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could be increased to about 55 pHz (A fi,c.) using only two GAL’s
(GAL 16V8) without any reduction of the spectral purity of the output
signal.

V. CONCLUSION

By using the Fine Tuning Circuit presented in this paper it is
possible to improve the performance of Direct Digital Synthesizers
containing Numerically Controlled Oscillators (NCO’s). The solution
is easy to implement and offers the advantage that a higher frequency
resolution can be achieved by simply cascading single tuning stages.
The special advantage of the presented serial structure is the fact that
it is easy to implement even at very high clock frequencies. Due to the
structure of the circuit it is possible to connect as many single stages
as necessary to obtain the desired frequency resolution. The output
sequence of the Fine Tuning Circuit is identical to the carry output
of a phase accumulator. That means that there are no differences in
the spectral properties of the generated sinewave.
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FIR Approximation of Fractional Sample Delay Systems

Peter J. Kootsookos and Robert C. Williamson

Abstract—This brief examines the approximation of fractional delays
by FIR systems using various techniques which have previously been
reported in the literature. In particular, the equivalence of the time-
domain Lagrangian interpolation, the frequency-domain maximally flat
error criterion and the window method is shown, provided maximal
flatness is specified at wg = 0 and the window used is a scaled binomial
function. The first of these has been known before, the second equivalence
is new.

I. INTRODUCTION

In sensor array beamsteering, it is sometimes necessary to apply
fractional sample delays to discrete-time signals. This note exam-
ines the design of discrete-time finite impulse response filters to

- approximate fractional sample delay systems.

Polyphase filterbank implementations of fractional delay systems
are not considered. This is because of the need for increased sampling
rates in such schemes. We wish only to consider single sampling rate
implementations.

A. Ideal Discrete-Time Fractional Sample Delay

The approximation of delays in continuous-time systems [1] is a
well-studied problem. There are several major differences between
the continuous-time approximation problem and the discrete-time
analog we address. For a start, causal continuous-time delays are
always causal and BIBO stable whereas in discrete-time problem
neither of these properties hold (for fractional sample delays).

The ideal discrete-time fractional sample delay problem has the
following characteristics.

1) The frequency response of an ideal delay system Higear(e’)

with a delay of 74 samples is given by Higeal (¢7¥) = 77474,

2) The impulse response of the system is

sin [w(n — 74))
W, n € L. €8}

hit =
If 74 € Z then (1) simplifies to hif* = §[n — 74], where 6[-]
is the Kronecker delta function.
3) The system is all-pass |Higeal(e’*)| = 1,
4) The group delay is  constant
—(d/dw} arg [Hideal(e]“’)] = Td.
5) For 74 ¢ Z, the system is noncausal and is not BIBO stable
(h7? is not absolutely summable).

V.
Tg(w) =

B. Problem Definition

This brief examines the problem where we wish to implement an
approximation to Hideal as a finite impulse response (FIR) filter. The
problem is specified as follows:

Problem 1. FIR Approximation of Fractional Delay Systems:
Given a discrete-time fractional delay system with frequency response
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¢~7%7d we wish to choose the coefficients A, of a finite impulse
response filter so that the error

N-1
E(&%) = e77%Td — E hne 7"
n=0

is acceptable. O
There are several possible interpretations of “acceptable.” It may
mean the p-norm of ' is minimized with respect to the coefficients
ﬁn or, in a more classical treatment, it may mean that the coefficients

" are chosen so that the error function is maximally flat [2].
Following Cain er al. [3] we have the following result for the

infinity-norm error of approximants with real coefficients.
Proposition 1. Infinity-Norm Error Bound—Real Coefficients:

Given hir € IR then

max |E(e’)| > |sin (x7a)].

: d
Proof: The proof (from [3]) is obtained by noting that
H(w)lw=r € R
and that, at this frequency, Im (e 77*74) = — sin (77g). =

Remark 1: This result says that, no matter how long an FIR filter is
used to approximate the ideal delay, there will always be an infinity-
norm error of | sin (w74)|. Thus, the infinity-norm is not a sensible
criterion by which to compare various methods for approximating
fractional sample delay systems.

It may be that a band-limited infinity-norm criterion, such as
MaX.eo, ) |E(e?)], where o < = is more suitable for use in
designing real-valued FIR filters for the problem at hand.

II. THREE APPROXIMATION PROCEDURES
We examine the window, Lagrangian interpolation [4] and max-
imally flat error [4], [5] approaches to the problem. We show that,
given certain design choices, these three approaches are equivalent.

A. The Window Method

Given a desired (possibly infinite duration and noncausal} impulse
response hp? from (1), the window method for FIR filter design
generates the filter coefficients

Ayz{h? 0<n<N-1
0 otherwise
For this case, the “window” chosen is the length N rectangular
window. The coefficients A7¢ yield the £;-optimal N-coefficient FIR
approximate to the desired sequence h,%.

Because of its simplicity and optimality, this technique is popular.
However, to improve control of performance in specific frequency
bands, the technique is usually modified so that

BTd = Wothnt 0<n<N-1
" 0 otherwise

where W, ¢ is some more suitable window function. If the rectangular

window is used (or hr? represents an integer delay) then A7¢ = B¢,

B. A Time-Domain Lagrangian Interpolation Method

Minocha, Dutta Roy, and Kumar [4] find FIR filter coefficients
Crp? such that

N-1
T, — Td R
Tt = E Crln_g
k=0

where the sequence [z,*] approximates the sequence [z,] delayed by
T4 = o + M samples with |o| < 1. The sequence [z7%] is obtained
by interpolating z(¢) from N = 2M + 1 samples of [z,] using the
Lagrange polynomials Ly (t): \

H k~1
+=0

ik
where

\N—l
z(t) =Y Li(t)zk.
k=0

The coefficients resulting from the derivations in [4] are

Cpt = (—1)N 7! Cj) (ﬁ:z: i)
n=0,1,+,N—1. ¥))

This is slightly different from [4] due to our indexing starting from
0 rather than 1.

C. A Frequency Domain Maximally Flat Approach

Suppose the classical design criterion of maximal flatness (as is
used to design Butterworth filters [2]) is applied to the approximation
eIror: :

N—1 -
E(e¥) = ¢ 19T — Z Diie ivn
=0

This was done in [5] and expanded upon in [4]. The maximally flat
approach chooses the FIR coefficients Dy? so that

k jw
) (g0 o T L)
=0 for some specific wo,
where k=0, 1, -+, N — 1 and E (%) = E(e7%).

Minocha er al. [4] have shown that the coefficients for the maxi-
mally flat design satisfy the recursion:

- n n—1 -
T4 _ Liwo(n—ry) Td _r
Dn =¢ n! H (1 Td

p=1
N—n—-1
=y (F)mmeeens o
r=1
where n = N —~ 1, N — 2, ---, 0 and summations Z_fj:M (-) for

N < M are zero. Explicitly, the coefficients are given by
D¢ = Jwo(n=74)

(£ [ T e-0))

m=n+1 r=1
where n = 0,1,---, N — 1.

HI. UNIFICATION OF THE METHODS

Considering the apparently disparate nature of the derivations of
these approximation procedures, the following results are somewhat
surprising. The first of these has been noted. previously by Hermanow-
icz [6].

Proposition 2. Equivalence of Interpolation and Maximally Flat

Approximates: In the notation defined above
Cré =Dy, forn=0,1,---, N—1

when the maximally flat design for D¢ is carried out about wq = 0.
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Proof: From (4),

. N _1)mtntlom 1 m~2
Dyt = E {((—m)—n—ﬁ H[Td (Td—p)]}

m=n-+1
f: (=)™t m = 1) [ g
(m—n—1)n! m—1
m=n-+1

5 e (1))

m=n-+1
il T n
_qymtntl d —
Z =1 : (m —-—n— 1)

(Td )
n
m=n+1

where the last manipulation makes use of the identity

(&) (7:) = (:,) (;:2) form,ne.  (5)

The binomial identities used in this and other proofs are all from
Knuth [7].
Then, rewriting the summation limits yields

Di# = (-1 (jj) Nfl(—wm (“’7; ")

m=0

- (B) (FI00)

which is identical to (2). . u
Remark 2: An equivalent proof is available by showing -that
the Lagrangian interpolation coefficients C? satisfy the recursion
relation of (3). O
Remark 3: Note that the condition that the expansion must take
place about wo = 0 can be removed if we modify (2) to be

Ci ey e (T (W2,

n=01---,N-1.

a

A more surprising result is the following.
Proposition 3. Equivalence of Interpolation and Window Method

Approximates: In the notation defined above
Crt=By¢, forn=0,1,---, N -1,
where Br? = Wp¢A7¢ and
]
Proof: First for n = 0,1,---, N — 1, note that because

N =2M + 1 is odd )
AT = sin[r(n — 74)]
" w(n —7q)
(~1)N-n sm(ﬂTd)

w(n — 14)

Then, from (2)
e (1) (23)
e ()2

_ (=D""" sin ‘rd)( )(N—l)_.iN__
7r(n—7d N n ) sin(rrg)

(m
)
= aiorg () (72

Td Td
=WiAT

where the identities (5) and

1)=5G1)

have been used to obtain the result. ]

Remark 4: The interpretation of this result is that the Lagrangian
interpolation and maximally flat approximants may be thought of as
approximants formed using the window design technique with the
window (6).

Remark 5: From an implementation point of view, the simple form
of (6) means that only a small amount of storage would be required
for a wide range of 74 and N.

IV. CONCLUSION

‘We have shown that, under certain design choices, three apparently
disparate approaches to the FIR approximation of fractional sample
delays are equivalent. The equivalent approaches are: the window
method, the Lagrangian interpolation method, and the maximally flat
error method.

The equivalencies occur when the window method uses a scaled
binomial window and when the maximally flat error method uses
wo = 0 as the expansion point.
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