GLCM),

therefore, some background to the GLCM will be given next.

2 GREY LEVEL CO-OCCURRENCE MATRIX TEXTURE MEASURES

The Grey Level Co-occurrence Matrix (GLCM) as proposed by Julesz [7] and later by Haralick et

al [5], has been shown to be a powerful technique for measuring texture [1,4]. It is a second-order

method that characterizes the probability that, given an image f : D �Z2! [0; 1; 2; : : : ; n� 1],

the grey levels k = f(i; j), and l = f(i0; j0) co-occur. We de�ne the distance between (i; j) and

(i0; j0) as d = d ((i; j); (i0; j0)), which expressed in polar co-ordinates is r = jdj and � = 6 d.

The GLCM is then Cr;� where each element c(k; l) is given by:

c(k; l) = Pr
�
f(i0; j0) = l j f(i; j) = k

�
: (1)
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The GLCM, Cr;�, is constructed by �rst quantising the image, f , into a \manageable"

number of grey levels1 [0; 1; 2; : : : ; n � 1], and then, for every pixel (i; j), examining the pixel

(i0; j0) for speci�ed values of r and �. The GLCM, Cr;� , is then of size n�n, with entries, c(k; l),

incremented every time the grey levels k and l co-occur. Probability estimates are obtained

by dividing each entry in Cr;� by the sum of all the entries. GLCMs are constructed at a

number of distances, r, (scales) [1; 2; 3; : : : ; m], and angles, �, [0�; 45�; 90�; 135�] in the image.

Note: the GLCM is constructed to be symmetric so that Cr;� =
Cr;�+C

T

r;�

2
, i.e., CT

r;0� = Cr;180�

C
T

r;45� = Cr;225�, C
T

r;90� = Cr;270�, and C
T

r;135� = Cr;315�. Rotational invariance is then usually

obtained by averaging with respect to � [1].

Once the GLCM, Cr;�, has been constructed, its \content" is characterized using descriptors

that extract features from Cr;�. For example, a descriptor that has a relatively high value

when the values of Cr;� are near the main diagonal, is the Inverse Di�erence Moment (Local

Homogeneity):

IDMr;� =
X
k

X
l

c(k; l)

(1 + (k� l)2)
; (2)

while a descriptor such as Entropy measures randomness, reaching its highest value when the

elements of Cr;� are equal:

Entr;� = �
X
k

X
l

c(k; l) lnc(k; l): (3)

A number of other such features have been proposed [5]. The conventional method of texture

analysis using the GLCM is to treat these features, extracted at di�erent distances (scales), as

independent features, selecting a small subset of scales (often a single scale) which gives the

highest discriminatory power [16].
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Figure 1: Sample points and their continuous scale-space texture functionals.

We propose to treat these measurements of texture at each scale as sample points of a con-

tinuous function through scale-space. This function can then be reconstructed by interpolating

the sample points of the functions extracted from the GLCM, as shown in Figure 1. This allows

a whole new range of classical mathematical techniques for comparing functions to be used in

the analysis and classi�cation of textures.

1In our case 16 [12].



3 TEXTURE AS A FUNCTION OF SCALE

Assume we have an image f : D � R2! [0; 1; 2; : : : ; n� 1], with the domain D bounded and of

area

A(D) =

Z Z
D

dxdy: (4)

Since this image is de�ned on a continuous domain, we need to reformulate the theory of Grey

Level Co-occurrence Matrices (GLCM) for the continuous case. To unify our work with scale-

space theory, we will use the notation � (scale) instead of r (distance) to denote pixel displace-

ment. We de�ne the Grey Level Co-occurrence Function (GLCF) g�;� : [0; 1; 2; : : : ; n � 1] �

[0; 1; 2; : : : ; n� 1]! R as:

g�;�(�; �) =
1

A(D)

Z Z
D

I
�
f(x; y) = �; f(x0; y0) = �

�
dxdy; (5)

where,

x0 = x+ � cos �; (6)

y0 = y + � sin �; (7)

and the indicator function,

I
�
f(x; y) = �; f(x0; y0) = �

�
=

�
1 if (f(x; y) = �) and (f(x0; y0) = �);

0 otherwise.
(8)

In other words, the GLCF estimates the probability that a pair of grey levels [�; �] will be

found at a displacement [� cos �; � sin �] apart.

Scale dependent texture features T (�) are extracted by applying some functional  to the

GLCF. If this functional integrates g��(�; �) over �; � and �, then the texture feature of interest

can be expressed as a function of scale. We write:

T (�) =  [g�;� (�; �)] : (9)

The scale dependent functionals used in this work are continuous versions of those commonly

used for discrete textural feature measures [1,5], for example, Energy:

En(�) =

Z
�

Z Z
D

g2
�;�
(�; �) d�d� d� (10)

We also used: Inverse Di�erence Moment (Local Homogeneity); Entropy; Correlation; Inertia;

Cluster Shade; and Cluster Prominence. In this paper we approximate these scale dependent

functionals by �tting continuous functions to the discrete measurements extracted from the

GLCM. However, we could have also �tted a continuous function to the image, allowing direct

calculation of the GLCF. This would also allow scale to be extracted as a continuous variable.

4 TEXTURE ANALYSIS OF CERVICAL CELL NUCLEI

Traditionally, the computerized image analysis of cervical cells has attempted to use the same

features to discriminate normal and abnormal cells as used by cytologists. These features,

extracted from the nucleus and cytoplasm of each cell, are usually morphometric and photometric

features, such as the size, shape, and optical density [9]. Additional clues such as the context

of cells i.e., free-lying or in a group, can then be used to improve classi�cation performance.

However, cell dysplasia (abnormality) is thought to initiate in the nucleus of the cell [10] and so

features that measure the changing DNA structure in the nucleus have potential to be highly
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Figure 2: Examples of segmented normal and abnormal cervical cell nuclei.

discriminatory for the early stages of cell dysplasia. Features that measure this nuclear texture

have been successfully used to discriminate between normal and abnormal cervical cells [12].

Figure 2 shows examples of the texture in typical normal and abnormal cervical cell nuclei.

It can be appreciated from this �gure that it is rather di�cult for the untrained observer to

distinguish between the two di�erent cell types. In this paper the data set consisted of some

117 segmented cell nuclei, there being 58 normal and 59 abnormal cells. The grey-scale images

were captured and segmented as detailed in [12]. For each cell a GLCM was created at distances

of 1 to 15, at odd intervals only. Then the 7 texture features were extracted from each of the

8 GLCMs giving a total of 56 texture measurements for each cell. Continuous functions were

then �tted to the 8 distance measurements for each of the texture functionals, as shown in

Figure 1 for the Inertia functional. For the purpose of this study only polynomial models were

considered, so that the 8 distance measurements were reduced to 2 (gradient and intercept)

for a linear model , 3 for a quadratic, and 4 for a cubic. We then estimated the error rate of

each model and selected the model with the lowest estimated error rate. Then, we selected the

best N parameters from these best models and again classi�ed the cervical cell data. This was

compared to the conventional method of choosing N distances from the original 56 available2.

In all cases features were �rst normalised to be in the range [0,1] and then selected using

a Sequential Forward Search with the Bhattacharyya distance measure for determining feature

separation [2,11]. The error estimate was obtained using leave-one-out [13] random sub-sampling

using K-Nearest Neighbours (with K = 3) classi�cation. This strategy is computationally

intensive, but is generally considered to be one of the most reliable estimators of true error rate.

5 RESULTS

No. Features 1 2 3 4 5 6 7

Best Model 79% 85% 85% 84% 88% 88% 89%

Best Scales 83% 80% 85% 82% 87% 85% 86%

Table 1: Comparison of classi�cation accuracies for the best N features.

27 features each at 8 distances.



Table 1 shows estimates of the true accuracy for the conventional method, selecting N fea-

tures from the original 56 distance measures, and for the proposed method, selecting N of the

parameters from the best model for each feature.

6 DISCUSSION

The classi�cation accuracy of the proposed technique was as good as, or better than, the con-

vention technique in all cases except for classi�cation using only a single feature. There is some

evidence to suggest that the proposed method is better than the conventional one. However,

on the current data set, this di�erence is not signi�cant at the 0.10 level and so we are unable

to reject the hypothesis that the two classi�cation schemes produce equal accuracies3. Fitting

models to each of the 7 texture features reduced the dimensionality of the original data set

from 56 to 21. This is a signi�cant reduction in dimensionality and reduces the computational

complexity of further feature selection. Karhunen-Lo�eve analysis could also have been used to

reduce the dimensionality, but in initial trials was found to perform poorly in this case, and, so

far, has not been investigated further.

In general, the classi�cation accuracy of each texture feature increased when we considered

more than one scale. This con�rms a result found by Conners and Harlow [1], and reiterates

the fact that all the information in the signal is not contained at just one scale. The overall

accuracy also increased when combining di�erent texture features together, a similar result was

found by Gotlieb and Kreyszig for their atomic and composite classi�ers [4].

Scale should really be treated in a logarithmic manner, in this way changes in the texture

function between, say scales 1 and 2 should be just as signi�cant as changes in scale between 8

and 16. This was not done in this study as the data had already been collected at integer scales,

but models should perhaps be �tted to a logarithmic scale in future research. Another advantage

of the model �tting technique is that the features can be measured at as many distances or scales

as you desire. The more samples of the continuous function the better, with the conventional

method however, this would add to the dimensionality of the problem and make feature selection

more computationally expensive. In this paper, only polynomial models have been discussed.

There are, of course, a multitude of models and methods that could be used, such as auto-

regressive models, cubic splines, likelihood ratio test, etc. There are also a number of other scale

dependent functionals that this technique can be applied to, for example features extracted from

a morphological scale-space [6].

7 CONCLUSIONS

We have formulated a technique for classifying texture as a continuous function of scale. We have

empirically shown the technique to perform better than the conventional method on textures

derived from cervical cell nuclei. In addition, we have highlighted the following advantages of

the proposed technique: It uses information from a number of scales by modeling the shape of

the texture functions in scale-space; It reduces the dimensionality of the data, producing \high

order" features; and Dimensionality is not increased by taking more distance measures.
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