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RÉsuMÉ EN FRANCAIS 

La pandémie de virus de l' immunodéficience humaine (VIH-l) continue d'être un 
problème global majeur en santé publique. Les thérapies anti-rétrovirales ont grandement 
amélioré le statut clinique de nombreux patients; cependant, elles ont des faiblesses 
importantes, notamment au niveau des effets secondaires, du coût ainsi que 
l'accumulation de mutations de résistance. De plus, ces thérapies ne peuvent cibler l'ADN 
du VIH-l sous sa fornle intégrée latente. Une meilleure connaissance des facteurs de 
l' hôte modulant l'infection pourrait probablement accélérer le développement de 
nouvelles molécules contre le VIH-l , et fournir une nouvelle perspective pour 
l' éradication du VIH-l. Les facteurs de restriction sont des protéines cellulaires 
spécialisées induites par les interférons de type 1 (IFN-I) qui bloquent les rétrovirus à 
différentes étapes du cycle viral. Cette thèse se concentre sur TRIMI9, mieux connue sous 
le nom de la protéine de leucémie promyélocytaire (PML), un membre de la famille des 
protéines à motif tripartite (TRIM). PML est la protéine organisatrice d' une structure 
nucléaire appelée corps nucléaire de PML et est impliquée dans plusieurs fonctions 
cellulaires telles que l' apoptose, les modifications post-traductionnelles et la suppression 
de tumeurs. Alors que le rôle de PML dans l' immunité innée est bien documenté pour 
plusieurs virus, ses effets sur le VIH -1 sont peu clairs. De façon intéressante, il a été 
récemment proposé que PML régule l' expression des gènes dépendant de l' IFN (ISGs). 
Les travaux décrits dans cette thèse portent sur le rôle de PML dans la capacité des 
lentivirus à infecter les cellules humaines et de souris. Pour le modèle murin, nous avons 
utilisé des fibroblastes embryonnaires de souris (MEFs) PML-knockout (PML-KO). 
Dans nos premières études, nous avons observé que les MEFs étaient plus permissives à 
l' infection par des lentivirus en l' absence de PML. La surexpression de mPML ou 
d' isoformes de hPML a conféré le phénotype de restriction aux cellules PML-KO. Nous 
avons montré que hPML et mPML inhibent les étapes précoces de la réplication du VIH-l 
dans les MEFs et que la restriction est saturable même en présence d' un excès de PML, 
suggérant que PML n'est pas l'effecteur direct. Nous avons également observé que PML 
contribuait à l' inhibition du VIH-l par les IFN-I dans les MEFs. De plus, nous avons 
montré que PML réprime l'expression génique du VIH-l dans les MEFs, suggérant un 
rôle dans la latence virale. Dans une deuxième étude, nous avons investi gué le rôle de 
PML dans la restriction des lentivirus dans plusieurs lignées cellulaires humaines, dont 
des lymphocytes T, par knockout de PML à l'aide du système CRISPR-Cas9. Nous avons 
trouvé que le knockout avait peu ou pas d'effets sur l ' infectivité des lentivirus, et que PML 
n'était pas impliqué dans l' inhibition du VIH-l par les IFN-I, démontrant que PML n'a 
pas de rôle dans la restriction des lentivirus dans les cellules humaines. Pris ensemble, nos 
résultats démontrent que l' implication de PML dans l' immunité innée contre le VIH -1 et 
d' autres lentivirus est spécifique du contexte cellulaire ou de l'espèce. Également, nos 
travaux apportent un éclairage nouveau sur le rôle possible de PML dans la latence du 
VIH-l , suggérant que PML pourrait constituer une cible moléculaire pour des agents 
pharmacologiques visant à supprimer les réservoirs de virus latent. 

Mots-clés: VIH-l , lentivirus, PML, interféron, latence, immunité innée. 



ABSTRACT 

The type 1 human immunodeficiency virus (HIV -1) pandemic remains a major global 
public health problem. Anti-retroviral therapy (ART) has improved dramatically the 
clinical status of man y HIV patients; however, it has major drawbacks, including side 
effects, cost and the accumulation of drug-resistant variants. Moreover, ART is not able 
to target HIV -1 in its latent, integrated form. A better understanding of host factors 
modulating infection is likely to accelerate the development of new drugs and to provide 
a new perspective for HIV -1 eradication. Restriction factors are type l interferon (IFN)­
induced specialized cellular proteins that block retroviruses at different steps of their life 
cycle. This thesis focuses on TRIM19, better known as promyelocytic leukemia (PML) 
prote in, a member of the tripartite motif (TRIM) prote in family. PML is the constitutive 
organizer of a nuclear do main termed nuclear body (NB) and is involved in many cellular 
activities including apoptosis, post-translational modifications and tumor suppression. 
While the roIe ofPML in the innate immunity against several viruses is weIl documented, 
its effects on HIV-1 remain unclear. Interestingly, PML was recently proposed to regulate 
the expression ofIFN-stimulated genes (ISGs). The following studies investigate the role 
of PML in the permissiveness of murine and human cells to infection with lentiviruses. 
PML knockout (KO) mouse embryonic fibroblasts (MEFs) were used as a murine cellular 
model. In early studies, we found that MEFs were significantly more permissive to 
lentiviral infection in the absence of PML. Overexpression of mPML or sorne hPML 
isoforms conferred the restriction phenotype to PML-KO cells. We showed that both 
hPML and rnPML inhibit the early post-entry stages of HIV -1 replication in MEFs and 
that the restriction is saturable even in the presence of over-expressed PML, suggesting 
that PML is not the direct effector. We also observed thatPML contributed to the IFN­
induced inhibition ofHIV-1 in MEFs. Moreover, we observed that PML repressed HIV-1 
gene expression in MEFs, suggesting a role in latency. In the second study, the role of 
hPML in the restriction of lentiviruses in several human celllines including T cells was 
investigated by knocking out PML using the CRISPR-Cas9 system. PML knockout had 
no or little effect on the infectivity of lentiviruses, and it was not involved in the IFN­
induced restriction of HIV -1, demonstrating that PML does not restrict the early stages of 
lentiviral infection ofhuman cells. Taken together, our results show that PML is involved 
in both innate and intrinsic immunity against HIV -1 and other lentiviruses in an isoform­
specific, cellular context or species-specific fashion. In addition, our work provides new 
insights into the role of PML in HIV -1 latency, suggesting that PML is a potential target 
for new antiviral drugs aiming at purging latent reservoirs. 

Keywords: HIV-1 , lentivirus, PML, interferon, latency, innate immunity. 
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CHAPTERI 

INTRODUCTION 

1.1 An introduction to HIV/AIDS 

The first cases of acquired immunodeficiency syndrome (AIDS) were reported in 

the United States in the spring of 1981 (Centers for Disease Control 1981 b, a). The largest 

group of early AIDS cases comprised homosexual and bisexual men as weIl as injection 

drug users. Outside of scientific communities, AIDS was sometimes justified as God ' s 

punishment for homosexual men and drug users (Shilts 1987). Nevertheless, doubts about 

the viral cause remained until the causative virus, later termed human immunodeficiency 

virus (HIV), was isolated from patients in 1983-4 (Barre-Sinoussi et al. 1983; Gallo et al. 

1984). 

1.1.1 HIV classification 

HIV is a member of the genus Lentivirus of the Retroviridae family. Two main types 

ofHIV have been characterized: HIV -1 and HIV -2. They are two distinct viruses that can 

both lead to AIDS. HIV -1 was discovered first and it is the most widespread type. HIV-2 

was isolated in 1986 and it is a morphologically similar but antigenically different virus 

(Clavel et al. 1986). Humans are not the natural hosts of either HIV -1 or HIV -2. Instead, 

these viruses have entered the human population as a result of zoonotic or cross-species 

transmission. It was found that HIV -2 is closely related to a simian virus causing 

immunodeficiency in sooty mangabeys termed SIV smm (Hirsch et al. 1989). Meanwhile, 

HIV -1 is closely related to a lentivirus in chimpanzees (Pan troglodytes), SIV cpz (Peeters 

et al. 1989; Huet et al. 1990). 

HIV -2 is associated with significantly lower viral loads in plasma, slower rates of 

CD4+ T cell destruction, and reduced rates of disease progression compared to HIV-1 
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(Marlink et al. 1994; Andersson et al. 2000). Therefore, the majority of individuals 

infected with HIV -2 are long-term non-progressors and undetectable plasma viral load 

predicts normal survival in infected people (van der Loeff et al. 2010). 

Due to extensive and dynamic genetic 

diversity, HIV-l can be also classified into a 

major group (M) and three more minor groups: 

N, 0 , and P (Fig. 1.1). Within group M, there 

are at least 9 distinct clades (subtypes) based on 

genetic sequence data as weIl as recombinant 

forms known as circulating recombinant forms, 

CRFs (Hemelaar et al. 2006; Hemelaar 2012). 

HrV-1 HIV-2 

1 
Group M Group N Group 0 Group P 

11111111 
ABC 0 F G H J K CRFs 

Figure 1.1 mv classification. 

Worldwide, HIV -1 group M is the predominant type and is the main causative agent 

of the AIDS pandemic, one of the most devastating infectious diseases in the last 35 years. 

In this study, we have focused on HIV -1 and mention of "HIV" refers to this type. 

1.1.2 Infection 

HIV gradually attacks the immune system, which is the human natural defense 

against infections and sorne types of cancer. The virus infects vital cells in the human 

immune system such as CD4+ helper T ceIls, macrophages, and dendritic cells 

(Klatzmann et al. 1984; Koenig et al. 1986; Steinman et al. 2003). HIV -1 causes the 

destruction of CD4+ lymphocytes with a half-life of less than two days (Ho et al. 1995 ; 

Wei et al. 1995; Perelson et al. 1996). This is the hall mark ofHIV infection and predicts 

an individual's risk for infection with opportunistic pathogens as well as neurologic 

complications of HIV -1 infection such as HIV -l-associated dementia and related 

cognitive and motor disorders (Masur et al. 1989; Ho et al. 1995; Hellerstein et al. 1999; 

Spudich & Gonzalez-Scarano 2012). T cell depletion seen in AIDS is primarily a 

consequence of increased cell death, not decreased cellular production (Mohri et al. 2001), 

through three mechanisms: direct lysis of the infected cell, killing of the infected cell by 
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CD8 lymphocytes or promotion of apoptosis of uninfected bystander cells (Garg et al. 

2012). 

There are three clinical stages of HIV infection (Fig. 1.2): acute HIV infection, 

clinical latency, and AIDS. Generally within 1-4 weeks after infection, the patient may 

develop flu-like symptoms that can include headache, muscle aches, sore throat, low- or 

high-grade fever, swollen glands, rush, etc. (Cooper et al. 1985). During the acute stage 

of HIV infection, the levels of the virus in blood stream are very high, thus there is a high 

risk of transmission to others. At this stage, the immune system begins to respond to the 

virus by producing antibodies and cytotoxic lymphocytes. 
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Following acute infection, the disease moves to the next stage termed clinical 

latency, which may be long (on average 10 years) even in the absence of treatment. 

During this period very low levels of infected cells and viremia in blood make detection 

of the virus expression extremely difficult, although the virus is still active and continues 

to reproduce at very low level (Fauci et al. 1991; Pantaleo et al. 1993). However a 
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progressive loss of CD4+ cells, on average 50-90 cells/mm3 of blood per year, will be 

observed in most infected individuals (Bacchetti & Moss 1989; Phillips 1992). 

AIDS is the final step ofHIV infection ifit is not treated. According to the Centers 

for Disease Control (CDC) criteria, AIDS is diagnosed when a pers on with HIV has a 

CD4+ count of < 200 cells/mm3 of blood and/or one or more opportunistic infections by 

bacteria, fungi , viruses, etc. , that are normally controlled by the immune system (Centers 

for Disease Control 1992). 

1.1.3 Structure 

HIV is spherical in shape (McGovern et 

al. 2002) and has a diameter of Il 0 to 128 and 

132 to 146 nm for the mature and immature 

virus, respectively (Gentile et al. 1994) 

(Fig. 1.3). Two copies of the viral positive 

single-stranded RNA are incorporated into 

the envelope that is composed of two layers 

of phospholipids originating from the 

membrane of the producer host cell and a 

complex of surface projections containing a 

viral glycoprotein, gp120 trimers (Ozel et al. Figure 1.3 

1988; Chan et al. 1997; Lu et al. 2011). This 

structure in addition to three trans-membrane 

glycoproteins, gp41 , forms the spikes that 

project from HIV partic1e and enable the virus 

mv -1 virion. 
This illustration of HIV 
structure shows the 
envelope, capsid, two 
RNA strands, and outer 
and inner proteins. 
(worldofviruses.unI. edu) 

to attach to the CD4 receptor and fuse with the host ceIl (Chan et al. 1997; Zhu et al. 

2006a; Zhu et al. 2008). Inside the envelope, the matrix protein (MA, pl 7) lines the inner 

surface like a shell and the capsid prote in (CA, p24) is located in the center forming a viral 

core and enc10sing the viral genome which is tightly covered with nuc1eocapsid protein 

(NC, p7). Additionally, three essential virally encoded enzymes: protease (PR), reverse 
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transcriptase (RT), and integrase (IN) along with the auxiliary proteins: Nef, Vif, and Vpr 

are packaged in the mature HIV virion (Turner & Summers 1999). 

1.1.4 Genome 

HIV is a complex retrovirus which is composed of two copies of unspliced RNA 

(Fig. 1.4). The genome of the integrated provirus is about 9.7 kb in length (Muesing et al. 

1985) and both ends are flanked by a repeated sequence known as the long terminal repeats 

(LTRs) (Gallo et al. 1988). It contains 9 open reading frames and encodes 15 distinct 

proteins through multiple splicing (Frankel & Young 1998). These proteins are divided in 

three classes: 

F 
A 

1- The core structural proteins Gag (group specifie antigens), Pol, and Env 

2- The regulatory proteins Tat (trans activator) and Rev 

3- The auxiliary proteins Vpu, Vpr, Vif, and Nef 
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Figure 1.4 HIV -1 genome. 

9719 

The three different reading frames are determined as numbered. 
(hivsystemsbiology.org) 

To keep their genome as small as possible, virus es such as HIV often develop new 

strategies to synthesize multiple proteins from a single RNA. HIV utilizes a unique mode 

of gene regulation in which two genes, gag and pol, lie in different translational reading 

frames. The 3' end of gag overlaps the 5' end of pol resulting in two different products, 

Gag and Gag-Pol polyproteins (Jacks et al. 1988). The Gag polyprotein (also known as 

p55) is proteolytically processed to MA (P17), CA (P24), NC (P7), and p6 proteins by the 
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viral protease (PR), while the Gag-Pol polyprotein contains PR, RT, and IN but not p6. 

However, the Env glycoproteins gp120 and gp41 are expressed from a singly spliced 

mRNA. They are initially encoded as a precursor, gp160, which is then cleaved in the 

Golgi by the host cell protease furin into gp 120 and gp41 (Hallenberger et al. 1992; 

Decroly et al. 1994). Other sequences encode for auxiliary proteins (Tat, Rev, Nef, Vif, 

Vpr and Vpu) that play important roI es in the host-pathogen interaction and have 

significant impact on HIV infection (reviewed in (Li et al. 2005)). Briefly, Tat is essential 

for efficient transcription of viral genes and for viral replication. Rev is involved in the 

transportation of single-spliced and unspliced viral mRNAs to the cytoplasm, a step 

required for the expression of HIV structural proteins and the production of genomic 

RNA. Nef has multiple activities during virus replication and enhances virion infectivity 

and viral replication. Nef down-regulates cell surface expression of proteins including 

CD4 and CTLA-4 within the infected ce Il , helping HIV -1 to evade the host immune 

response (Garcia & Miller 1991 ; El-Far et al. 2013). Moreover, Nefwas shown to promote 

HIV-l infection by excluding SERINC5 (a host transmembrane prote in) from virion 

incorporation (Rosa et al. 2015).Vifbinds directly to APOBEC3G (an innate host defense 

factor against HIV infection (Mangeat et al. 2003)) and counteracts its anti-HIV activity 

by promoting its degradation. Vpr has been shown to have multiple activities during virus 

replication, including effects on the nuclear import of the proviral DNA, cell cycle G2/M 

progression, regulation of apoptosis, and transactivation of the HIV -1 L TR as weIl as host 

cell genes. Vpu is a membrane protein that enhances the release of progeny virions from 

infected cells and induces the degradation of the CD4 receptor. Vpu is known to down­

modulate cell surface tetherin, a host restriction factor, thus removing tetherin molecules 

from the site of virus budding (Douglas et al. 2009; Guo & Liang 2012). 

Infection by HIV -1 most often (in 60-80% of mucosal infections) results from the 

successful transmission and propagation of a single virus variant, termed the 

transmitted/founder virus (Keele et al. 2008). However, there are many different forms of 

the virus even in the body of a single infected person that are termed quasispecies. This is 

because of small mutations that may be introduced at each HIV replication cycle in the 
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host cell (Abram et al. 2010). This high genetic variability causes antigenic diversity and 

is one of the obstacles to eradicate HIV (Nowak et al. 1991; Robertson et al. 1995). 

The existence of an antisense prote in (ASP) expressed from an antisense 

polyadenylated transcript of env has been suggested. Although the ASP gene has still not 

been completely accepted by the HIV -1 research community, it was found to play a role 

in autophagy and HIV-1 replication (Torresilla et al. 2013). 

1.1.5 Life cycle 

The life cycle of HIV -1 can be divided into two phases: the early stage occurs 

between entry into the host cell and integration into its genome, and the late phase occurs 

from the state of integrated provirus to the release of infectious virion. Figure 1.5 shows 

a schematic representation of the HIV-11ife cycle that begins with the virus binding to the 
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Figure 1.5 Schematic drawing of the HIV -1 life cycle. 

Maturation 

HIV is able to dump its contents into the cell, reverse transcribe its RNA, 
integrate it into host DNA, and use the host to create new viral copies. 
The different steps of HIV life cycle are indicated in red (Suzuki & Suzuki 
2011). 
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CD4 receptor and a co-receptor, CCRS or CXCR4, on the surface of the host cell. 

The glycoproteins of the virus envelop spikes, gp120 and gp40, play the main role in this 

step. The binding step determines the ability of HIV to invade the cells of the human 

immune system, and blocking the receptors by inhibitors or inducing mutation in them 

conf ers protection against this virus (Mueller & Bogner 2007; Hutter et al. 2009). 

After binding, the spikes undergo a cascade of conformational changes that ultimately 

lead to the fusion between the host cell and the virus membranes, and releasing of the viral 

core in the cytoplasm (Gallo et al. 2003; Moore & Doms 2003). 

Following entry, the viral core undergoes partial and progressive disassembly 

during a process known as capsid uncoating (Ambrose & Aiken 2014). Uncoating of the 

HIV -1 core is highly regulated and plays a critical role in early stages of infection; 

however, very little is known about the mechanism ofthis step. Nevertheless, it has been 

shown that optimal stability of the viral core regulates this step which is required for 

proper reverse transcription and nuclear import of viral genome, a hallmark of retroviral 

infection (Forshey et al. 2002). Uncoating is completed during reverse transcription or 

later in the virus life cycle and sorne host factors are involved in regulating this step 

(Friedrich et al. 2011; Ambrose & Aiken 2014). For example, HIV-l uncoating was 

recently shown to be promoted by host microtubules (MTs) and cytoplasmic dynein, since 

disruption of MTs with Nocodazole or depletion of dynein heavy chain by RNAi 

substantially delay uncoating (Lukic et al. 2014; Pawlica & Berthoux 2014). These results 

demonstrate the importance of stable MTs in proper viral uncoating and subsequently 

infection. Accordingly, the virus enhances the early steps of its infection by inducing the 

formation of stable MTs (Sabo et al. 2013). 

Concomitantly to uncoating, the viral RNA genome is subjected to the next step, 

reverse transcription into cDNA. This conversion is mediated by the viral enzyme reverse 

transcriptase and occurs in the cytoplasm of the infected cell. The host tRNA (Lys3) is used 

as a primer to initiate the proviral minus-strand cDNA synthesis (Brule et al. 2002) and 

the viral enzyme RNase H mediates the degradation of the viral RNA in the resulting 

RNA-cDNA hybrid (reviewed in Ref (Beilhartz & Gotte 2010)). Afterward, the second 
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strand of cDNA is synthesized by RT (Hu & Hughes 2012). The newly synthesized 

double-stranded cDNA remains associated with viral (PR, RT, IN, and Vpr) and cellular 

proteins (Farnet & Bushman 1997) as a high molecular weight complex termed pre­

integration complex (PIC) that is responsible for the nuclear import of the genome 

(reviewed in (Jayappa et al. 2012)). This transport to the nucleus occurs through nuclear 

pore complexes and uses active transport mechanisms, implying that HIV can infect 

nondividing cells (Woodward & Chow 2010). 

To achieve productive infection, the HIV cDNA is inserted into the host cell 

genome, and this integrated form is termed provirus. Integration is mediated by the virus­

encoded protein IN as part of the PIC (Panganiban & Temin 1984) and involves the two 

long terminal repeats (L TR) flanking the viral cDNA, termed LTRs (Shine et al. 1977; 

Czemilofsky et al. 1980). In addition, several cellular co-factors are recruited by the virus 

in this step (Van Maele et al. 2006). The two LTRs in an unintegrated viral DNA can be 

ligated to each other to yield 2-LTR circles that are not competent for infection and thus 

represent dead-ends for the virus (Pauza et al. 1994). HIV integration is known to be 

favored in active transcription units, which promotes efficient transcription of the viral 

genes (Wang et al. 2007). A recent study has shown that HIV -1 integration occurs in 

transcriptionally active regions in the outer shell of the nucleus in close correspondence 

with the nuclear pores (Marini et al. 2015). Therefore, nUclear topography is a relevant 

factor in HIV -1 integration site selection. 

Once integrated, the provirus serves as the template for transcription of viral RNAs 

by the host RNA polymerase II. The transcribed RNA may be translated into viral proteins 

or packaged as the genomic RNA in progeny virions. Low or absent viral gene 

transcription may lead to latency (see section 1.2). The 5' LTR functions as a promoter to 

promote proviral transcription, while the 3' L TR is required for efficient polyadenylation 

of the resulting transcripts (Brown et al. 1991 ; Klaver & Berkhout 1994). Although 3' 

LTR transcription can be triggered by inactivation of the 5' LTR promo ter (Klaver & 

Berkhout 1994). HIV-l recruits a complex of cellular transcription factors and the viral 

encoded trans-activator of transcription, Tat, to regulate its gene transcription (Cullen 
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1991). Although the cellular transcription factors are sufficient to induce a relatively low 

level of HIV -1 gene transcription, Tat is required for high levels of viral RNA and protein 

synthesis (Debaisieux et al. 2012). Tat interacts with several transcription factors and 

co-activators, including cyclin Tl and CDK9 and induces the phosphorylation of RNA 

polymerase II, releasing it from pausing and increasing transcription from HIV -1 L TR 

(Sobhian et al. 2010). Three types of viral RNA variants are transcribed: early fully 

spliced, late partially spliced and unspliced RNA (Felber et al. 1990). The fully spliced 

viral transcripts are exported from the nucleus by the same mechanism as cellular mRNAs, 

while the partially spliced transcripts export is dependent on the host Crm1 nuclear export 

factor that is recruited by the viral prote in Rev (Zapp & Green 1989; Cullen 2000; Yi et 

al. 2002). 

Successful transcription leads to the production of approximately 30 different HIV-1 

RNAs that are aIl derived from a single full-Iength transcript by alternative splicing. 

The fully spliced and incompletely spliced mRNAs code for auxiliary proteins as weIl as 

Env. The unspliced RNA plays a dual role as a mRNA to code for the Gag and GaglPol 

polyproteins and as genomic RNA to assemble in viral progeny (Coffin et al. 1997). 

Like aU other viruses, HIV -1 is dependent on the host translation machinery for its 

translation, and Tat is thought to act as a translational activator of HIV -1 mRNAs as weIl 

(SenGupta et al. 1990; Braddock et al. 1993; Charnay et al. 2009; Burugu et al. 2014). 

In a productive infection, the provirus assembles all of the components required for 

infectivity into particles that can leave the infected cells and spread the infection to other 

host cells. These components include: two copies of the positive sense unspliced RNAs, 

the cellular tRNA(Lys), Vpr, the Gag polyprotein, the viral Env, the viral PR, IN, and RT 

(Müller et al. 2000; Kleiman et al. 2010; Sundquist & Krausslich 2012). Assembly occurs 

mainly at the plasma membrane; thus, aIl these components need to gather around the sites 

of assembly. The Gag protein of HIV-1 mediates assembly by binding other virion 

components through direct protein-protein and protein-RNA interactions (Freed 1998; 

Jouvenet et al. 2009) and on the other hand, specific association with cholesterol-enriched 

microdomains, termed rafts, at the plasma membrane (Ono & Freed 2001). 
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Assembly kinetics are rapid, as the assembly of a single virion is completed in about 

10 min (Jouvenet et al. 2008; Ivanchenko et al. 2009). 

To promote virus budding from the plasma membrane, the HIV -1 Gag binds directly 

to components of a cellular budding machinery, termed the ESCRT (endosomal sorting 

complex required for transport) pathway which is comprised of more than 30 different 

proteins (Demirov & Freed 2004; Bieniasz 2006). Moreover, the virus requires its lipid 

membrane as weIl as the Env glycoproteins, gp120 and gp41 , to produce fully infectious 

particles. Since the virion buds at the plasma membrane, the viral membrane is therefore 

derived from the host cell. The mechanism by which the Env glycoproteins are 

incorporated into budded virions, however, remains poorly understood. Nevertheless, 

several models have been proposed: 1) random incorporation as a result of its expression 

on the plasma membrane, 2) a direct Gag-Env interaction recruiting the spikes into the 

virion, 3) the Gag-Env co-targeting model, a cellular structure recruits both Gag and Env 

in an assembly position resulting in incorporation of Env glycoproteins into the virion, 

and 4) the indirect Gag-Env interaction mediated by a host cell prote in (reviewed in 

(Checkley et al. 2011)). 

HIV -1 particles are initially released from the infected cells as immature virions that 

are not infectious yet and contain uncleaved precursors of Gag and Gag-Pol polyproteins. 

The proteolytic processing of the precursors, driven by the retroviral PR, occurs at ten 

different sites during or shortly after budding, yielding the fully processed MA, CA, NC, 

p6, RT, IN, and PR and leading to virus maturation (Kohl et al. 1988; Hill et al. 2005). 

MA remains associated with the viral membrane, while CA surrounds the NC that 

encloses the RNA genome in the center of the virion (Briggs et al. 2004; Briggs et al. 

2006). 

The life cycle of HIV -1 and its interaction with host restriction factors have been 

widely studied (Bushman et al. 2012). The virus completes its replication in 

approximately 24 ho urs (Moharnmadi et al. 2013). Each step is targeted by the host 

inhibitors or antiviral drugs. 
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1.1.6 Transmission 

A new host can be infected by the transfer of semen, breast milk, blood or blood 

c10tting factors, vaginal fluid, or through the placenta. Unprotected sexual intercourse is 

the primary mode of HIV transmission (Rom & Markowitz 2007). HIV has also been 

found in saliva, tears, and sweat from sorne AIDS patients in very low quantities, but it is 

generally not transmitted by those body fluids. Moreover, oral transmission ofHIV by the 

millions of HIV -infected individuals is a rare event and saliva of viremic individuals 

usually contains only non-infectious components of HIV. Due to its hypotonicity, saliva 

disrupts 90% or more of the cells inc1uding infected ones. This may be the major 

mechanism by which saliva kills infected blood mononuc1ear leukocytes and inhibits the 

multiplication of HIV, and also attachrnent of infected leukocytes to mucosal epithelial 

cells and thereby oral acquisition of the virus (Baron et al. 1999). 

HIV is not transmitted by mosquitoes due to several reasons. The virus cannot 

replicate inside insects su ch as mosquitoes due to the lack of CD4 receptor on cell surface. 

Moreover, it is rapidly digested in the mosquito ' s gut and consequently has a short 

life-time. Considering low levels of the circulating virus in blood and insect' s blood­

sucking mechanism, the risk of HIV transmission by insects is practically zero (Iqbal 

1999). 

1.1.7 AIDS, a global epidemic 

The most advanced stage ofHIV infection is AIDS, which takes from 2 to 15 years 

to develop depending on the individual and has become a chronic disease in many areas 

of the world. To date, AIDS is the 6th leading cause of death among people among the 

25-45 years old in the us. AIDS continues to be a major global public health issue, having 

c1aimed more than 34 million lives so far (Fig. 1.6). According to the most recent 

UNAIDS fact sheet (2016), 1.2 million people died from AIDS-related causes and about 

37 million were living with HIV globally in 2015. Two million newly infected people 

have been recorded in 2015 which is a 35% reduction since 2000. Moreover, AIDS-related 

deaths have fallen by 42% since the peak in 2004. Sub-Saharan Africa is the most affected 
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region with 25.8 million people living with the virus in 2015, accounting to almost 70% 

of the total new infections worldwide . 
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Figure 1.6 HIV prevalence rate. 
Globally, 36.7 million [34.0- 39.8 million] people were living with HIV at 
the end of2015. An estimated 0.8% [0.7-0.9%] ofadults aged 15-49 years 
worldwide are living with HIV, although the burden of the epidemic 
continues to vary considerably between countries and regions. 
Sub Saharan Africa remains most severely affected, with nearly 1 in every 
25 adults (4.4%) living with HIV and accounting for nearly 70% of the 
people living with HIV worldwide (WHO 2015). 

According to 2015 national estimates, the number of people living with HIV is 

increasing in Canada. It is estimated that 75,500 Canadians are living with the virus 

(a prevalence rate of 212 per 100,000), representing a 9.7% increase since 2011. 

In addition, about 20% of HIV-positive people remained undiagnosed in 2015. 

The increase in prevalence is a result of both new infections and fewer deaths due to 

effective treatment. The prevalence is concentrated in specific populations; 53% of aIl 

people living with HIV in Canada are homosexual men, 19% are people who use injection 

drugs, 31 % of people were infected due to heterosexual sex, and less than 1 % of people 

were likely infected by blood transfusion or clotting factors, mother to child transmission, 

or needle-stick injuries in the workplace. AImost 25% ofthe infected people are women. 
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Over 26,000 people living with HIV have died due to AIDS-related illnesses since 

the beginning of the epidemic in Canada. In 2014, 2,570 people became infected with 

HIV, meaning that a new infection occurred every 3 hours. Thus, the HIV / AIDS pandemic 

still represents a major public health challenge in Canada. 

1.1.8 Treatments and Prevention 

Since HIV was characterized III 1983 and in spite of numerous trials by 

pharmaceutical companies and academic institutions around the world to develop drugs 

or vaccines, there is neither an effective HIV vaccine nor a cure for AIDS. However, a 

variety of treatments are available that can delay progression of the symptoms and 

improve the quality and length of patients life. In the absence of treatment, almost all 

infected people develop AIDS. However, a small group of patients called long-term non­

progressors, develop AIDS very slowly or never at aIl in the absence of antiretroviral 

therapy (ART) over many years of infection (Sheppard et al. 1993; Lisziewicz et al. 1999). 

It seems that these patients have genetic particularities that significantly prevent the virus 

from destroying their immune system (Cohen et al. 1998; Kindberg et al. 2006). 

There are different approaches and strategies toward the treatment or prevention of 

HIV infection; drug treatments, prevention of mother-to-child transmission, pre-exposure 

prophylaxis (PrEP), post exposure prophylaxis (PEP), and vaccines. 

Currently, however, there is no effective vaccine against HIV. HIV is unusual in 

having a low density of envelope protein spikes on its surface (Fig. 1.3) (Zhu et al. 2006b). 

Therefore, effective neutralizing antibodies can't be generated through self-reactive 

intermediates due to low-density epitope display (Schiller & Chackerian 2014). Moreover, 

the high error rate ofHIV reverse transcriptase combined with the estimated in vivo HIV-l 

replication rate often billion new virions each day leads to extraordinary genetic diversity 

of HIV (see section 1.1.4). This contributes to escape immune pressures and also to the 

difficulties in producing a vaccine. 
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The first approved anti-HIV drug, AZT, was presented on 1988 that targets RT 

(Young 1988). By using HIV medicines (ART) consistently, progression to AIDS is 

prevented in most cases. ART helps control the virus so that infected people live longer 

and healthier and reduce the risk of transmitting HIV to others. The standard treatment, 

called highly active antiretroviral therapy (HAART) , consists of a combination of 

antiretroviral drugs against different viral targets. HAAR T prevents drug resistance and 

increases the chances of survival (Pomerantz & Hom 2003). After viral repli cation is 

suppressed by HAART for 12 weeks, the number of circulating CD4+ T cells are 

considerably elevated. 

Although HAART improves chances of survival by decreasing the HIV -1 burden 

on the immune system and preventing opportunistic infection, it is expensive (Levy et al. 

2006). The UNAIDS Fast-Track strategy (90-90-90), launched in 2014, aims to greatly 

step up the HIV response in low- and middle-income countries to end the epidemic by 

2030. The strategy calls for 90% of HIV -infected individuals to be diagnosed by 2020, 

90% of whom will be on ART and 90% of whom will achieve sustained virologic 

suppression. The strategy sets targets for prevention, treatment and hum an rights 

(Jamieson & Kellerman 2016). Another important concem is the appearance of drug­

resistant strains ofHIV due to the expansion ofHAART (Celum 2011). 

PrEP is a prevention approach for people who are considered at high risk of HIV 

infection. It consists in providing them with antiretroviral drugs in order to prevent 

infection by any possible exposure to the virus (WHO 2011). When taken consistently, 

PrEP has been shown to reduce the risk of HIV infection in people who are at high risk 

by up to 95% (Grant et al. 2010). However, PrEP is much less effective if it is not taken 

consistently. Health care workers are offered post exposure prophylaxis (PEP) ifthey have 

been exposed with HIV during their works. It may be effective to decrease the risk of 

infection (Cohen et al. 2005; Smith et al. 2005). 

Three different studies were done in South Africa (Auvert et al. 2005), Uganda 

(Gray et al. 2007), and Kenya (Bailey et al. 2007) to investigate whether male 
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circumcision reduces the risk of HIV infection. AlI three trials showed that circumcision 

reduced vaginal-to-penile transmission ofHIV by 60%. Accordingly, a voluntary medical 

male circumcision is in progress in 14 priority countries in east and southem Africa 

(WHO/HIV 12016.14). 

Timothy Brown, also known as the Berlin patient, is thought to be the only 

individual cured of HIV. Having contracted HIV in 1995, he was also diagnosed with 

acute myeloid leukemia in 2006 and later in 2008 received a hematopoietic stem cell 

transplant from a donor with the delta 32 mutation in the CCR5 receptor (Hutter et al. 

2009). The mutation introduces a premature stop codon into the CCR5 receptor locus, 

resulting in a nonfunctional receptor that is not able to locate on the cell surface (Samson 

et al. 1996). The mutation offers a natural resistance to HIV and he is still free of readily 

detectable HIV after discontinuation of antiretroviral therapy. This has renewed hopes for 

a cure, especially in the gene therapy field. 

1.2 mV-llatency 

A successful antiretroviral therapy reduces the HIV load in plasma to undetectable 

levels but it is not able to eradicate the virus. The mechanism by which HIV -1 persists in 

the presence of ART is not c1ear yet. The most widely accepted mechanism is that the 

virus can establish a state of latent infection in CD4+ T cells, in which the provirus is 

integrated into the host cell genome but is transcriptionally inactivated and thus cannot be 

targeted by antiretroviral drugs or the immune system (Van Lint et al. 2013). Thus, this 

type of cells carry a viral reservoir and are responsible for HIV infection being a chronic 

rather than acute disease. The latent reservoir is now recognized as the major barrier to 

HIV -1 eradication because it persists ev en in the presence of HAAR T and any treatment 

interruption results in rapid viral rebound following cellular activation (Jubault et al. 1998; 

Davey et al. 1999; Richman et al. 2009). 

The latent form ofHIV -1 infection was first demonstrated in vivo in a small fraction 

of resting memory CD4+ T cells which were found to harbor the HIV reservoir (Chun et 
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al. 1995). The frequency ofthese cells is extremely low, typically around 1 per 106 cells 

(Chun et al. 1997). It was later shown that latency occurs early during acute infection, 

likely within 10 days of initial infection (Chun et al. 1998). Although more studies 

revealed that there are several potential cellular and anatomical reservoirs for HIV -1 that 

may contribute to long-term persistence of the virus, the most pro minent one is CD4+ 

T cell subsets, primarily resting central memory T cells (TCM) and translational memory 

T cells (TTM) (Chomont et al. 2009). 

HIV-l entry in resting T cells may result in the accumulation of non-integrating 

viral DNA in the nucleus due to a block at reverse transcription, demonstrating that 

cellular activation is required for efficient infection and subsequently latency (Stevenson 

et al. 1990; Zack et al. 1990; Descours et al. 2012). Therefore, latently infected resting 

memory T cells may be generated from antigen-stimulated active T cells infected by HIV 

and survive long enough to revert back to a resting memory state (half-life of about 

44 months) which is then non-permissive for viral gene expression (Pierson et al. 2000; 

Siliciano et al. 2003 ; Siliciano & Greene 2011). 

A dynamic steady state of residual viremia is maintained in the plasma of patients 

on HAART, typically at levels lower than the limit of detection by current clinical assays, 

50 copies/ml (Domadula et al. 1999; Ramratham et al. 2000; Havlir et al. 2003; Palmer 

et al. 2003). Because of the short half-life of free virus in plasma (2 days) (Wei et al. 

1995), the presence of viral RNA suggests that ongoing viral repli cation is occurring 

despite the complete blocking of HIV -1 replication by HAART. Analysis of population 

structure demonstrated the presence of a residual viremia which is genetically distinct 

from proviruses in resting memory CD4+ T cells (Brennan et al. 2009), revealing the 

presence of additional reservoirs other than resting memory T cells (Sahu et al. 2009). 

Follow-up research showed that naïve T cells could be also as HIV -1 reservoir in patients 

on ART at a frequency lower than resting memory T cells. However they are quiescent in 

nature (Chomont et al. 2009; Wightman et al. 2010). This may be explained by transient 

activation of these cells by cytokines or other stimulators. Moreover, tissue macrophages 

constitute another primary target of HIV -1 infection, and could be a source of residual 
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viremia in plasma. Due to their ability to proliferate after infection, the proviruses are 

generally not completely silent in these cells (Abbas et al. 2015). The activity of sorne 

antiretroviral drugs on HIV -1 infection in macrophages was found to be several folds 

Iower than T cells (Pemo et al. 1998; Jorajuria et al. 2004). This allows continued HIV-l 

repli cation which may result in the formation of HIV -1 reservoirs and the emergence of 

resistant virus as weIl. 

In sorne multipotent hematopoietic progenitor cells (HPCs), latent infection was 

also detected that stably persisted in cell culture until viral gene expression was activated 

by differentiation factors (Carter et al. 2010). The detection of HIV genomes in HPCs 

isolated from patients on HAART showed that although HIV targets these long-life stem 

cells, activation of the provirus due to induction of differentiation kills the host cells 

rapidly. However, more recent studies have not detected latent HIV -1 in HPCs isolated 

from patients on ART (Durand et al. 2012; Josefsson et al. 2012). Further studies are 

therefore needed to determine whether HPCs are able to serve as reservoir for HIV -1. 

The central nervous system, which is invaded by HIV shortly after infection (Schnell 

et al. 2009; Holman et al. 2010; Schnell et al. 20 Il), has been aiso suggested as another 

cellular reservoir for HIY. Astrocytes are the most abundant cell type in the brain. 

These cells perform vital functions to maintain brain homeostasis. Recently it has been 

shown that astrocytes can be latently infected by HIV and reactivation of the provirus 

results in release ofinfectious virions from these cells (Narasipura et al. 2014). 

1.2.1 Mechanisms of latency 

There are various mechanisms that likely underlie HIV latency (reviewed in 

(Battistini & Sgarbanti 2014)). These mechanisms use both cellular and viral factors and 

mostly act by suppressing the transcription of the viral promoter LTR (Fig. 1.7). 

One pathway toward latency is through integration downstream of a host gene in the same 

transcription polarity resulting in viral promoter occlusion. In this pathway, RNA 

polymerase II reads through the viral promoter that leads to silencing of the viral 
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transcription (Greger et al. 1998; Lenasi et al. 2008). On the other hand, viral transcription 

silencing may also occur due to convergent transcription, when the provirus integrates in 

the opposite direction of the host gene. In this context, a collision of the RNA pol II 

complexes from both the viral and host gene promoters can occur, leading to weaker or 

early arrest of transcription (Lewinski et al. 2006). Moreover, due to transcription from 

opposite directions, a complementary double-stranded RNA may form that leads to viral 

transcription silencing (Hu et al. 2004). 

Since the 5' LTR acts as a promoter, it contains multiple sites for the binding ofhost 

transcription factors including NF-KB family members (Fig. 1.7) (Kinoshita et al. 1998; 

Kim et al. 2011). Therefore, sequestration of transcription factors in the cytoplasm can 

maintain latency in resting T cells. Moreover, in the nucleus, a transcriptionally repressive 

p50-p50 (a NF-KB member) homodimer binds the HIV 5' LTR constitutively and 

represses transcription upon recruitment of histone deacetylase 1 (HDAC 1) (Williams et 

al. 2006). 

Latency can also occur at the level of transcription elongation when the positive 

transcription elongation factor b (P-TEFb) complex (Fig. 1.7) that controls the elongation 

phase of transcription by RNA pol II (Peterlin & Price 2006) is inhibited by binding of 



20 

the 7SK snRNA to the complex (Michels et al. 2004). In addition, in resting, naïve, and 

memory CD4+ T cens and independent of their infection status, proteins of the complex 

are expressed at low levels and expression increases upon activation (Budhiraja et al. 

2013); low expression of RNA pol II proteins helps maintaining HIV latency. 

Histone posttranslational modifications in nucleosomes, such as acetylation and 

DNA methylation, regulate the level of gene expression in eukaryotic cens, including the 

integrated HIV provirus in T cens (Quivy & Lint 2002; Pearson et al. 2008). Acetylation 

of histones, catalyzed by histone acetyltransferases (HAT), results in reducing condensed 

chromatin into a more relaxed structure that is associated with greater levels of 

transcription (Eberharter & Becker 2002). This relaxation can be reversed following 

deacetylation of histones by HDACs, leading to chromatin silencing (Fig. 1.8) (Khochbin 

et al. 2001). Therefore, epigenetic silencing mediated by HDACs and HATs may also 

influence the establishment and maintenance of proviral quiescence by interfering with 

the expression of viral genes. However, this silencing can be reversed by the HIV -1 Tat 

protein that activates transcription independently of the chromatin environment (Jordan et 

al. 2001) or by pharmacological inhibitors (Lusic et al. 2003). 
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Figure 1.8 Histone acetylation, a mechanism regulating gene transcription. 
Acetylation of histone proteins is catalysed by the action of HATs and 
is reversed by the action of HDACs. Acetylation can promo te gene 
transcription by causing direct structural changes to chromatin to result 
in a more relaxed state. Ac, acetylated lysine residues on histone tail 
proteins (Whittle & Singewald 2014). 



21 

Furthermore, CpG Methylation of the HIV-l 5' LTR is an additional epigenetic 

restriction mechanism for the control of latent HIV -1 reactivation, and thus also 

constitutes a relevant factor in latency (Fig. 1.7) (Blazkova et al. 2009). 

1.2.2 Therapeutic approaches to revert the latent state 

Several therapeutic approaches, generally termed shock and kill strategy, aim at 

reactivating proviral expression to revert latency. Patients remain on standard anti­

retroviral therapy (to block viral spread) while a second drug (shock agent; classes of 

drugs known as latency-reversing agents (LRAs)) is used to activate latent HIV, followed 

by the elimination of reactivated reservoirs through either natural means (e.g. immune 

response) or artificial means (kill agent; e.g. drugs, monoclonal antibodies, etc.) (Hamer 

2004). 

Of particular interest, sorne shock agents are HDAC inhibitors (HDACis) and are 

the most advanced drugs as HIV antilatency agents in clinical trials (Archin et al. 2012). 

Combination therapy with valproic, an HDACi, and intensified HAART safely accelerates 

clearance of HIV from resting CD4+ T cells in vivo (Lehrman et al. 2005). 

The suberoylanilide hydroxamic acid, SAHA (also known as vorinostat), another HDACi 

used in this study, has also shown potent activity in reactivating latent HIV (Archin et al. 

2009; Contreras et al. 2009). However, a recent study revealed that SAHA increases the 

susceptibility of uninfected CD4+ T cells to HIV by increasing the kinetics and efficiency 

of postentry viral events (Lucera et al. 2014). Moreover, treatment with sorne HDACis 

including SAHA was found to suppress IFN-y production at early time-points, whereby 

HDACis suppress the ability of cytotoxic T-Iymphocytes (CTL) to kiIl HIV -infected cells 

(Jones et al. 2014). Also due to the mutagenic potential of SAHA in in vitro assays, its 

long-term administration in humans is not allowed (Margolis 2011). Novel HDACis are 

then needed to consider to reduce toxicity and increase the efficiency. 
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Histone methylation may also reinforce HIV -1 latency. Specific histone 

methyltransferase inhibitors such as BIX01294 have been reported to reactivate latent 

HIV -1 with minimal toxicity and causing T cells activation (Imai et al. 2010). 

Although promoting viral transcription by shock agents results in the reactivation of 

latent virus, it is not sufficient to eliminate the HIV reservoir. Stimulation of CTLs with 

HIV -1 specific antigens such as Gag peptides and the cytokine IL-2 prior to virus 

reactivation in latent CD4+ T cells has led to rapid and effective killing of the infected 

cells. Therefore, immune-based therapy has been proposed in combination with other 

shock agents to enhance the clearance of the reactivated reservoir (Shan et al. 2012). 

AIso, IL-15 has been introduced as shock agent that exposes HIV -Infected resting CD4+ 

T Cells to recognition by CTLs (Jones et al. 2016). 

1.3 IDDate immuDity 

Innate immunity refers to nonspecific defense mechanisms that come into play 

immediately or within hours of a pathogen invading the body. The innate immune 

responses are the first line of defense against invading pathogens and are also required to 

initiate antigen-specific adaptive immune responses mediated by lymphocytes and 

antibodies (Alberts et al. 2002). In marnmaIs, these responses include a group of proteins 

and phagocytic cells that recognize conserved features of pathogens which are not present 

in the uninfected host cells (Fig. 1.9). Of particular interest are restriction factors that are 

members of the tripartite motif (TRIM) protein superfamily (Ozato et al. 2008). 

Cytokines released from a wide variety of cells play key roles in the regulation of 

the immune responses against viral infections. Over 80 known cytokines are secreted by 

infected cells (reviewed in (Coondoo 2011)). Interferons, the first cytokines discovered, 

are a family of mediators critically involved in stimulating the cellular immune system in 

response to viral infections (reviewed in (Le Page et al. 2000)). 
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Stages of HIV -1 Iife cycles that are targeted by antiretroviral drugs 
or host restriction factors. 
The figure illustrates the main steps in the HIV -1 replication cycle. 
The major families of antiretroviral drugs (green), and the step of the life 
cycle that they block, are indicated. Also shown are the key HIV 
restriction factors (TRIM5a, APOBEC3G, SAMHDI and tetherin; red) 
and their corresponding viral antagonist (Vif, Vpx and Vpu; blue) (Barre­
Sinoussi et al. 2013). 

1.3.1 Interferons 

Interferons (IFNs) were first described and named in 1957 by Issacs and 

Lindenmann (lsaacs & Lindenmann 1957). IFNs are a group ofnaturally occurring signal 

proteins that are made and released by host cells in response to pathogens (Abram et al. 

2010) and activate multiple distinct signalling cascades inside the cells. IFNs are grouped 

in three major types (l, II, and III) according to the type oftheir cellular receptor. IFN-a, 

IFN-~ , and IFN-(O are aIl belong to type 1 and bind to a specifie cell surface receptor 

known as the IFN-a/~ receptor (IFNAR) that contains two chains; IFNARI and IFNAR2 

(de Weerd et al. 2007). IFN-I are produced by monocytes and fibroblasts generally in 

response to viral invasion (Parkin & Cohen 2001). 

Upon binding to specifie receptor, IFNs activate signal transducer and activator of 

transcription (ST AT) complexes that regulate the expression of broad range of genes 
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named interferon stimulated genes (ISGs) which are involved not only in antiviral but also 

in immunomodulatory and antiproliferative activities (Platanias 2005). Many TRIM 

proteins are among ISGs and up-regulated by interferons, suggesting that they are 

involved in the innate immune response against virus es (Barr et al. 2008; Rajsbaum et al. 

2008). 

1.3.2 The TRIM protein family 

Identified first in 1992 (Reddy et al. 

1992), the conserved superfamily of 

TRIM proteins has more than 70 known 

members in humans, that share a highly 

conserved tripartite motif abbreviated as 

the RBCC, at the N-terminus: a RING 

domain, one or two B-box motifs, and a 

coiled-coil region (Fig. 1.10) (Reymond 

et al. 2001 ; Rajsbaum et al. 2014). This 

Conserved TRipartite domains Variable domalns 

c 

Figure 1.10 TRIM protein domains. 
TRIM proteins share a 
common organization: an 
N-terminal RING domain, 
followed by one or two 
B-boxes domain, a coiled­
coil domain, and a variable 
C-terminal domain. 

tripartite motif is associated with a variable C-terminal domain which often determines 

the specificity of interaction between TRIMs and associated proteins. TRIM proteins are 

involved in a wide array ofintracellular functions such as apoptosis (Mandell et al. 2014), 

ce]] cycle regulation and antiviral responses (Meroni & Diez-Roux 2005; Short & Cox 

2006). As a part of intrinsic immunity, TRIM proteins are the host restriction factors that 

provide the front li ne of defense against viral infection and their activity do es not require 

any virus-triggered signaling or intercellular communication, although could, in principle, 

be upregulated in response to infection (Bieniasz 2004). 

Ubiquitination is a post-trans1ational modification used by eukaryotic cells to 

control the level of proteins through proteasome-mediated proteolysis. Three classes of 

enzymes are involved in this process; ubiquitin-activating enzymes (El), ubiquitin­

conjugating enzymes (E2), and ubiquitin ligase enzymes (E3) (Meroni & Diez-Roux 

2005). The RING domain of many TRIM proteins is an E3 ligase, mediating the 
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conjugation ofproteins with ubiquitin (Joazeiro & Weissman 2000) which is now known 

to be crucial for the anti-HIV functions of sorne TRIM proteins (Lienlaf et al. 2011). 

Ubiquitination of proteins can label them for degradation through a proteasome-dependent 

pathway (Lecker et al. 2006). 

TRIM proteins can contain one or two consensus zinc-binding B-box do mains 

which contribute to the restriction activity ofTRIM proteins against HIV (Li et al. 2007). 

The B-box domains are aimost always followed by a coiled-coil domain that mediates 

self-association of TRIM proteins collectively with B-box domain or heteromeric 

interactions with other proteins (Minucci et al. 2000; Reymond et al. 2001). 

Self-association ofTRIM proteins through CC domains promotes the generation ofhigher 

order molecules that establish specific subcellular structures termed nuclear or 

cytoplasmic bodies. These high-molecular mass complexes are involved in many cellular 

activities including the restriction of viruses (Stremlau et al. 2004; Mische et al. 2005 ; 

Everett & CheIbi-Alix 2007). 

Based on a consensus C-terminai 

domain organization, human TRIM 

proteins are classified into nine subsets, 

C-I to C-IX (Fig. 1.11) (Short & Cox 

2006). However, the C-terminai 

sequences that are the most common in 

TRIM famiIy members are the PRY 

(around 61 ami no acids) and the SPRY 

(around 140 amino acids) domains 

(invoived in 40 human TRIM proteins) 

(Grutter et al. 2006; Woo et al. 2006). 

In 39 human TRIMs, the PR Y domain is 
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Figure 1.11 The domain based 
classification of human 
TRIM proteins. 
(Short & Cox 2006) 

fused to a SPRY to form the PRY/SPRY do main that is aiso termed B30.2 (Ozato et al. 

2008) and is invoived in protein-protein interactions between TRIM5 and retrovirai 

capsids (Sebastian & Luban 2005; Perron et al. 2006). 
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Within the vast family ofTRIM proteins, sorne have been studied and characterized 

as antiviral factors . TRIM32, for example, has been reported to bind HIV -1 Tat (Fridell et 

al. 1995). TRIM22 down-regulates transcription directed by the HIV -1 L TRs (Tissot & 

Mechti 1995) and TRIM1 isolated from humans restricts N-MLV in a CA-dependent way 

(Yap et al. 2004). Yet, the best studied members are TRIM5a and TRIM19 (PML) which 

are implicated in the restriction ofmany DNA and RNA viruses (Fig. 1.12). 
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Figure 1.12 TRIM proteins interfering with the retroviral replicative cycle. 
Schematic representation of the replicative cycle of retroviruses. Arrows 
show at which stage of the cycle TRIM proteins are believed to interfere. 
PIC, pre-integration complex; RT, reverse transcriptase; Tat, transactivator 
(Nisole et al. 2005). 
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1.3.3 TRIMSa 

TRlM5a is the largest isoform encoded by the TRIM5 gene (Reymond et al. 2001) 

and belongs to subset C-lV that is characterized by the presence of aC-terminal B30.2 

domain in addition to the RBCC motif. TRlM5a was found to restrict diverse retroviruses 

at early steps of the infection in a species-specific manner. 

Whereas Human TRlM5a (huTRlM5a, formerly named Refl (Keckesova et al. 

2004)) inhibits infection by the N-tropic murine leukemia virus (N-MLV) (Perron et al. 

2004; Yap et al. 2004) and the equine infectious anemia virus (ElA V) (Hatziioannou et 

al. 2003), human cells are susceptible to infection by HlV, SlVmac (the simian 

immunodeficiency virus of macaques), and B-MLV (Besnier et al. 2003). On the other 

han d, TRlM5a protein from Old World monkeys such as rhesus macaque (rhTRlM5a) 

potently restricts HlV-l infection (Stremlau et al. 2004; Sakuma et al. 2007; Black & 

Aiken 2010). SIVmac, HlV-l , and N-MLV also encounter a block in cells from many 

New World monkeys, caused by their respective TRlM5a orthologs (Hofmann et al. 1999; 

Yap et al. 2004). These species-specific restrictions against retroviruses are explained by 

different TRlM5a affinity to the viral capsid prote in (Stremlau et al. 2004). 

The viral target ofTRlM5a is the N-terminal domain of capsid proteins, supporting 

the importance of capsid binding for restriction. For instance, huTRlM5a binds the 

retroviral capsid from the restricted N-MLV but not the non-restricted B-ML V (Sebastian 

& Luban 2005). Only TRlM5a, which is the longest isoform and possesses B30.2, exhibits 

antiretroviral activity. For example, rhTRlM5y (another splice-variant of TRlM5) which 

lacks this domain, is inactive against HlV -1 (Stremlau et al. 2004). Replacement of a small 

segment in the B30.2 domain confers potent anti-HlV-l activity to huTRlM5a (Perez­

Caballero et al. 2005). Moreover, a single amino acid change, P332R, G330E or R335G, 

in the B30.2 domain ofhuTRlM5a is sufficient to restrict HlV-l (Yap et al. 2005; Pham 

et al. 2010; Pham et al. 2013). Together, these observations demonstrate the importance 

of the B30.2 domain in targeting the specific retrovirus capsid. The contribution of the 

rhTRlM5a RING domain to the restriction of HlV is still under investigation; however, 
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mutations in this domain were shown to reduce the susceptibility ofHIV-1 to rhTRIM5a 

(Stremlau et al. 2004). The TRIM5a CC domain is involved in the viral restriction activity 

as weIl. The CC domain also mediates the protein trimerization and changes that disrupt 

this structure proportionately affect the ability of TRIM5a to bind HIV -1 capsid 

complexes (Javanbakht et al. 2006). Mutating the B-box 2 domain also results in loss of 

retrovirus-restricting ability ofrhTRIM5a (Diaz-Griffero et al. 2007). 

One suggested model by which rhTRIM5a inhibits HIV -1 following capsid binding 

is by promoting its premature disassembly through the formation of a lattice or an array 

on top of the capsid, stemming from the ability of TRIM5a to undergo higher-order self­

association (Fig. 1.13A) (Ganser-Pomillos et al. 2011). According to this model, TRIM5a 

assembly does not require the B30.2 domain, but both B-box 2 and CC domains are 

necessary to indu ce dimerization and higher-order assembly. The B30.2 domain is likely 

to make direct contact with capsid protein, providing specificity to TRIM5a by specific 

prote in-prote in interactions. The RING domain is localized at the surface ofthe lattice and 

mediates the lattice disassembly by ubiquitination ofTRIM5a and subsequent degradation 

by the proteasome (Fig. 1.13B). This dissociation also correlates with an acceleration of 

HIV -1 capsid disassembly i.e. premature uncoating. Timely uncoating of HIV -1 core 

plays critical role in successful infection processes (Forshey et al. 2002). 

Arsenic trioxide (AS203) stimulates retroviral infectivity when added to the target 

cells at the time of infection. This effect of AS203 has been observed only in cells bearing 

TRIM5a-mediated restriction activity (Berthoux et al. 2003). Moreover, knockdown of 

human TRIM5a by RNA interference eliminated the AS203 effect, demonstrating that the 

drug acts by modulating the activity ofthis retroviral restriction factor. Later it was shown 

that the stimulatory effect of AS203 on HIV -1 infection involves the suppression of 

TRIM5-mediated restriction activity but is also dependent on other cell line-specific 

factors (Sebastian et al. 2006). 
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Figure 1.13 A model for acceleration of uncoating mediated by TRIM5a. 
(A) The different domains of the TRIM5a protein with their known 
functions. LI and L2, linker. (B) The proposed model of TRIM5a­
mediated uncoating of HIV -1 (Diaz-Griffero 20 Il). 

1.3.4 TRIM19/PML 

The human promyelocytic leukemia (PML, also known as TRIMI9) gene was 

initially identified as the fusion partner of the retinoic acid receptor a (RARA) gene due 

to a chromosomal translocation found in patients with acute promyelocytic leukemia 

(APL) (de The et al. 1990; de The et al. 1991). P ML is located on chromosome 15 and is 

approximately 35 kb in length, and composed of nine exons. The expressed proteins 

belong to subset C-V of TRIM pro teins (Fig. 1.14A) (Fagioli et al. 1992). The gene is 

altematively spliced in exon 6 to 9 leading to the expression of seven isoforms, 1 to VII 

(Fagioli et al. 1992; Jensen et al. 2001). AlI isoforms share the N-terminal TRIM domains, 

RBCC, encoded by exons 1 to 3 (Fig. 1.14B) (Reymond et al. 2001). The nuclear 

localization signal (NLS) is located in ex on 6 which is skipped in isoform VII, yielding 

the cytoplasmic isoform (Lin et al. 2004). The other six isoforms localize mostly in the 

nucleus and are found either in the soluble fraction or within insoluble subnuclear 

structures known as nuclear bodies (NBs). The most abundant isoform is PML-I 

(Lallemand-Breitenbach & de The 2010). 
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In its NB-associated form, PML is involved in a wide range ofbiological processes, 

including transcription (Kentsis et al. 2001), apoptosis (Krieghoff-Henning & Hofmann 

2008), cell cycle control (Gamell et al. 2014) and genome integrity (Seker et al. 2003; Xu 
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Figure 1.14 The PML gene and protein isoforms. 
(A) The PML gene is located on chromosome 15q22 and contains 
9 exons. (B) Alternative splicing at C-terminal leads to generation of 
7 different isoforms. Six isoforms are predominantly nuclear due to 
presence of a NLS in exon 6. However, isoform VII is located in 
cytoplasm due to lack of exon 6. Asterisk represents frameshift 
(Bernardi & Pandolfi 2007). 

et al. 2003 ; Everett 2006; Yeung et al. 2012). PML is associated with more than 

150 proteins in NBs that are involved in a vast array of functions (Van Damme et al. 

2010). Interestingly, TRIM5a proteins of two Old World primates, humans and rhesus 

monkeys, are transported into the nucleus and accumulated in nuclear bodies that contain 

PML as weIl (Diaz-Griffero et al. 20 Il). However, it is not clear yet why TRIM5a 

colocalizes with PML in NBs and what would be the impact of this colocalization on 

TRIM5a-mediated restriction of HIV -1 . 
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Expression ofPML is significantly up-regulated by type 1 and II IFNs (Chelbi-Alix 

et al. 1998; Regad & Chelbi-Alix 2001). PML is involved in IFN-induced antiviral 

responses (Kim & Ahn 2015) and its expression is essential for the ability of type 1 and II 

IFNs to induce programmed cell death (Wang et al. 1998b). 

1.4 PML NBs 

PML NBs, also known as nuclear domain 10 (ND 1 0), are matrix-associated domains 

found typically as lOto 30 small dots in the nucleus of most mammalian cell-lines and 

tissues and are spheres of 0.1-1.0 Ilm in diameter (Lallemand-Breitenbach & de The 

2010). NBs recruit a variety ofproteins other than PML such as Daxx, Sp100 and p53. 

However, PML is the main constitutive member and is required for the formation and 

integrity of NBs (Ishov et al. 1999). PML-KO cells do not contain PML NBs and other 

NB proteins fail to co-Iocalize in NBs and instead exhibit more diffuse patterns (Ishov et 

al. 1999; Zhong et al. 2000). In a mature PML NB, PML forms the outer shell and creates 

a partition within the nucleoplasm, and other proteins are found within its clear core 

(Fig. 1.15) (LaMorte et al. 1998; de The et al. 2012). The number, size and composition 

of the PML NBs change during the cell cycle (Bernardi & Pandolfi 2007). 

Figure 1.15 PML NB. 
From left to right: immunofluorescence and electron microscopy views 
in CHO cells stably expressing PML. PML is both diffusely distributed 
in the nucleoplasm and aggregated in NBs. The red arrow points to an 
individual body, analyzed by electron microscopy. Bar, 1 Ilm (left). 
Electron microscopy show PML distribution in the electron-dense NB 
shell. Bar, 0.5 Ilm (right) (de The et al. 2012). 
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1.4.1 Formation and disruption 

SUMOylation is a post-translational modification in which one of the four isoforms 

of SUMO (Small Ubiquitin MOdifier) protein is conjugated to a target prote in as a single 

SUMO molecule (SUMO-1) or in polymerie chains (SUMO-2/3) (Vertegaal 2007). 

SUMOylation can affect a prote in structure and subcellular localization. PML is 

conjugated with SUMO-Ion 3 Lysine residues; K65 in the RING, K160 in the B-box1 , 

and K490 in the NLS (Kamitani et al. 1998). The RING domain was shown to be essential 

for PML self-SUMOylation (Quimby et al. 2006; Shen et al. 2006). PML also includes a 

SUMO-interacting motif (SIM) close to its C-terminus (Cho et al. 2009). SUMO 

modification regulates the incorporation of PML in NBs (Muller et al. 1998; Shen et al. 

2006). Moreover, several protein partners are not recruited to NBs in the absence of 

SUMOylation (Muller et al. 1998; Fu et al. 2005; Lallemand-Breitenbach et al. 2008). 

However, a SUMOylation-deficient mutant of PML (PML 3K) which bears mutations in 

the three SUMOylation positions still shows distinct punctate localizatio~ in the nucleus. 

Subsequent analyses revealed that the SIM is also involved in the formation of NBs 

through its binding to the SUMOylated form ofNB-associated partners (Fig. 1.16) (Shen 

et al. 2006). Regarding these observations, a proposed model for the formation ofNBs is 

based on the SUMOylation ofPML and non-covalent binding of the SUMOylated protein 

PML 

partners .C]) Co!14d.ço1l 

Figure 1.16 Interactions of partner proteins with PML through SUMO-SIM 
links. 
The interactions are shown as dotted lines. PML primarily interacts with 
the partner protein through K160-SIM (1), however the SUMOylated 
partner protein interacts also with the PML SIM domain at C-terminal 
(2) (de The et al. 2012). 
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to another PML molecule through its SIM. This process constitutes the nucleation event 

of the PML NB formation, subsequently resulting in the recruitment of SUMOylated 

and/or SIM-containing NB partners to the PML NBs (Fig. 1.17) (Shen et al. 2006). 

Similar to their formation, disruption ofPML NBs also involves the SUMOylation 

pathway. Polysumoylated forms ofPML are specificaIly recognized and ubiquitinated by 

ubiquitin ligases RNF4 and RNF111 in mammals (Tatham et al. 2001; Erker et al. 2013), 

leading to the ubiquitination-induced degradation of PML by the proteasome (Rock et al. 

1994). 

Disruption of PML NBs has also been observed in a variety of diseases such as 

neurodegenerative disorders, viral infections, or APL. In the latter, a t(15; 17) 

chromosomal translocation frequently associated with this disease. The translocation 

breakpoint always lays between exons 3 and 6 of PML leading to loss of SIM (located in 

exon 7) in the oncogenic chimeric protein PMLlRARA (Shen et al. 2006). The fusion 

protein is not SUMO-1 modified at its C-terminal K490 as weIl (Shen et al. 2006). 

The fusion prote in PMLlRARA disrupts NBs and exhibits altered transcription factor 

PMLwt SUMOylatlon SUMO 
binding 

PMl· Netwo<k 

PMl (dl mer) with SUMOylation sites.nd 
SUMO binding motifs 

SUMO 

SUMOyIated Proteins 

Protelns with a SUMO bindlng motif 

rec:ruitment 

PML·N8 

Figure 1.17 A proposed model of PML NB formation. 
The model shows SUMOylation of PML and non-covalent binding of 
the SUMOylated protein to another PML molecule through its SIM, 
resulting formation of PML network and PML NB (Shen et al. 2006). 
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behavior compared to normal cells demonstrating the key role of P,ML in tumor 

suppression (Koken et al. 1994; Salomoni & Pandolfi 2002). Moreover, overexpression 

of PMLlRARA disrupts normal PML NBs in human cells due to the negative dominant 

effect of the fusion prote in (Yeung et al. 2012). Loss of SIM and of C-terminal 

SUMOylation may explain why the fusion protein fails to form the NBs. 

The traditional Chine se medicine arsenic trioxide (As203) has been used as a 

therapeutic agent to cure APL (Fig. 1.18A). AS203 was shown to trigger the proteasome­

dependent degradation of PML and PMLlRARA by promoting specifie SUMOylation of 

PML at K160 (Lallemand-Breitenbach et al. 2001). More precisely, arsenic binds directly 

to cysteine residues in zinc fingers located within the RBCC do main of PML/RARA and 

PML, inducing PML oligomerization and increasing its interaction with the SUMO­

conjugating enzyme UBC9, resulting in enhanced SUMOylation (Zhang et al. 2010). 

As described above, polysumoylated PML is ubiquitinated by RNF4 and consequently 

degraded by proteasome (Fig. 1.18B). 
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Figure 1.18 PML and PML/RARA degradation by AS203. 
(A) Immunofluorescence views ofPML NBs in APL (left) and normal 
(right) cells before and after As203 treatment. AS20 3 induces NBs 
aggregation in both normal and APL cell. Bar, 1 /-lm. (B) AS20 3 
enhances SUMOylation of PML on K65 and K160. 
The ubiquitin E3 ligase is then recruited onto hypersumoylated PML to 
induce its ubiquitination. PML is finally degraded by the proteasome 
machinery (de The et al. 2012). 

1.4.2 Implications in regulation of chromatin structure and transcription 

The observation that viruses transcribe their genomes adjacent to PML NBs suggests 

that PML NBs also function in regulating gene transcription (Ishov et al. 1997). Moreover, 

latent HSV -1 genome was found to associate selectively with PML NBs and the 

centromeres, supporting the idea that the se nuclear domains may influence directly the 

behavior of latent viral genomes and their transcriptional activity (Catez et al. 2012). 

A recent study also revealed that in the nucleus of latent CD4+ T cells, the HIV -1 provirus 

is located in the vicinity of PML NBs, and this interaction inhibits HIV -1 gene expression 

(Lusic et al. 2013). 

Highly acetylated chromatin can be found associated with PML NBs (Boisvert et 

al. 2000), which is consistent with the fact that PML NBs contain the histone 

acetyltransferase CBP (CREB binding protein) (LaMorte et al. 1998). Acetylation of 
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histones relaxes the facultative heterochromatin, resulting in gene transcription. On the 

other hand, another PML NBs component, Daxx, forms a chromatin remodeling complex 

with histone deacetylases, contributing to transcriptional silencing and gene suppression 

(Hollenbach et al. 2002). This regulation of acetylation may underlie the role ofPML NBs 

in modulating virus latency (Lusic et al. 2013). 

Several observations provide evidence supporting the involvement ofPML NBs and 

their components in the regulation of transcription and chromatin architecture. 

For instance, single-stranded DNA (ssDNA) represents an intermediate in several DNA 

repair mechanisms and is thought to play a crucial role in checkpoint signaling. PML NBs 

recruit ssDNA molecules in response to UV -induced exogenous DNA damage (Boe et al. 

2006). Moreover, several PML NB components have been shown to relocate to sites of 

DNA damage along with PML (Carbone et al. 2002; Barr et al. 2003 ; Davalos et al. 2004; 

Park et al. 2005). 

1.4.3 Roles in antiviral defense 

Viruses have evolved a variety of strategies that allow them to reach two goals: 

using the host machinery to replicate, and undermining the cellular defense mechanisms 

such as IFN-induced antiviral defenses. There are several indications that PML is linked 

to the IFN system and contributes to antiviral defenses. Both PML and Sp100, two 

constitutive components ofNBs, are up-regulated by type l and II IFNs (Lavau et al. 1995 ; 

Stadler et al. 1995; Guldner et al. 1999). Moreover, the number, composition, and 

morphology ofNBs is altered in response to IFNs and virus infection (Lavau et al. 1995 ; 

Everett & Chelbi-Alix 2007). PML has been shown to negatively affect the replication of 

many DNA and RNA viruses (reviewed in (Everett & Chelbi-Alix 2007)). Therefore, the 

disorganization of PML NBs induced by several viruses may represent a viral strategy to 

evade IFN-induced antiviral defenses. As detailed below, many studies revealed the 

potential activity of PML against several DNA and RNA viruses and the viral strategies 

to interfere with PML NBs. 
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Many viruses encode proteins that associate with PML NBs and cause the disruption 

or lysis of these nuc1ear domains, hence promoting viral gene expression and disabling 

the host antiviral defense. However, the genorrte of sorne nuc1ear-replicating DNA and 

RNA viruses associate preferentially with NBs with positive effects on viral gene 

expression and replication. The most widely studied example is herpes simplex virus 

(HSV)-l. Very soon after the disco very of PML, a pioneering study by Maul et al. showed 

that the outcome of HSV -1 infection was the disruption of PML NBs and that an 

immediate early gene 1 product of the virus, ICPO, was sufficient for this effect (Maul et 

al. 1993). Subsequent studies confirmed this observation and revealed that the ICPO RING 

domain was necessary for the disruption of PML NBs (Everett & Maul 1994; O'Rourke 

et al. 1998). ICPO acts as an ubiquitin E3 ligase and targets not only SUMO-modified 

PML, but also Sp 100, resulting in the proteasome-dependent degradation ofboth (Chelbi­

Alix & de The 1999; Boutell et al. 20 Il). ICPO-deficient viruses are not able to disrupt 

NBs and are particularly sensitive to IFN-induced inhibition (Mossman et al. 2000), 

suggesting that ICPO-mediated disruption of PML NBs constitutes a viral strategy to 

bypass the host defense systems mediated by IFN s. 

In recent decades, more viral proteins causing the disruption ofPML NBs have been 

identified. Of particular interest is the major immediate-early protein 1 (lE 1) encoded by 

the human cytomegalovirus (HCMY) that abrogates the SUMOylation ofPML and Sp 100 

and inhibits PML-mediated transcriptional repression (Muller & Dejean 1999). 

Interestingly, the lE I-mediated disruption of PML NBs does not lead to proteasome­

dependent degradation (Xu et al. 2001). Another example is the Epstein-Barr virus (EBV) 

immediate-early prote in BZLFI that also reduces the amount of SUMO-modified PML. 

Disruption of PML NBs is important for efficient lytic replication of EBV (Adamson & 

Kenney 2001). 

The high frequency of PML NB targeting by viral proteins suggests that depletion 

of these nuc1ear domains abolishes their antiviral activity. Evidence for such a function 

was obtained by using PML-/- primary mouse embryonic fibroblasts (MEFs). Compared 

to the wild-type control cells, the PML-knockout (KO) cells produced 20 times more 
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rabies virus and expressed viral proteins at higher levels (Blondel et al. 2002). PML-KO 

mice were also 10 times more susceptible to infection with lymphocytic choriomeningitis 

virus (LCMV) or vesicular stomatitis virus (VSV) (Bonilla et al. 2002). Moreover, 

overexpression of PML was shown to interfere with the replication of VSV and influenza 

virus in the absence of IFN (Chelbi-Alix et al. 1998). Thus, PML is a contributor to innate 

immunity against sorne viruses and modulates host susceptibility to viral infections. 

Although most DNA viruses have evolved mechanisms to evade repression from 

PML, infection by papillomaviruses (PV s) was shown to be enhanced by expressing PML 

in PML-KO cells (Day et al. 2004). The presence of PML NBs was associated with 

increased papillomavirus transcription. 

The antiviral activity of PML has also been observed in the case of RNA viruses. 

Overexpression of PML leads to a drastic decrease in gene expression of a complex 

retrovirus, the human foamy virus (HFV). PML represses HFV transcription by 

complexing the HFV transactivator, Tas, preventing its direct binding to viral DNA. 

This repression depends on PML, since it is not observed in IFN-treated, PML-deficient 

MEFs, also demonstrating the important role of PML in IFN-induced antiviral states. 

Moreover, this inhibitory effect does not necessitate the localization of PML in NBs 

(Regad et al. 2001). Although these observations suggest a negative role for PML NBs in 

the virallife cycle, the propagation of the hepatitis C virus (HCV) was recently shown to 

be dependent upon the presence ofPML (Kuroki et al. 2013). PML down-regulation did 

not affect HCV RNA levels in human cells, whereas the release ofviral core proteins into 

the cell culture supematant was significantly suppressed in PML knock-down cells. 

This suggested that PML affected a step other than the genome replication of HCV. 

Immunofluorescence and confocal microscopy analyses of the viral core protein 

localization determined that PML is required for the late steps of the HCV life cycle 

(Kuroki et al. 2013). Therefore, the function ofPML in RNA virus infection is sometimes 

detrimental or beneficial. 
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1.5 Importance, hypothesis, and objectives 

Despite significant advances in the control and prevention of the spread of the virus, 

the HIV pandemic still represents one of the greatest plagues in human history and a major 

challenge for medicine, public health and biological research. Although HAART 

suppresses the repli cation of the virus and improves the quality of the patient' s life 

dramatically, a cure has not yet been achieved. Drug side effects, drug resistance, drug 

toxicity, and low levels of continued viral replication in the setting of HAART are sorne 

of the most important remaining challenges to overcome. HIV -1 persistence in reservoirs 

represents the major barrier for its eradication (Marcello 2006) as virus reactivation from 

latency occurs 5-8 days after ART interruption (Pinkevych et al. 2015) and leads to the 

viral load rebound. The molecular mechanisms that lead to HIV -1 reactivation are 

relatively weIl characterized, but the determinants of viral latency itself remain 

incompletely known. Importantly, continuing viral replication in reservoirs in the 

presence of current antiviral drugs leads to accumulation of drug resistant mutants. 

For that reason, developing new drugs that target different steps of the HIV life cycle is 

ofhigh priority. 

Because eradication of HIV -1 from an infected individual cannot be achieved by 

CUITent drug regimens, identification of new host factors that prevent HIV -1 infection 

and/or regulate its gene expression can provide future targets for developing new drugs 

which either inhibit HIV -1 infection or target the latent pro virus. Of particular interests 

are sorne TRIM proteins that are known to constitute a line of defense against viral 

infection in mammals (Nisole et al. 2005). TRIM5a and TRIM22, for instance, interfere 

with incoming HIV -1 at different stages of infection to inhibit its propagation (Tissot & 

Mechti 1995; Barr et al. 2008; Nakayama & Shioda 2010; Merindol & Berthoux 2015). 

TRIMI9, better known as PML, is a TRIM member whose antiviral activity has not been 

weIl studied in lentivirus infections yet. 

As most DNA viruses and retroviruses replicate in the nucleus, it is not unexpected 

that these virus es hijack nuclear structures such as NBs for their own replication (Moller 
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& Schmitz 2003). PML is the main constitutive protein of the NBs, thus it can be a 

potential target for HIV -1. However, very little is known about the possible role of PML 

in HIV -1 infection. A better understanding about this under-explored area might help the 

development of new drugs targeting different steps of the virus infection and might make 

important contributions to the global efforts to find a cure for HIV/AIDS. 

1.5.1 Objective 1: To study the role ofPML (TRIM19) in lentiviral infections 

PML was shown to· interfere with the replication of HFV, a complex retrovirus like 

HIV, in hurnan cells by repressing viral transcription, even in the presence ofIFN (Regad 

et al. 2001). It was reported that HIV -1 infection induces a rapid and transient 

redistribution of PML into the cytoplasm, where PML may transiently colocalize with 

incoming HIV-I PICs (Turelli et al. 2001; Dutrieux et al. 2015; Kahle et al. 2015). 

AIso, a recent study revealed that in the nucleus of sorne constitutively HIV-Iatent CD4+ 

J-Lat T cells, the HIV -1 provirus associates with PML NBs and this proximity to PML 

NBs regulates latency (Lusic et al. 2013). Thus, we hypothesized that PML might be a 

part of innate immunity mechanisms against HIV that inhibits its infection. We also 

hypothesized that PML promotes HIV latency in nucleus. We first investigated the role of 

PML in lentivirus infectivity in Sup-TI , a human T cellline, and in primary murine cells, 

MEF (mou se embryonic fibroblast). Interventions that down-regulated PML in Sup-TI 

moderately increased the lentiviral infection. Moreover, knocking out PML in MEFs led 

to a drastic increase in infection of lentiviruses. We showed that this PML-mediated 

inhibition was relevant to the IFN-induced restriction against lentiviruses. In addition, we 

demonstrated that both murine and human PML participated in HIV -1 transcriptional 

silencing. PML inhibited HIV-I and other lentiviruses, as part of the IFN-induced 

pathways and at two distinct steps; reverse transcription and transcription. 

Based on the results presented in chapter II, we hypothesized that the slight effect 

ofPML knock down on HIV-I infectivity in Sup-TI might be due to incomplete depletion 

of the prote in that was in adequate to restrict HIV -1. Accordingly, we were tempted to 

generate PML-KO celllines that provided a model to study the effect ofPML deletion on 
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retrovirus infection in human. The CRISPR-Cas9 system is an adaptive immune system 

that exists in a variety of microbes to degrade invading viral and plasmid DNA (Cong & 

Zhang 2015). Recently, a new version ofthis system has been created to use for genome­

editing in marnmalian cells (Mali et al. 20l3) and it has been widely used to knock out 

targeted genes using specific guide RNA (gRNA) in variety of celllines (Cho et al. 20l3; 

Shin et al. 2016; Shinmyo et al. 2016). We benefited and optimized this system to make 

PML inoperative in several human cell lines, including T cells and myeloid cells. 

The infectivity of retroviruses was then assessed in WT and generated PML-KO cells. 

Our results revealed that PML had no role in intrinsic immunity against retroviruses in 

human cells. AIso, we found that PML was not implicated in the IFN-induced innate 

immunity against retroviruses in hun1an cells. Overall, we demonstrate that although 

hPML is involved in the restriction oflentiviruses in mouse cells, it do es not generally act 

as an HIV -1 restriction factor in human cells, suggesting an isoform-specific and strongly 

cellular context-specific mechanism of restriction. 

1.5.2 Objective II: To study the implication of PML (TRIM19) in TRIM5a­
mediated restriction ofHIV-1 

AS20 3 increases the SUMOylation of PML, promoting its degradation through 

proteasome-dependent pathway. AIso, AS20 3 has been shown to interact with TRIM5a­

mediated restriction of retroviruses (Berthoux et al. 2003; Sebastian et al. 2006) in a 

TRIM5a-independent way (Pion et al. 2007). Yet, the mechanism by which arsenic 

counteracts with retroviral infections is not weIl understood. Recently, several TRIM5 

proteins were found to shuttle into the nucleus of human cells and participate in NBs that 

include PML as weIl (Diaz-Griffero et al. 20 Il). This observation led us to hypothesize 

that PML may be involved in the TRIM5a-mediated restriction of retroviruses and that 

AS20 3 may interfere with the restriction by triggering PML degradation. To address this, 

we overexpressed human and rhesus TRIM5a in WT and PML-KO MEFs followed by 

infection with lentiviruses. Our results demonstrate that rhTRIM5a restricted HIV-1 

potently in the presence or absence of PML. We next investigated the effect of AS20 3 

treatment on lentivirus infectivity in human ceIllines that were WT or knocked out for 
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PML. Our results show that AS203 rescues retro viral infections to levels which were 

similar for both WT and PML-KO cells, suggesting that another cellular factor was 

targeted by AS203. In conclusion, our findings reveal that PML inhibits lentiviruses 

depends on which cell context it is expressed. Moreover, PML is not involved in the 

rhTRIM5-mediated restriction ofHIV-l. 



Chapter II contains a study showing that PML (TRIM19) is involved in innate and 

intrinsic immunity against lentiviruses and promotes virallatency in mouse. 



CHAPTERII 

THE INTERFERON-INDUCED ANTIVIRAL PROTE IN PML (TRIMI9) 
PROMOTES THE RESTRICTION AND TRANSCRIPTIONAL SILENCING OF 
LENTIVIRUSES IN A CONTEXT-SPECIFIC, ISOFORM-SPECIFIC FASHION 

Nasser Masroori l , Natacha Merindol 1 , and Lionel Berthoux 1 

Published on March 22, 2016 in Journal ofretrovirology 

2.1 Contributions 

Masroori, Merindol and Berthoux designed the study. Masroori and Merindol 

performed the experiments. Masroori, Merindol and Berthoux analyzed the data and 

prepared the manuscript. 

2.2 Abstract 

The promyelocytic leukemia (PML) prote in, a type 1 interferon (lFN-I)-induced 

gene product and a member of the tripartite motif (TRIM) family, modulates the 

transcriptional activity of viruses belonging to various families. Whether PML has an 

impact on the repli cation of HIV -1 has not been fully addressed, but recent studies point 

to its possible involvement in the restriction of HIV -1 in human cells and in the 

maintenance oftranscriptionallatency in human celllines in which HIV -1 is constitutively 

repressed. We investigated further the restriction of HIV -1 and a related lentivirus, 

SIVmac, by PML in murine cells and in a lymphocytic human cell line. In particular, 

1 Laboratory of retrovirology, Department of Medical Biology and BioMed research group, Université du 
Québec à Trois-Rivières, Trois-Rivières, Québec, Canada. 
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we studied the relevance of PML to IFN-I-mediated inhibition and the role of individual 

human isoforms. 

We demonstrate that both human PML (hPML) and murine PML (mPML) inhibit 

the early post-entry stages of the replication of HIV -1 and a related lentivirus, SIVmac. 

ln addition, HIV -1 was transcriptionally silenced by mPML and by hPML isoforms l, II, 

IV and VI in MEFs. This PML-mediated transcriptional repression was attenuated in 

presence of the histone deacetylase inhibitor SAHA. In contrast, depletion ofPML had no 

effect on HIV -1 gene expression in a human T cellline. PML was found to contribute to 

the inhibition of HIV-1 by IFN-I. Specifically, IFN-a and IFN-B treatments of MEFs 

enhanced the PML-dependent inhibition of HIV -1 early repli cation stages. 

We show that PML can inhibit HIV -1 and other lentiviruses as part of the IFN -1-

mediated response. The restriction takes place at two distinct steps, i.e. reverse 

transcription and transcription, and in an isoform-specific, cellular context-specific 

fashion. Our results support a model in which PML activates Ïnnate immune antilentiviral 

effectors. These data are relevant to the development of latency reversal-inducing 

pharmacological agents, since PML was previously proposed as a pharmacological target 

for such inhibitors. This study also has implications for the development of murine models 

ofHIV-1. 

2.3 Introduction 

ln mammals, many effectors are involved in the innate immune response to 

pathogens, including viruses. Of particular interest are restriction factors that are members 

of the tripartite motif (TRIM) prote in superfamily. Several of the TRIM superfamily 

members are upregulated by IFN-I, suggesting that they might be involved in antiviral 

innate immunity (reviewed in (Ozato et al. , 2008)). PML, also known as TRIM19, is a 

member of this family of proteins. PML was initially identified as part of a hybrid protein 

that also contains retinoic acid receptor a (RARa) and that causes acute promyelocytic 

leukemia (de The et al. , 1991 ; Goddard et al. , 1991 ; Pandolfi et al., 1991). PML is 
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expressed in all cell lines tested (Stadler et al. , 1995) and localizes to the nucIeus; it is 

found both in the nucIeoplasm and in association with a nucIear multiprotein structure 

called the nucIear body (NB) (Borden, 2002; Lallemand-Breitenbach & de Thé, 2010). 

In addition to PML, NBs incIude several other proteins, but the integrity of this structure 

depends on the presence ofPML (Salomoni & Pandolfi, 2002). The transcription of sorne 

PML NB proteins, incIuding PML and Sp100, is upregulated by interferons (Chelbi-Alix 

et al. , 1995; Guldner et al. , 1992; Stadler et al. , 1995) and contributes to cellular defense 

mechanisms (Everett, 2006). 

The interactions between PML and/or PML NBs and vlruses have been weIl 

documented. Soon after the discovery of PML NBs, Maul and colleagues showed that 

herpes simplex virus type 1 (HSV -1) causes the cellular redistribution of PML from PML 

NBs (Maul et al. , 1993). Further investigations demonstrated that the HSV -1 immediate­

early (lE) gene product ICPO localizes to and disrupts PML NBs, resulting in an increase 

in viral gene expression (Maul & Everett, 1994). In human cytomegalovirus (HCMV)­

infected cells, the PML NB-associated protein Daxx (Death domain-associated prote in) 

silences viral immediate-early gene expression, but this antiviral mechanism is 

counteracted by the HCMV protein pp71 (Saffert & Kalejta, 2006; Woodhall et al. , 2006). 

It has also been reported that constitutive overexpression of PML in mou se cells induces 

resistance to infection by RNA viruses, such as vesicular stomatitis virus (VSV) and 

influenza A (Chelbi-Alix et al. , 1998). Furthermore, IFN-induced overexpression ofPML 

in wild-type (WT) mouse embryonic fibroblasts (MEFs) represses the transcription of 

human foamy virus (HFV), a retrovirus, by forming a complex with the HFV 

transactivator, Tas, thereby preventing the direct binding of Tas to viral DNA (Regad et 

al. , 2001). Accordingly, this inhibitory mechanism is not observed in PML knockout (KO) 

cells. In contrast to the antiviral activities often associated with PML, it was recently 

shown that depleting PML reduces the production of infectious hepatitis C virus particles, 

indicating that PML may enhance virus particle production (Kuroki et al. , 2013). 

Likewise, establishment ofhuman papillomavirus (HPV) is enhanced by PML expression 

in the early part of the life cycle (Day et al. , 2004). Whether PML modulates the 

permissiveness to HIV -1 and other lentiviruses has been controversial (Berthoux et al. , 
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2003; Turelli et al. , 2001), but recent reports have converged toward an inhibitory role for 

PML (Dutrieux et al. , 2015; Kahle et al. , 2015). 

Although antiretroviral therapy (ART) is capable of decreasing HIV -1 viralload to 

levels below the limit of detection in many patients, the virus is not eliminated and 

interruption of ART almost always leads to a rapid viral rebound and progression to AIDS 

(Holkmann Olsen et al, 2007). HIV -1 is capable of establishing a state of latent infection 

when activated CD4+ T-cells (the major target ofHIV-l) become infected and then revert 

back to a resting memory state (Ch omont et al., 2009; Han et al. , 2004; Soriano-Sarabia 

et al. , 2014). These infected resting T-cells show low or absent viral gene expression and 

provide a viral reservoir that is protected from immune clearance and ART (reviewed in 

(Ruelas & Greene, 2013)). Current strategies to eradicate this reservoir aim at reactivating 

the latent proviruses by using various agents such as the histone deacetylase (HDAC) 

inhibitor suberoylanilide hydroxamic acid (SAHA; Vorinostat) (Archin et al., 2009) and 

the acetaldehyde dehydrogenase inhibitor disulfiram (Xing et al. , 2011), often combined 

with protein kinase C agonists (Laird et al. , 2015). Despite the current interest in 

pharmacological strategies to disrupt the quiescence of latent proviruses, the mechanism 

by which HIV-l persists in the presence of ART is not well understood. In a recent study, 

the proximity of HIV -1 proviruses to PML NBs was found to correlate with the extent of 

HIV-l gene expression silencing in a T cell-based HIV-l latency model. Accordingly, 

PML degradation resulted in the activation of viral transcription following proviral 

displacement from PML NBs (Lusic et al. , 2013). Here, we examined the involvement of 

PML in the restriction of HIV -1 in human and murine cells. Our results pro vide evidence 

that PML is a component of the innate immune response to lentiviruses and may 

participate in HIV -1 gene silencing and latency. 

2.4 Materials and methods 

Cell culture. Immortalized PML-KO and WT MEFs were a generous gift from 

Pier P. Pandolfi (Wang et al. , 1998). Crandell-Rees feline kidney (CRFK), human 

embryonic kidney (HEK) 293T and MEF cells were maintained in Dulbecco's modified 
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Eagle's medium (DMEM; HyClone, Thermo Scientific, USA). SupT! cells were 

maintained in RPMI 1640 (HyClone). AlI culture media were supplemented with 10% 

fetal bovine serum (FBS) and penicilIinlstreptomycin (HyClone). 

Plasmids, transfections and transductions. To transduce mPML using a retroviral 

vector, total RNA was extracted from WT MEF cells using Trizol (Invitrogen, Carlsbad, 

CA) according to the manufacturer' s instructions. First-strand cDNA synthesis was 

conducted using 2 llg of total RNA, random hexamers and the SuperScript III first-strand 

synthesis kit (lnvitrogen) following treatment with DNase 1 (NEB), as described in the 

manufacturer' s protocol. Mouse PML (mPML) cDNA was then amplified by PCR using 

the oligodeoxynucleotide (ODN) primers whose sequences are provided in the Additional 

file 3. The resulting 2.65-kb cDNA fragment was cut with BamHI-Mfel and then inserted 

into the ML V -based retroviral vector pMIP (Berthoux et al. , 2005), and cut with BglII and 

EcoRI, yielding pMIP-mPML. The cloned PML cDNA was sequenced and determined to 

be a variant ofisoform 2 (GenBank accession No. KJ650238). To transduce N-terminally 

FLAG-tagged versions of hPML isoforms 1 to VI using a retroviral vector, individual 

isoforms were PCR amplified from the corresponding pLNGY -hPML constructs 

generously provided by Roger D. Everett (Cuchet et al. , 2011), using the ODNs shown in 

Table A.1 , and cloned into pMIP, which had been cut with BglII-EcoRI, yielding 

pMIP-hPML-I to -VI. 

Retroviral vectors expressing mPML or hPML were prepared by cotransfection of 

293T cells plated at 70% confluency in 10 cm dishes with 10 llg of pMIP-m(h)PMLs 

together with 5 llg ofpMD-G (Zufferey et al. , 1997) and 10 Ilg ofpCl-Eco (Naviaux et 

al. , 1996) using polyethylenimine (PEI; Polyscience, Niles, IL). Virus-containing 

supematants were collected 2 days later and clarified by low-speed centrifugation, as 

described previously (Berthoux et al. , 2003 ; Bérubé et al. , 2007). Stable mouse or human 

PML-expressing MEFs were obtained by spinfection of 2 x 105 cells with 2 ml of 

retroviral vector-containing supematants for 50 min at 400 x g in the presence of 8 Ilg/ml 

polybrene (Sigma-Aldrich, MO, USA) (Berggren, 2012) and followed by a 24 h 

incubation at 37 oC. In order to eliminate the non-transduced cells, puromycm 
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(Calbiochem, CA, USA) was then added to the cultures at a final concentration of2 I-lg/ml 

for 5 days. The relevant "empty" (non-PML-expressing) vector was transduced as a 

control in aU experiments. 

To pro duce GFP-expressing retroviral vectors, 293T ceUs were seeded in 10 cm 

culture dishes and transiently cotransfected as described above. The plasmids used were 

as follows: pMD-G, pCNCG and pCIG3-B to produce B-ML VGFP (Bock et al., 2000; 

Neil et al. , 2001); pMD-G and pNL-GFP to produce HIV-1 NL-GFP (Berthoux et al ., 2003; 

He et al. , 1997); pMD-G and pSIVmac239GFP to produce SIVmac-GFP (Cowan et al. , 

2002); or pONY3.! , pONY8.0 and pMD-G to pro duce EIAVGFP (Mitrophanous et al. , 

1999). The supematants were replaced with fresh medium after 6 h and the retroviruses 

were harvested 24 h later. The retroviruses were clarified by centrifugation at 3,000 rpm 

and stored in aliquots at -80 oC. The viral stocks were titered by seriaI dilution on CRFK 

cells. 

RNA interference. ODNs were designed to create pAPM-based, shRNA­

expressing constructs targeting hPML, as described previously (Mal bec et al. , 2010; Pertel 

et al. , 2011). The shRNAs expressed targeted the following sequences, present in aU 

hPML isoforms: shPML1 , AAGATGCAGCTGTATCCAAGA; shPML2, 

GCAAGACCAACAACATCTTCT; shPML3, GCACACGCTGTGCTCAGGATG. 

The full sequences of the ODNs used to generate these constructs are provided in 

table A.1. SupTl cells were stably transduced with shRNAs targeting hPML or Luciferase 

as a control via lentiviral gene transfer. Briefly, lentiviral vectors were prepared by 

cotransfection ofHEK293T cells with 10 I-lg of either pAPM-shLuc (Pertel et al. , 2011) 

or pAPM-shPMLl-3 , together with 5 I-lg ofpMDG and 10 I-lg ofp~R8.9 (Zufferey et al. , 

1997), as described above. The viral supematants were used for transduction of shPMLs 

into SupTl cells, as detailed above. Stably transduced cells were selected by addition of 

5 I-lglml puromycin to the medium at 2 dpi and for 5 d. 

Antibodies and WB analyses. The cells were lysed at 4 oC in RIPA lysis buffer 

(1 % NP40, 0.5% deoxycholate, 0.1 % SDS, 150 mM NaCI, 50 mM Tris-HCI pH 8.0). 
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The lysates were subjected to SDS-polyacrylamide gel electrophoresis, followed by WB 

analysis using mouse anti-mPML mAb (36-1-104, Enzo life sciences, NY, USA), rabbit 

polyclonal anti-hPML (H-238, Santa Cruz, TX, USA), anti-FLAG (Cell Signaling, MA, 

USA), or anti-p-actin antibody (Sigma, MI, USA). The p24 capsid protein of HIV -1 (CA, 

p24) was detected using a mouse monoclonal antibody (clone 183, AIDS Research and 

Reference Reagent Program Cat. No. 3537). 

Immunofluorescence microscopy. PML-KO cells stably transduced with FLAG­

tagged hPML-I to VI isoforms or WT MEFs were seeded on glass coverslips placed in 

3.5-cm wells. After 24 h, the cells were permeabilized and fixed for 10 min in Triton X-

100/4% formaldehyde at room temperature (RT), followed by 4 washes with PBS. 

The cells were then treated with 10% goat serum (Sigma) for 30 min at RT followed by 

4 h of incubation with antibodies against FLAG (Sigma, 1:150) or hPML (Santa Cruz, 

1: 150) or mPML (Enzo Life Sciences, 1: 150) in 10% goat serum at RT. They were then 

washed 4 times with PBS and fluorescently stained with Alexa Fluor 488-conjugated goat 

anti-mouse (Molecular Probes, Eugene, OR) diluted 1: 1 00 in 10% goat serum for 1 h at 

RT. The cells were then washed 4 times with PBS before mounting in Vectashield (Vector 

Laboratories, Peterborough, UK). Hoechst 33342 (0.8 Jlg/ml ; Molecular Probes) was 

added along with the penultimate PBS wash to reveal DNA. Z-stacks were acquired on an 

AxioObserver Microscope (Carl Zeiss Canada, Toronto, ON) equipped with the Apotome 

module, and the median optical slice of each Z-stack was analyzed. 

Pharmacological treatments. SAHA (Sigma-Aldrich) was resuspended in DMSO 

and used at a final concentration of 5 !lM for 48 h prior to flow cytometric analysis. 

Recombinant murine IFN-a (11200-2) and IFN-P (12405-1) were obtained from PBL 

Interferon Source (NJ, USA) and added to the cells 16 h prior to infection with 

retroviruses. 24 h after infection, the supernatants were replaced with fresh 

IFN-containing medium. To block the extracellular domain of the IFN-I receptor in MEFs, 

the cells were treated with purified anti-mouse IFNAR-l antibody (MARI-5A3 , 

BioLegend, UK), at a concentration of 650 ng per 20,000 cells, 1 h prior to infection with 

HIV -1 NL-GFP . Where applicable, the supernatants were replaced with fresh drug-containing 

medium 24 h after infection. 
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Viral challenges and flow cytometric analysis. The cells were seeded into 24-well 

plates at 2 x 104 cells/well (MEF) or 1 x 105 cells/well (SupT1) and infected the following 

day with GFP-expressing retroviral vectors. MEF cells were trypsinized at 2 dpi and fixed 

in 3% formaldehyde (Fisher Scientific, MA, USA). The percentage of GFP-positive cells 

and MF! were then determined by analyzing 1 x 104 cells on a FC500 MPL cytometer 

(Beckman CouIter, CA, USA) using the CXP Software (Beckman CouIter). MFI analysis 

was restricted to the GFP-positive cells. 

Quantitative real-time peRo The late RT products, 2-LTR circles, and 

HIV -1 NL-GFP mRNA expression levels in infected cells were measured by either qPCR or 

qRT-PCR using the Stratagene Mx3000P system (Agilent, CA, USA). The cells were 

plated in 12-well plates at 3 x 105 cells/well and infected with HIV -1 NL-GFP. The retrovirus 

was pretreated with 20 U/ml DNase l (NEB) for 1 h at 37 oC and control infections were 

performed in the presence of 80 IlM nevirapine (Sigma), as described previously, to 

demonstrate the absence of carry-over contaminating plasmid DNA (Veillette et al. , 

2013). Total cellular DNA was collected after 6 h of infection (late RT products) or 6 h of 

infection followed by 18 h incubation in virus-free medium (2-L TR -circles) using the 

QIAamp DNA mini kit (Qiagen, CA, USA). Sequence data for the ODNs used in the PCR 

reactions (GFP forward and reverse, 2-LTR circles forward and reverse, actin forward and 

reverse) is provided in Additional file 3. The reactions contained lx SensiFast SYBR Lo­

ROX mix (Bioline, UK), 400 nM forward and reverse primers, and 5 III template 

(150-400 ng) in 20 III final volume. After 3 min incubation at 95 oC, 40 cycles of 

amplification were performed as follows: 5 sec at 95 oC, 10 sec at 62 oC (GFP) or 65 oC 

(2-LTR), 15 sec at 72 oc. 

For qRT-PCR, total RNAs were purified from infected or uninfected MEFs using 

the AllPrep RNAiProtein kit (Qiagen). Reverse transcription of 200 ng of each RNA 

sample followed by real time PCR were performed in a final volume of 20 III using the 

SensiFAST SYBR Lo-ROX One-Step kit (Bioline) according to the manufacturer's 

instructions. The primer sets to detect GFP and actin in the PCR reactions were as 

mentioned above. The reaction conditions were: 48 oC for 30 min, 95 oC for 10 min, 
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40 cycles of amplification: 95 oC for 15 sec, 60 oC for 30 sec. Primers were validated by 

performing a standard curve and through dissociation curves analysis. Plasmid copy 

numbers dilutions ranging from 5.5 x 105 down to 14 were used for the GFP standard 

curve. Results were then analyzed with the MxPro software (Agilent). Absolute counts 

were determined using the equation of the standard curve log(y) = ax + b where copy 

number was 10((Ctsample-b)/-a). 

Each PCR was performed in duplicate and the threshold cycle (Ct) was determined 

using the MxPro software (Agilent). In each experiment, a standard curve was run in 

duplicate, ranging from 300 to 3 x l05 copies plus a no-template control. The levels of 

HIV -1 transcript were normalized to those of GAPDH, which was quantified in parallei 

as an endogenous control. 

2.5 ResuIts 

PML depletion increases the susceptibility of human T ceUs to lentivirus 

infection. We first investigated the effect of endogenous hPML depletion on HIV -1 and 

SIVmac infectivity in SupTl ceIls, a hum an T lymphoblastoid cell line. The cells were 

stably transduced with lentiviral vectors expressing shRNAs targeting aIl hPML isoforms 

or expressing an shRNA against luciferase as a control, and conferring puromycin 

resistance. The untransduced cells were eliminated by puromycin treatment and PML 

knockdown was analyzed by WB (Fig. 2.1 A). The results showed that both shPML2 and 

shPML3 efficiently decreased PML expression in SupTl ceIls, whereas shPMLl had no 

significant effect. We next infected the 4 SupTl pools with low viral doses ofVSV prote in 

G (VSV -G)-pseudotyped, green fluorescent protein (GFP)-expressing lentiviral vectors 

based on HIV -1 strain NL43 (HIV -1 NL-GFP) and simian immunodeficiency virus strain 

mac239 (SIVmac-GFP) for 2 days, followed by fluorescence-activated cell sorting 

(FACS) analysis. In these vectors, GFP is inserted in the Nef ORF and HIV-1 Env 

expression is disrupted (Cowan et al. , 2002; He et al. , 1997). The results showed that PML 

depletion, mediated by shPML2 and shPML3, increased the percentage of cells infected 

with HIV-1 NL-GFP (2.4-fold and 3.7-fold, respectively), whereas shPMLl had no 
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significant effect (Fig. 2.lB, left panel). Similarly, the permissiveness of SupTl cells to 

SIVmac-GFP was increased 4.3-fold and 3.9-fold by expression of PML shRNA2 and 

shRNA3, respectively, whereas shRNAl had no effect (Fig. 2.lB, right panel). 

GFP is routinely used as a reporter prote in to study the activity of promoters; in 

particular, quantitation of GFP fluorescence intensity is a robust marker for expression 

levels, as it has been shown to directly correlate with mRNA levels in individual cells 

(Soboleski et al. , 2005). Recently, GFP fluorescence intensity was used to analyze the 

Cas9 nuc1ease-mediated knockout of latently integrated HIV -1 genomes in human cells 

(Liao et al. , 2015). GFP expression by the HIV -1-based vector HIV -1 NL-GFP, which is used 

in our study, is under the control of a natural 5'-LTR that acts as an enhancer and a 

promoter. This allowed us to investigate whether hPML interferes with HIV -1 gene 

expression by quantifying GFP mean fluorescence intensity (MF!) in infected cells using 

F ACS. None of the shRNAs used had any significant effect on the GFP MFI following 

infection with HIV -1 NL-GFP or SIVmac-GFP (Fig. 2.1 C). Thus, PML restricts the early 

stages of HIV -1 and SIV mac infection but does not affect viral gene expression in SupT 1 

cells. 
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PML-mediated restriction of mV-l and SIVmac infection in 
SupTl cells. 
(A) WB analysis of human SupTl ceUs stably transduced with shPMLs. 
CeUs were stably transduced with either the control shRNA targeting 
luciferase or with shRNAs targeting aU hPML isoforms. PML expression 
levels were analyzed by WB using a polyclonal antibody (upper panel). 
The same blot was reprobed with an anti-actin antibody as a loading 
control. The graph on the right shows the ratios of PML compared to actin 
following densitometry analysis. (B) Effects of shRNA-mediated depletion 
of hPML on HIV-l and SIVmac infectivity. The cells stably expressing 
shPMLs or control shRNAs were infected with HIV-lNL-GFP (left) or 
SIVmac-GFP (right) (MOI of 0.1). Two days later, the percentages ofinfected 
ceUs were measured by F ACS. The values represent the means of three 
independent experiments with standard deviations (**P < 0.01 , two-tailed 
Student's t-test). (C) Effects of shRNA-mediated depletion of hPML on 
HIV-l and SIVmac LTR-driven GFP expression. GFP MFI values are 
shown for the experiments in panel B (ns, non-significant in the two-tailed 
Student's t-test). 
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PML confers resistance to infection of murine cells by lentiviruses. Restriction 

factors such as TRlM5a, apolipoprotein B rnRNA editing enzyme, catalytic polypeptide­

like 3G (APOBEC3G) and Tetherin often function in a species-specific, virus-specific 

fashion (Browne & Littman, 2008; lia et al., 2009; Stremlau et al., 2005). In order to 

analyze the antiretroviral potential of PML in a non-human context, PML-KO MEFs 

(Wang et al., 1998) and corresponding WT cells were challenged with increasing doses of 

HIV -1 NL-GFP, SIV mac-GFP and a GFP-expressing vector based on equine infectious anemia 

virus (ElA V GFP). The percentage of infected (GFP-positive) cells was then measured by 

FACS. We found that MEF cells were up to 30 times more permissive to infection by the 

HIV-l vector in the absence ofPML (Fig. 2.2A). Similarly, the infectivity ofthe SIVmac 

and EIAV vectors was increased in PML-KO cells by up to 8-fold and 12-fold, 

respectively. This PML-dependent restriction phenotype decreased at higher virus doses 

(Fig. 2.2A), suggesting the presence of a saturation effect previously seen with TRlM5a 

(Hatziioannou et al. , 2003), whereby large amounts ofincoming retroviral cores "soak up" 

the restriction factor, resulting in attenuated or abrogated restriction. These data suggest 

that mPML is involved in a restriction mechanism targeting the early stages of infection 

by non-cognate lentiviruses. We used quantitative PCR (qPCR) to investigate the effects 

ofPML on HIV -1 DNA synthesis and nuclear import, two early infection steps frequently 

affected by previously discovered restriction factors. When WT and PML-KO MEFs were 

infected with identical amounts of HIV -1 NL-GFP, we observed - 5-fold more reverse 

transcribed DNA in the PML-KO cells (Fig. 2.2B). We also observed significantly more 

2-LTR circles (a marker ofnuclear import) in PML-KO cells (Fig. 2.2B). However, the 

effect of PML on 2-LTR circle levels was not greater than its effect on total reverse 

transcribed DNA, suggesting that the PML-dependent restriction of HIV-l in MEFs 

affects mainly the reverse transcription step, consistent with recent findings from other 

groups (Dutrieux et al. , 2015; Kahle et al. , 2015). 
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Murine PML confers resistance to infection with lentiviruses. 
(A) Dose-dependent analysis of retrovirus infectivity. WT and PML-KO 
MEF cells were infected with increasing doses of HIV -1 NL-GFP, SIV mac-GFP 
and ElA V GFP. The percentage of infected (GFP-expressing) cells was 
measured 2 d later by F ACS. Shown is one experiment representative of 
~3 independent experiments that yielded comparable results (*P < 0.05, 
* *p < 0.0 l , one-tailed paired Student' st-test). (B) Effects of PML on the 
early stages of HIV-1 replication. WT and PML-KO MEF cells were 
infected with HIV-1NL-GFPat a low MOI (0.01 as measured on CRFK cells, 
see Methods). Total cellular DNA was extracted 6 h and 24 h post-infection 
and subjected to qPCR of HIV -1 late reverse transcription products and 
2-L TR circles. Data are shown as relative viral products levels compared 
to actin. An RT inhibitor (nevirapine, Nev) was included as a control to 
show the absence of contaminating DNA. The values represent the means 
of three independent experiments with standard deviations (*P < 0.05, 
***p < 0.001 , two-tailed Student's t-test). 
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PML promotes the down-regulation of HIV -1 L TR-driven GFP expression in 

MEFs. MEF WT and PML-KO cells were infected with increasing doses ofHIV-1 NL-GFP, 

as described above, followed by FACS. The percentage ofinfected cells and MFI (within 

the GFP+ population) were measured at 2 and 10 days post infection (dpi) (Fig. 2.3A and 

2.3B, respectively). Performing the analyses at 10 dpi ensured that any GFP detected 

would have been expressed from integrated proviral DNA (Butler et al. , 2001). We found 

that PML knockout resulted in not only an increase in the percentage of GFP-expressing 

cells, but also an increase in the GFP MFI in these infected cells. Similar to what we 

observed in figure 2.2A, the effects of mPML knockout on viral infectivity were greatest 

when a low dose of virus was used and were abrogated at high virus doses (>25 III of 

HIV -1 NL-GFP in this experiment). In contrast, the effects of mPML knockout on the GFP 

MFI were relatively more constant across multiple doses of virus (-4-fold increase at 

2 dpi , ~ 1 O-fold at 10 dpi). At 10 dpi, however, we observed a decrease in GFP MFI at the 

two highest virus doses used (50 and 100 Ill) in PML-KO cells, perhaps reflecting the 

existence of an additional PML-independent mechanism of inhibition. Altogether, results 

from the experiments shown in figure 2.2 and figure 2.3 suggest that PML expression in 

MEFs is associated with at least two distinct HIV -1 restriction mechanisms; one takes 

place at early post-entry stages, whereas the second results in a decrease in LTR-driven 

gene expression. The tirst inhibitory mechanism can be abrogated at high virus doses, 

whereas the second is not inhibited at the se high doses, suppo.rting a model where these 

activities are independent from each other. 
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mPML knockout increases HIV-l LTR-driven GFP expression. 
PML-KO and WT MEFs were infected with increasing doses of 
HIV -1 NL-GFP and cells were maintained in culture for 2 days (A) or 
10 days (B), followed by F ACS analysis. The percentage of infected 
(GFP-expressing) cells and the mean fluorescence intensity (MFI) were 
measured at each time point (top and bottom panels, respectively) 
(**P < 0.01 , ***p < 0.001; one-tailed paired Student's t-test). 

Overexpression of mPML restores restriction of mV-l and SIVmac in 

PML-KO MEFs. Because the data reported above implicate mPML as a possible intrinsic 

defense factor against lentiviruses, we next examined whether its overexpression would 

restore the restriction of HIV -1 and SIVmac in PML-KO MEFs. For this, we cloned the 

mPML cDNA from MEFs into the murine leukemia virus (ML V)-based vector pMIP 

(Berthoux et al. , 2005) and transduced it in both WT and PML-KO MEFs, together with 

the empty vector (EV) as control. Our cloning strategy allowed for the isolation of both 

main isoforms (1 and 2) of mPML, but 3/3 sequenced clones corresponded to mPML 

isoform 2, which is the longest of the two (GenBank accession No. KJ650238). 
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After puromycin selection oftransduced cell populations, mPML expression was analyzed 

by Western blotting (WB). As shown in figure 2.4A, a band consistent with the expected 

size for mPML (110-120 kDa) was detected in the mPML-transduced cells, and a weaker 

band of the same size was seen in WT but not PML-KO MEFs. Additional bands 

corresponding to heavier proteins were also detected and could be SUMOylated forms. 

We then challenged the transduced cells with multiple doses ofHIV-INL-GFP (Fig. 2.4B, 

left panel) and SIVmac-GFP (Fig. 2.4B, right panel). Transduction of mPML into PML­

KO MEFs decreased the infectivity of HIV-I NL-GFP and SIVmac-GFP by up to - 9-fold 

(Fig. 2.4B left panel) and - 14-fold (Fig. 2.4B right panel), respectively, similar to the 

levels seen in WT cells. In contrast to the PML-KO cells, overexpression of mPML in 

WT MEFs had no effect on infection with the HIV-l and SIVmac vectors. Like before, 

the magnitude of change in infectivity by PML knockout was greatest at the lowest viral 

doses. These results demonstrate that PML can inhibit the early stages of lentivirus 

infection in MEFs and suggest that endogenous mPML levels are sufficient to accomplish 

this function. 

To provide further insights into the possible role of mPML in inhibiting lentiviral 

gene expression, we also measured the GFP MFI (Fig. 2.4C, D). As shown in 

representative FACS dot plots in figure 2.4C, overexpression ofmPML in PML-KO MEF 

cells not on1y decreased HIV -1 NL-GFP infectivity from 76% to 14.6% but also reduced the 

GFP MFI by 13.3-fold. In contrast, overexpression ofmPML in WT MEF cells had only 

a small effect on the GFP MFI (less than 2-fold). Figure 2.4D surnmarizes the GFP MFI 

results obtained upon infection ofmPML- or empty vector-transduced WT and PML-KO 

MEFs with HIV-INL-GFP and SIVmac-GFP. We found that overexpression of mPML in 

PML-KO MEFs strongly decreased the GFP MFI following infection by HIV-INL-GFP and 

SIVmac-GFP (up to 13.3-fold and 22.3-fold, respectively). In contrast, overexpression of 

mPML in WT MEFs decreased GFP MFI by a much smaller magnitude following 

infection by HIV-INL-GFP and SIVmac-GFP (up to 1.7-fold and 3.1-fold, respectively). 

As expected, the PML-induced reduction in GFP MFI was not dose dependent, thereby 

distinguishing the effects of mPML on infectivity and GFP MF!. As an additional control, 

we also infected the 4 cell pools with a GFP-expressing, "B-tropic" ML V -based vector 
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(Besnier et al. , 2003), MLVGFP (Fig. 2.4D, right panel) and similarly measured GFP 

expression levels. As anticipated, we found that the GFP MFI did not significantly vary 

in response to expression ofmPML (either endogenous or exogenous). Collectively, the 

data shown in figures 2.2-2.4 demonstrate that expression of mPML in murine cells 

inhibits both the infectivity and L TR -driven viral gene expression of non-murine 

lentiviruses. 
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Figure 2.4 Expression ofmPML in PML-KO MEFs restores restriction ofHIV-l 
and SIVmac, 
(A) Western blorting (WB) analysis of mPML overexpression in MEFs. 
PML cDNA PML cDNA was isolated from WT cells and transduced into 
both WT and PML-KO MEFs. The empty vector (EV) was transduced as 
a control. mPML expression was analyzed by WB of extracts from 
EV-transduced MEF-WT cells (WT+EV), mPML-transduced MEF-WT 
cells (WT+PML), EV-transduced PML-KO cells (KO+EV), and mPML­
transduced PML-KO MEF cells (KO+PML). The WB was performed 
using an anti-mPML monoclonal antibody (upper panel) followed by an 
anti-actin antibody (lower panel) as a loading control. The arrow points to 
mPML, as judged from its expected size, whereas the heavier bands are 
presumably SUMOylated forms. The positions of the molecular size 
markers are indicated on the left. (B) Analysis of retrovirus infectivity in 
the transduced MEFs. The cells were infected with multiple doses of either 
BrV -1 NL-GFP or srv mac-GFP, and the percentage of GFP-positive cells was 
measured at 2 dpi by FACS (P ~ 0.001 , one-tailed paired Student's (-test 
for KO + PML vs. KO). (C) FACS plots from transduced MEFs infected 
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with HIV-INL-GFP. WT and PML-KO MEF cells transduced with either EV 
or rnPML were infected with HIV -1 NL-GFP. The percentage of infected cells 
and mean fluorescence intensities determined at 2 dpi are indicated for each 
plot. (D) Down-regulation of LTR-driven GFP expression following 
overexpression of mPML in PML-KO MEFs. WT and PML-KO MEFs 
were stably transduced with either rnPML or EV, as a control, then infected 
with multiple doses of HIV -1 NL-GFP (left panel), SIV mac-GFP (middle panel) 
or B-ML V GFP (right panel). The MFI was measured by F ACS at 2 dpi 
(P < 0.01 , one-tailed paired Student's (-test for KO + PML vs. KO after 
HIV -1 NL-GFP or SIV mac-GFP infection). 

PML-dependent transcriptionaI siiencing of mV-l in MEFs. To further study 

the role ofmPML in the regulation of the HIV-l LTR-driven gene expression, we used 

SAHA, a HDAC inhibitor. HDACs act on histones within the nucleosome-bound 

promo ter ofHIV-l to maintain provirallatency (He & Margolis, 2002). HDAC inhibition 

by SAHA leads to promoter expression and the escape of HIV -1 from transcriptional 

repression (Archin et al. , 2009; Archin et al. , 2012). Recently, SAHA was shown to affect 

the spatial distribution ofhPML NBs (Lusic et al. , 2013). We reasoned that if the HIV-l 

L TR was repressed by mPML in MEFs in a fashion similar to its transcriptional repression 

in sorne human lymphocyte subpopulations (Chomont et al. , 2009), then SAHA would 

counteract the effects of mPML in MEFs. We infected WT and PML-KO MEFs with 

multiple doses of HIV -1 NL-GFP and maintained the cultures for 10 days. The cells were 

then treated with either 5 ~M of SAHA or with DMSO as control for 48 h followed by 

F ACS analysis of the GFP MFI, performed like before. As shown in figure 2.5A, the levels 

of GFP expression increased by up to ~ 11-fold in WT cells following treatment with 

SAHA, while a smaller increase (up to 3-fold) was observed in PML-KO cells. Therefore, 

SARA counteracts the PML-mediated reduction in LTR-driven GFP expression in MEF 

cells, consistent with transcriptional repression of the LTRs as the underlying mechanism. 

Interestingly, at the highest dose of virus used, SARA had the same effect on the GFP 

MFI in WT and PML-KO cells (Fig. 2.5A). This observation suggests that at high virus 

doses, HIV -1 LTR-driven gene expression may additionally become inhibited by a distinct 

mechanism independent of PML. 

To in sure that the inhibitory effect of PML on HIV -1 gene expression was not 

specific to the GFP reporter gene used in previous experiments, we also analyzed the 
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expression of the HIV-l p24 capsid prote in in similar settings. WT and PML-KO MEFs 

were infected with HIV -1 NL-GFP in triplicate. 10 d later, the cells were treated or not with 

SAHA for 2 d and protein extracts were then analyzed by WB. As shown in figure 2.5B 

and figure 2.5C, p24 was barely detectable in DMSO-treated WT cells, whereas treatment 

with SAHA resulted in a 10-fold increase in p24 expression levels in these cells. 

In contrast, SAHA treatment caused only a 2-fold increase in p24 expression in PML-KO 

cells (Fig. 2.5C). Therefore, the results obtained in this experiment were consistent with 

those obtained for GFP. 

To directly address whether the PML-dependent decrease in L TR -driven expression 

resulted from transcriptional repression, we used quantitative reverse transcription-PCR 

(qRT-PCR) to analyze the abundance of HIV-1 mRNA in MEF cells infected with 

HIV-I NL-GFP exactly as in figure 2.5B. Levels ofHIV-1 mRNA (analyzed using primers 

specific to the GFP coding sequence) were less than 1 copy per ng of total RNA in WT 

MEFs, but were 11.7 times higher in PML-KO cells (Fig. 2.5D). In response to the 

treatment of WT cells with SAHA, we observed a 15-fold increase in the levels of viral 

mRNA, compared to an increase of only 3.5-fold in the PML-KO cells. A second qPCR 

analysis was performed, this time normalized to actin transcription level (Fig. A.1). 

The results were consistent with those shown in figure 2.5D, as HIV -1 transcription was 

found to be 13.3-fold higher in the absence of mPML and SAHA specifically rescued 

HIV -1 transcription in WT MEFs. Taken together, these results pro vide strong evidence 

that mPML interferes with the HIV -1 transcription in MEFs. 
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Figure 2.5 SAHA counteracts the PML-dependent inhibition of HIV -1 gene 
expression. 
(A) Effects ofSAHA on HIV -1 L TR-driven GFP expression. PML-KO and 
WT MEFs were infected with increasing doses ofHIV-1NL-GFP. Ten days 
later, the cells were treated with 5 /lM SAHA or with DMSO for 48 h and 
the MFI was then measured by FACS (P = 0.0001, one-tailed paired 
Student's t-test for SAHA vs. DMSO treatment in WT cells). (B) Analysis 
ofHIV-1 p24 expression levels. PML-KO and WT MEFs were infected in 
triplicate with HIV -1 NL-GFP at a CRFK MOI of 0.1 and then treated with 
either SAHA or DMSO at 10 dpi. Cellular lysates were prepared 48 h later 
and analyzed by WB using an anti-p24 antibody. Uninfected extracts were 
used as a negative control and actin was analyzed as a loading control. 
(C) The p24 and actin bands in the WB analysis shown in (B) were 
quantified by densitometry. The values represent the means of p24/actin 
ratios from the 3 data points for each condition with standard deviations 
(*P < 0.05, **p < 0.01, two-tailed Student's t-test). (D) qRT-PCR analysis 
of HIV -1 transcription. WT or PML-KO MEFs were infected with 
HIV-1NL-GFP in triplicate. Ten days after infection, the cells were treated 
with either DMSO or SARA for 48 h. Total RNA was purified from the 
cells and the level of GFP transcript was quantified by qRT-PCR. Total 
RNA from uninfected cells was used as a negative control. The values 
represent the means of three independent experiments with standard 
deviations (*P < 0.05 , **p < 0.01 , two-tailed Student's t-test) . ND, not 
detected. 

mPML-mediated restriction of lentiviruses does not require IFN-I, but mPML 

contributes to IFN-I-induced antiviral responses. The hPML expression levels can be 

altered during infection with sorne viruses, such as HSV -1 , HCMY and Epstein-Barr virus 

(EBV) (Salsman et al. , 2008). Interestingly, we observed a significant increase in the 

levels of mPML expression in response to infection of MEFs with the HIV -1 NL-GFP, 

SIV mac-GFP, and B-ML V GFP vectors (Fig. 2.6A), suggesting an interferon-dependent 

mechanism. Accordingly, the expression of PML is known to be increased in response to 

both type 1 and II IFNs (Chelbi-Alix et al., 1995; Lavau et al., 1995). IFNs might be 

relevant to the observed HIV -1 restriction phenotype in MEFs in two ways. First, IFN 

treatment-mediated antiviral activities might be dependent on PML. Second, PML could 

indirectly interfere with HIV -1 infection and/or transcription by upregulating the 

production of type 1 IFN. To test the latter hypothesis, IFN-induced signaling in MEFs 

was prevented by using a blocking antibody against the mouse IFN -alpha/beta receptor 

subunit 1 (IFNAR-1) (Mogensen et al. , 1999). The efficacy of this antibody was 
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determined by treating WT MEFs with murine IFN-p in the presence or absence of the 

blocking antibody and then measuring the levels of mPML expression by WB (Fig. 2.6B). 

The results show that, as expected, PML levels were greatly increased by IFN -p treatment, 

whereas treatment with the anti-IFNAR-1 antibody abrogated this effect in a dose­

dependent fashion. Next, WT and PML-KO MEFs were treated with the blocking 

antibody (650 ng per 20000 cells) prior to infection with increasing doses of HIV-1 

(Fig. 2.6C). Compared with control untreated cells, inhibition of IFN -induced signal 

transduction did not modulate HIV -1 infectivity (Fig. 2.6C, left panel) nor HIV -1 LTR­

driven GFP expression levels (Fig. 2.6C, right panel) in either WT or PML-KO MEFs. 

These results indicate that PML-mediated restriction of HIV -1 in MEFs do es not require 

activation ofIFN-mediated pathways, ev en though PML itselfis upregulated by IFNs. 

To test whether PML is important for IFN-mediated antiviral activity, we treated 

both WT and PML-KO MEFs with IFN-p for 16 h, then challenged them with 

HIV -1 NL-GFP. As shown in figure 2.6D (left panel), treatment with IFN-p led to a 20-fold 

reduction in the percentage of infected cells in the presence of PML compared to only a 

5-fold decrease in infectivity in PML-KO cells. However, IFN-p treatment did not modify 

the GFP MFI in either WT or PML-KO cells (Fig. 2.6D, right panel). To analyze further 

the importance of PML in IFN-p-mediated inhibition of HIV-1 , we treated WT and 

PML-KO cells with murine IFN-a or IFN-p and then infected them with increasing doses 

of HIV -1 NL-GFP. We found that IFN treatment reduced the infectivity of HIV -1 by up to 

~ 1 OO-fold at low virus doses in WT cells. However, the inhibitory effect of IFNs was 

significantly more mode st (up to ~10-fold) in PML-KO cells (Fig. 2.6E). Therefore, our 

data support a model where type I IFNs inhibit HIV -1 through mechanisms that partially 

involve the PML-mediated inhibition of early replication stages but are not relevant to the 

inhibition of LTR-driven gene expression. Thus, PML-mediated antilentiviral functions 

can be both induced and constitutive. 
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(A) WB analysis ofinfection-induced up-regulation ofPML in MEFs. WT 
MEF cells were infected with HIV -1 NL-GFP, SIV mac-GFP, or B-ML V GFP at an 
MOI of 1. Protein extracts were analyzed by WB at 6 h MOI of 1. Prote in 
extracts were analyzed by WB at 6 h or 24 h post infection, along with a 
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no-infection control, using an anti-mPML monoclonal antibody (upper 
panel). Actin was analyzed as a loading control. (B) Expression of mPML 
was analyzed in WT MEFs left untreated (Ctrl), treated with IFN-~ alone, 
or treated with a blocking antibody against IFNAR-l at two different doses 
to block IFN-~-induced signal transduction prior to IFN-~ treatment. 
mPML was detected using a monoclonal antibody (upper panel). Actin was 
analyzed as a loading control. (C) Blocking the IFN-I receptor does not 
alter HIV-INL-GFP restriction by PML. PML-KO and WT MEFs were 
treated with the anti-IFNAR-l antibody, or with PBS as a control, and were 
then infected with increasing doses of HIV -1 NL-GFP. The percentage of 
infected cens (left panel) and GFP MFI (right panel) were assessed 2 days 
later by F ACS. (D) The effects of IFN-I and PML on the antiviral state. 
PML-KO and WT MEFs were treated with IFN-~ for 16 h prior to infection 
with HIV -1 NL-GFP. The percentage of infected cells (left panel) and GFP 
MFI (right panel) were assessed 2 days later by F ACS. The values represent 
the means of three independent infections with standard deviations 
(**P < 0.01 , two-tailed Student' s t-test; ns, non-significant). (E) Virus 
dose-dependent analysis of the role of PML in IFN-induced HIV-l 
restriction. WT and PML-KO MEFs were treated with either IFN-a 
(500 U/ml) or IFN-~ (100 U/ml) for 16 h, followed by infection with 
increasing doses of HIV -1 NL-GFP. The percentage of infected ceIls was 
assessed 2 days later by FACS. 

Hurnan PML expression induces restriction of HIV-l and SIVrnac in MEFs. 

To investigate the isoform specificity and the cellular context specificity of the restriction 

ofHIV-l by hPML, we expressed several hPML isoforms in PML-KO MEFs. We stably 

transduced FLAG-tagged versions of aIl six nuclear hPML isoforms (isoforms 1 to VI) 

(Cuchet et al. , 2011) individually into these ceIls. The cens were selected in puromycin to 

eliminate untransduced ceIls. Immunofluorescence staining of the transduced MEF ceIls 

using an anti-FLAG antibody indicated that the different hPML isoforms were expressed 

in nuclei (Fig. 2.7A), though sorne cytoplasmic staining was detected for PML-V. WB 

analyses confirmed that an isoforms were expressed, albeit at various levels, with isoforms 

III, IV and V being expressed at apparently lower levels (Fig. A.2). The ceIls were then 

infected with increasing doses of HIV -1 NL-GFP or SIV mac-GFP (Fig. 2.7B). HIV -1 was ~5-

to 10-fold less infectious in PML-KO MEFs expressing hPML-I, II, IV and VI, compared 

with the empty vector-transduced control cells. PML-V had a more modest effect and 

PML-III did not impede HIV-l infection (Fig. 2.7B, left panel). Transduction ofhPML-I, 

II, IV, and VI in PML-KO MEFs also reduced the infectivity of SIV mac-GFP, by up to 

44-fold (Fig. 2.7B, right panel). Similar to HIV-I NL-GFP, SIVmac-GFP infectivity was 
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modestly inhibited by hPML-V and was not affected by hPML-III. HIV-1 LTR-driven 

gene expression was assessed by measuring the GFP MFI in the infected cells. 

We observed that hPML-I, II, IV, and VI caused a reduction in GFP levels in MEFs 

infected with HIV-1 NL-GFPor SIVmac-GFP, while hPML-III and V had no effect (Fig. 2.7C). 

These data show that hPML can restrict HIV -1 and SIVmac in MEFs but in an isoform­

specific fashion. In addition, hPML-V decreased HIV -1 infectivity but had no effect on 

HIV -1 L TR-driven GFP expression levels, implying that these two restriction mechanisms 

are genetically separable. 

We next tested whether SAHA treatment would specifically rescue HIV-1 LTR­

driven GFP expression in MEF cells expressing human PML isoforms. PML-KO MEFs 

stably expressing hPML isoforms 1 to VI were infected with low doses ofHIV -1 NL-GFP and 

kept in culture for 10 d. The cells were then treated with either 5 /lM of SAHA or with 

DMSO as a control for 48 h, followed by F ACS analysis. We observed that expression of 

hPML isoforms l, II and VI led to a decrease in HIV -1 NL-GFP infectivity, although the 

magnitude of this inhibition was slightly smaller than what was observed 2 d post­

infection. hPML-IV and V did not significantly decrease HIV-1 NL-GFP infectivity, as seen 

at this time-point (Fig. 2.7D, left panel), perhaps due to the fact that these human isoforms 

delayed infection with HIV -1 rather than disrupting it entirely. hPML-l, II, III and VI 

caused a reduction in GFP MFI in these conditions (Fig. 2.7D, right panel), but this effect 

was also smaller than we had observed at 2 d post-infection (Fig. 2.7C). As expected, 

SAHA treatment had no significant effect on the infectivity of HIV -1 NL-GFP in PML-KO 

MEFs expressing the various hPML isoforms (Fig. 2.7D, left panel). SAHA slightly 

increased (1.9-fold) the GFP MFI in the control cells (Fig. 2.7D, right panel), a result 

similar to what we had observed before (Fig. 2.5). The effect of SAHA was significantly 

greater in cells stably expressing hPML-I, III and VI (Fig. 2.7D, right panel), suggesting 

that the mechanism of inhibition of GFP expression by these isoforms was transcriptional 

silencing, similar to what we had demonstrated with mPML. Taken together, the se data 

suggest that hPML can mediate the two inhibitory phenotypes also observed with mPML, 

although in an isoform-specific, cellular context-specific manner. 
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Figure 2.7 Expression ofhPML isoforms in MEFs restricts HIV-l and SIVmac. 
(A) Immunofluorescence staining of hPML in PML-KO MEFs stably 
transduced with FLAG-tagged hPML isoforms 1 to VI. Images are 
representative of multiple observations. hPMLs were stained with an anti­
FLAG antibody (green) and nuclear DNA was stained using Hoechst 
33342 (blue). Scale bar: 5 !lm. (B) Effects ofhPML isoforms on HIV -1 and 
SIVmac infectivity. PML-KO cens transduced with individual hPML 
isoforms were infected with increasing doses of HIV -1 NL-OFP (left) or 
SIV mac-OFP (right). The percentage of infected cens was measured 2 days 
later by FACS. (C) Effects ofhPML isoforms on HIV-l and SIVmac LTR­
driven GFP expression. GFP MFI values are shown for the experiments in 
panel B. (D) Effects of SARA on hPML-dependent restriction of HIV-l 
infectivityand LTR-driven GFP expression. MEF cens transduced with the 
individual hPML isoforms were infected with HIV -1 NL-OFP at a CRFK MOI 
of 0.1. Ten days later, the cens were treated with either DMSO (no drug 
control) or SARA for 48 h, followed by F ACS. The percentage of infected 
cens (left panel) and GFP MFI (right panel) were assessed. The values 
represent the means of three independent experiments with standard 
deviations. The SAHA-dependent fold-increase in GFP MFI was compared 
between cens transduced with individual hPML isoforms and those 
transduced with the empty vector (Ctrl) using the two-tailed Student' s 
t-test. The ca1culated p-values are indicated on the graph. ns, 
non-significant. 

2.6 Discussion 

The results from this study show that PML can interfere with at least two distinct 

steps in the replication of HIV -1 and other lentiviruses. The first block to replication 

occurs at early post-entry stages and was seen in both MEF and SupTI cens, although the 

magnitude of the restriction was significantly higher in the murine cens. The existence of 

an early post-entry block to HIV -1 replication in murine cens has long been known 

(Bieniasz & Cullen, 2000; Hofmann et al. , 1999). This restriction of HIV -1 infection was 

seen in an murine cen types analyzed by these investigators, although it was stronger in 

lymphocytes compared to fibroblasts (Baumann et al. , 2004). On the basis of viral DNA 

analyses, the block was found to occur prior to integration (Baurnann et al., 2004; Noser 

et al. , 2006; Tsurutani et al. , 2007), consistent with recent results from other groups 

(Dutrieux et al. , 2015; Kahle et al. , 2015). Here we show that in addition to HIV-l , the 

early post-entry replication oftwo other lentiviruses, SIVmac and EIAV, is restricted in 

murine MEFs. Our results indicate that PML is required for this early phase of restriction 
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to occur. Another team recently reported that the PML body component Daxx was 

involved in the PML-mediated inhibition of HIV -1 (Dutrieux et al., 2015), though this 

finding was contradicted in a report from another group (Kahle et al., 2015). We find that 

the PML-dependent restriction of early-stage HIV -1 infection was increased by treatment 

with IFN-a or IFN-~ , which suggests that PML is relevant to the intrinsic cellular defenses 

against retroviral infections. Type 1 IFN treatment increased expression of mPML itself 

(Fig. 6), yet mPML overexpression was not sufficient to increase the restriction of 

incoming HIV-1 or SIVmac in MEFs (Fig. 4). These various observations are consistent 

with a model thereby IFN-I inhibits HIV-1 in mouse cells by increasing the expression of 

a restriction factor that acts downstream of PML and directly targets incoming HIV -1. 

Along these lines, restriction of HIV -1 appeared to be saturable in several of our 

experiments, supporting a model where an antiviral effector is present in limiting 

concentrations, which is not consistent with PML being this effector. Also in support of 

an indirect effect ofPML is the fact that HIV -1 infection ofMEFs was inhibited at reverse 

transcription, a step that takes place in the cytoplasm while PML is predominantly nuclear. 

Taken together, these observations suggest that PML promotes the restriction of multiple 

lentiviruses by activating a downstream effector whose identity and viral target(s) remain 

to be determined. Interestingly, PML was recently found to be involved in the 

transcriptional activation of interferon-stimulated genes following treatrnent with IFN-I 

(Kim & Ahn, 2015), supporting the idea that PML plays an activating role upstream of 

innate immune effectors. 

In addition to its effects on early stage viral replication, PML also caused 

transcriptional silencing ofHIV -1 in MEFs, a result consistent with previous observations 

that HIV -1 transcription was low in murine cells, even in the presence of human cyclin 

Tl (hCycTl) (Zhang et al. , 2008). Unlike the restriction of early stages of replication, 

the repression of HIV -1 gene expression was not enhanced by IFN -1 treatment. Therefore, 

although both inhibitory mechanisms are dependent upon the presence of PML, they are 

differentially regulated. We found no evidence that hPML repressed HIV-l LTR-driven 

gene expression in SupTl cells. However, transfer of sorne hPML isoforms (hPML-I, II, 

IV and VI and to a lesser ex te nt hPML-V) in PML-KO MEFs fully reconstituted the 
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restriction activities, supporting a conserved role for mPML and hPML. This discrepancy 

may result from the fact that the establishment of latency in human cells may be rare and 

may occur only in specific conditions, whereas the HIV -1 promoter is constitutively 

repressed in murine cells. Recently, two different teams used celllines belonging to the 

"J-Lat" series, which are human T cell lines containing integrated but transcriptionally 

silent copies of an HIV -l-derived vector, to investigate whether PML and PML bodies 

have a role in latency. Both teams found that latent HIV -1 could be reactivated by 

treatment with the PML inhibitor arsenic trioxide (AS20 3) (Lusic et al. , 2013 ; Wang et al. , 

2013). Lusic and collaborators also observed that PML depletion similarly reactivated 

HIV -1 in the J-Lat 9.2 clone (Lusic et al. , 2013). These results show that PML is required 

for the maintenance of transcriptionallatency in these models, but they do not address the 

question ofwhether it is involved in the establishment oflatency. MEFs and possibly other 

murine cell types in which HIV -1 transcription is constitutively repressed may provide 

valuable investigatory tools to identify the factors controlling the establishment and 

maintenance of virallatency and persistence. 

AS20 3 has been shown to interfere with severa! retroviral restriction pathways over 

recent years, including TRIM5a (Berthoux et al. , 2004; Berthoux et al. , 2003), TRIMCyp 

(Sebastian et al. , 2006), APOBEC3G (Stalder et al. , 2010), Lv4 (Pizzato et al. , 2015) and 

possibly SAMHD 1 (Pion et al. , 2007). AS20 3 is unlikely to directly inhibit those various 

restriction effectors. Therefore, the most straightforward explanation is that it acts 

upstream, by interacting with a factor that controls the global antiviral state of the cell. 

Clues that PML might be this factor come from imaging and biochemical studies that used 

fluorescent and biotin-Iabeled analogs of AS20 3. These studies strongly suggested that 

PML was the major and perhaps the sole cellular target for this drug (Jeanne et al. , 2010; 

Zhang et al. , 2010). AS20 3 promotes PML oligomerization, resulting in increased 

SUMOylation and ubiquitination, followed by proteasome-dependent degradation (Zhang 

et al. , 2010). The picture emerging from these and other studies (Kim & Ahn, 2015) is 

that PML upregulates antiretroviral effectors that target viral repli cation at several steps. 

Changes in the expression patterns of these downstream effectors might explain the 

cellular context specificity observed for the effects of PML expression on HIV -1. 
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2.7 Conclusions 

Taken together, our observations suggest that PML broadly upregulates the activity 

of innate antiviral effectors, through mechanisms that are yet to be dissected. It has been 

suggested that the PML inhibitor AS203 could be tested as a pharmacological agent to 

counter HIV-1 latency in humans (Lusic et al. , 2013; Wang et al. , 2013). However, this 

study and previous ones (Berthoux et al. , 2003 ; Dutrieux et al., 2015) show that targeting 

PML might enhance the early stages of HIV -1 replication by removing PML-controlled 

antiviral activities. Thus, AS203 and other compounds targeting PML likely involve a 

trade-off between inhibition of latency and inhibition of innate immune mechanisms. 

Our results are also relevant to the development of murine models for HIV -1 . Despite 

multiple attempts at introducing key human positive factors in murine cells, such as hCD4, 

hCCR5, hCycT1 or hCRM1 (Bieniasz & Cullen, 2000; Elinav et al. , 2012; Zhang et al. , 

2010), murine cells remain non-permissive to HIV-l. Removing the endogenous mPML 

in the context of murine cells expressing key human factors might support HIV-1 

propagation. The availability of PML knockout mice for crossing experiments (Wang et 

al. , 1998) might finally open the door to the long sought-after hun1an tissue-free murine 

model for AIDS. 
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Chapter III contains a study showing that PML is dispensable for the restriction of 

lentiviruses in human cells and moreover, PML is not involved in IFN-induced 

restriction oflentiviruses. Additionally, we demonstrate that PML is not involved 

in the TRIM5a-mediated restriction of HIV -1. 
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3.1 Contributions 

Masroori and Berthoux designed the study. Masroori, Cherry, Merindol, Li, Dufour, 

Poulain and B. Pl ourde performed the experiments. Masroori and Berthoux analyzed the 

data and prepared the manuscript. 

3.2 Abstract 

The PML (promyelocytic leukemia) prote in is a member of the TRIM family, a large 

group of proteins that show high diversity in functions but possess a common tripartite 

motif giving the farnily its name. We and others recently reported that both murine PML 

(mPML) and human PML (hPML) strongly restrict the early stages of infection by HIV-l 

and other lentiviruses when expressed in mouse embryonic fibroblasts (MEFs). 

This restriction activity was found to contribute to the type 1 interferon (IFN-I)-mediated 

inhibition ofHIV-l in MEFs. Additionally, PML caused transcriptional repression of the 

HIV -1 promoter in MEFs. By contrast, the modulation of the early stages of HIV-l 

1 Laboratory of retrovirology, Department of Medical Biology and BioMed research group, Université du 
Québec à Trois-Rivières, Trois-Rivières, Québec, Canada. 



85 

infection of human cells by PML has been investigated by RNAi with unclear results. 

In order to conclusively determine whether PML restricts HIV -1 or not in human cells, 

we used CRISPR-Cas9 to knock out its gene in epithelial, lymphoid and monocytic human 

cell lines. Infection challenges showed that PML knockout had no effect on the 

permissiveness ofthese cells to HIV -1 infection. IFN-I treatments inhibited HIV -1 equally 

whether PML was expressed or not. Over-expression of individual hPML isoforms, or of 

mPML, in a human T cell line did not restrict HIV -1. The presence of PML was not 

required for the restriction of nonhuman retroviruses by TRIM5a, another human TRIM 

protein, and TRIM5a was inhibited by arsenic trioxide through a PML-independent 

mechanism. We conclude that PML is not a restriction factor for HIV -1 in human cell 

lines representing diverse lineages. 

3.3 Importance 

PML is involved in innate immune mechanisms against both DNA and RNA 

viruses. Although the mechanism by which PML inhibits highly divergent viruses is 

unclear, it was recently found that it can increase the transcription of interferon-stimulated 

genes (ISGs). However, whether human PML inhibits HIV -1 has been debated. Here we 

provide unambiguous, knockout-based evidence that PML does not restrict the early post­

entry stages of HIV -1 infection in a variety of human cell types and does not participate 

in the inhibition of HIV -1 by IFN-I. Although this study does not exclu de the possibility 

of other mechanisms by which PML may interfere with HIV -1 , we nonetheless 

demonstrate that PML does not generally act as an HIV -1 restriction factor in human cells 

and that its presence is not required for IFN-I to stimulate the expression of anti-HIV-1 

genes. These results contribute to uncovering the landscape of HIV -1 inhibition by ISGs 

in human cells. 

3.4 Introduction 

PMLlTRIM19 belongs to the tripartite motif (TRIM) protein superfarnily that shares 

a conserved tripartite architecture: a RING domain, one or two B-boxes, and a coiled-coil 
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domain (1). Due to the alternative splicing of the C-terminal domain, seven PML isoforms 

are present in human cells. Isoforms l to VI are primarily located in the nucleus, while 

PML VII is mostly cytoplasmic (2). PML is the major component of a nuclear substructure 

named PML nuclear body (PML NB). PML NBs are dynamic and their size, number, and 

composition change in response to cellular stresses or during the cell cycle. In addition to 

PML, these NBs recruit many other proteins in a transient fashion (3-6). TRIM5a, a 

cytoplasmic factor that restricts retroviruses in a species-specific, virus-specific manner 

(7), is actively shuttling between the cytoplasm and the nucleus and localizes to the PML 

NBs when present in the nucleus (8). PML is involved in many cellular activities including 

transcriptional regulation and tumor suppression (5 , 9, 10). 

IFN s are a multigene family of inducible cytokines released by host cells in response 

to pathogens, including viruses (11-13). IFN-I binding to its receptor leads to the 

transcriptional stimulation of a set of genes encoding antiviral proteins which inhibit the 

replication ofa wide range ofviruses (12, 14). The transcription ofPML and ofmany NB­

associated proteins (e.g. Daxx and Spl00) is up-regulated by IFN-I (15 , 16). Conversely, 

it was recently proposed that PML is involved in the IFN-I-induced expression of ISGs 

by directly binding their promoter (17). 

The involvement ofPML in antiviral defense mechanisms against several DNA and 

RNA viruses has been extensively studied. PML was shown to restrict a complex 

retrovirus, the human foamy virus, by inhibiting viral gene expression (18). PML deficient 

cells are also more prone to infection with rabies virus (19). Moreover, PML was shown 

to interfere with the replication of poliovirus (20), encephalomyocarditis virus (EMCV) 

(21), herpes simplex virus type-l (HSV-l), adeno-associated virus (AA V) (22), influenza 

virus, and vesicular stomatitis virus (VSV) (23). As a direct consequence, sorne viruses 

su ch as HSV -1 and the human cytomegalovirus have evolved mechanisms to counteract 

PML, either by disrupting PML NBs and/or by inducing PML degradation (24-26). 

The role of PML in HIV -1 infection of human cells is controversial. AS203, a drug 

that induces PML oligomerization and degradation (27), was shown to increase the 
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susceptibility ofhuman cells to N-tropic murine leukemia virus (N-ML V) and HIV -1 (28). 

A recent study proposed that PML was an indirect inhibitor of HIV -1 early post-entry 

infection stages through its association with Daxx, a constitutive partner protein in PML 

NBs (29). However, another group found that the depletion ofPML (but not that of Daxx) 

enhanced HIV -1 infection in human primary fibroblasts , while having no effect in T cell 

lines such as Jurkat (30). PML was also found to regulate HIV -1 latency. Specifically, 

PML degradation or NBs disruption resulted in the activation of HIV -1 provirus 

transcription in a lymphoid model of HIV -1 latency (31), although these results have not 

been independently confirmed. There is consensus, however, on the existence of a PML­

dependent restriction of HIV -1 in MEFs. In these cells, PML inhibits the early post-entry 

stages of infection (32-34) and also promotes the transcriptional silencing of the integrated 

provirus (34). Human PML (hPML) was able to reconstitute both restriction activities in 

MEFs knocked out for the endogenous murine PML (mPML) , in an isoform-specific 

fashion (34). In addition, the inhibition of lentiviruses by IFN-I in MEFs involves PML 

(34). In this study, we investigate the role ofPML in the restriction ofHIV-l and other 

retroviruses in several human cell lines, including T cells and myeloid cells, by gene 

knockout. We also examine the role ofPML in the IFN-induced restriction oflentiviruses 

in human cells. We show that PML is dispensable for the restriction of lentiviruses in 

human cells, is not involved in the IFN-I-mediated inhibition of infection, and is not 

relevant to the inhibition of TRIM5a by AS2Ü3. 

3.5 ResuIts 

CRISPR-Cas9-mediated knockout ofPML in human cells. In order to stably and 

irreversibly deplete PML in human cells, we designed two guide RNAs (gRNAs), hPMLl 

and hPML2, to target the Cas9 nuclease towards exon 2 ofPML (Fig. 1). Exon 2 is present 

in all hPML isoforms, and the algorithm used to design the gRNAs minimizes the risk of 

nonspecific targeting. The plasmid used in this study, pLentiCRISPRv2 (PLCv2), can 

mediate knockouts through transfection and also through lentiviral transduction. 

The control plasmid, pLCv2-CAG, targets the CMV -lE/chicken actinlrabbit beta globin 

hybrid promo ter, a nonhuman sequence (35). We used the Surveyor assay (36) to reveal 
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the presence ofinsertions/deletions (indels) in the PML gene ofHEK293T cells transiently 

transfected with pLCv2-hPMLl or pLCv2-hPML2. We cquld observe the presence of 

PML DNA digestion products of the expected size in cells transfected with each of the 

PML gRNAs but not in cells transfected with the control gRNA (Fig. 3.lA), indicating 

that both PML gRNAs generated double-strand breaks that were repaired by non­

homologous endjoining (NHEJ). To quantify the extent ofDNA damage following stable 

lentiviral transduction of the CRISPR components, we transduced human monocytic 

THP-l cells with the LCv2-hPMLl vector and, as a control, the irrelevant LCv2-CAG 

vector. Cells were treated with puromycin to eliminate non-transduced cells, and 

amplicons of the targeted PML region were then obtained and Sanger sequenced. 

A reference contig alignment of the sequencing plots revealed that a -1 deletion was the 

most prevalent mutation found in LCv2-hPML I-transduced cells, but other types of indels 

were present, as evidenced by the presence of additional peaks at each position (Fig. 3.1 B). 

We further analyzed the sequencing data using the Tracking ofIndels by Decomposition 

(TIDE) method available online (see Methods) (Fig. 3.1 C). Computations using this assay 

showed that at least 96.3% of PML alleles contained an indel at the expected position in 

cells transduced with the hPMLl gRNA. 
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CRISPR-Cas9-mediated genome editing of PML in hum an celllines. 
(A) The Cas9 nuclease was targeted to exon 2 ofthe PML gene (green) by 
two selected gRNAs whose bindingsites are shown in blue (P AM motifs 
are in red). Arrows indicate the positions of the binding sites for the ODNs 
used in the PCR-Surveyor assay (blue arrows for gRNAl-, red arrows for 
gRNA2-guided cut sites). The Surveyor assay is shown in the lower panel. 
Briefly, PCR products amplified from ceIls transfected with pLCv2-
hPMLl , -hPML2, or pLCv2-CAG (Ctrl), were subjected to denaturation, 
re-annealing and digestion with the Surveyor enzyme. Arrowheads indicate 
cleavage products of the expected size. (B) Sanger sequencing analysis of 
PML in cells transduced with LCv2-hPMLl. THP-l cells were transduced 
with lentiviral vectors produced using pLCv2-hPMLl or the control 
pLCv2-CAG. Following puromycin selection, the targeted PML locus was 
PCR-amplified and the PCR product was Sanger sequenced. The figure 
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shows an alignment of the obtained sequence plots. (C) Decomposition of 
sequencing plots by TIDE assay. The graph shows the % of aberrant peaks 
upstream and downstream of the cut site in the sequencing reactions shown 
in panel B. The % of indel-containing alleles was computed by TIDE. 

Knocking out PML in hum an monocytic cells has little to no effect on the 

permissiveness to HIV-l in the presence or absence ofIFN-I. THP-l cells were stably 

transduced with lentiviral vectors produced using pLCv2-hPMLI and pLCv2-hPML2. 

Following puromycin selection, we performed a Western blotting (WB) analysis ofPML 

levels in bulk populations (Fig. 3.2A). The levels of hPML were not sufficiently high to 

be detected in unstimulated cells (not shown), and therefore, the analysis was done using 

cells treated with IFN-~ . In control cells we found several bands corresponding to hPML 

isoforms, as previously reported (2). In the cells transduced with the hPML gRNAs, PML 

was undetectable, showing that knockout was efficient with both gRNAs and affected aIl 

detectable isoforms. This result is consistent with the NHEJ-mediated mutagenesis 

observed in transfected HEK293T cells using both gRNAs shown in Fig. 3.1. As both 

gRNAs showed similar efficiency, aIl the subsequent experiments in this study were only 

performed with one gRNA, hPMLI. We next infected PML knockout (hPMLI gRNA 

transduced) and control cells (CAG transduced) with a single dose of HIV -1 NL-GFP (37), a 

VSV-G-pseudotyped, ~-Envelope HIV-l vector expressing GFP in place of Nef 

(Fig. 3.2B). The percentage of GFP-positive cells following HIV -1 NL-GFP challenge is 

directly proportional to the cells' permissiveness toward infection by this virus. 

This system is thus well-suited to analyze restriction activities taking place during post­

entry steps and until integration. These infections were performed in the presence or 

absence of IFN-~, owing to the reported role of PML in stimulating the transcription of 

ISGs (38). In the absence of IFN-~ , we found that the PML-KO cells were slightly more 

permissive to infection by HIV -1 NL-GFP compared with the control cells (less than 2-fold). 

The addition of IFN-~ very strongly inhibited (>20-fold) the infection of THP-l cells 

(Fig. 3.2B), and the low numbers of infected cells prevented a fine analysis of the role of 

PML in this inhibition. However, the absence ofPML c1early did not prevent IFN-~ from 

inhibiting HIV -1 NL-GFP, showing that PML was dispensable for this activity. 
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In order to obtain a more complete picture of the importance of PML in the 

permissiveness to retroviruses in this immune cellline, we performed additional infections 

with this HIV -1 vector as weIl as with GFP-expressing vectors derived from the macaque 

strain of the simian immunodeficiency virus (SIVmac-GFP), the equine infectious anemia 

virus (ElA V GFP) and the B-tropic murine leukemia virus (B-ML V GFP). ElA V is restricted 

by TRIM5a in human cells (39), making it possible to analyze wh ether PML modulates 

the restriction of retroviruses by this well-characterized restriction factor. Infectivity of 

the three lentiviral vectors (HIV-1 , SIVmac, EIAV) was slightly higher in the absence of 

PML at most virus doses used, whereas infectivity of the B-MLV vector was unaffected 

by PML knockout (Fig. 3.2C). These results suggest that PML has a small, barely 

detectable inhibitory effect on the infection of THP-l cells by lentiviruses and do es not 

modulate TRIM5a activity. Treatment with IFN-p strongly decreased THP-l 

permissiveness to aIl four vectors, preventing us from measuring the -fold decrease in 

infectivity with accuracy (Fig. 3.2C). However, it was clear that IFN-p efficiently 

inhibited infection in the presence or absence of PML, indicating that PML is not crucial 

for the IFN-I-mediated anti-retroviral response. 



A 

hPML{ 

actin 

C 
100 

,..... 
:te c 
'-' 
:!i. 
-; 10 
'" Ob 
.5 
'" ., 
!! 
c. ... .. 
~ 
'" 

0.1 
0.2 

10 
,..... 
:te 
~ ., 
= .. 
'" ~ 
i 
" ,. 
E-... ,. 
~ 

0.1 
3 

Figure 3.2 

92 

B THP-I HIV-l~L-G1'P 
Ctr) gRNAI gRNA2 Ctrl KO 

10' 

1~ 10' 
100 

'" l' L2 10' no d11lg 

~ 100 
11.0% 

10' 

10' 

'" L2 10' +TFN-13 

10' 
,f: 

0.2% .' 0.1% 

100 10' 10' JO' JO' 10' JO' JO' 
OFP OFP 

10 

*Ct.i-DO d."Ug 

.... CtJi+lFN-1l 
v-KO-nodrug 

~-KO+IFN-II 

0.1 
0.4 0.8 1.5 3 6 0.8 1.5 3 6 12 25 

10"-1 ~...GFP (f.I1) SIV ... _cn (f.I1) 

10 

+ Ctrl-no dru: 

.... Ct.·I+1F ' -II 
V-KO-no .h,.: 

~-KO+WN-Il 

A 
/' 

0.1 
6 12 25 50 100 3 6 Il 25 50 100 

ElA V cn' {fil) B-I\1LV CfT (,,1) 

PML knockout has negligible effects on intrinsic or IFN-I-induced 
restriction of retroviruses in THP-l cells. 
(A) WB analysis of THP-1 cells transduced with pLCv2-based vectors 
expressing Cas9 and a gRNA targeting either hPML or CAO. Stably 
transduced, puromycin-resistant cells were treated with IFN -~ (10 ng/ml). 
Cellular lysates were prepared 16 h later and analyzed by WB using 
antibodies against hPML and actin as a loading control. (B) F ACS plots 
from PML-knockout (KO) and control (Ctrl, CAO gRNA-transduced) 
THP-1 cells infected with HIV-1NL-OFP. Control or PML-KO THP-1 
cells were treated with IFN-~ or left untreated and then exposed to 
HIV -1 NL-GFP (10 Ill). 2 d later, cells were analyzed by F ACS and the 
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percentage of infected (GFP-positive) cells observed is indicated on each 
plot. (C) Virus dose-dependent analysis of the role of hPML in the 
intrinsinc and IFN-I-induced restriction ofretroviruses. Control and PML­
KO THP-1 cells were treated with IFN-~ (10 ng/ml) for 16 h, followed by 
infection with increasing doses of retrovirai vectors. The percentage of 
infected cells was assessed 2 d later by F ACS. 

Knocking out PML in human epithelial ceUs has Iittle to no effect on the 

permissiveness to retroviral infections in the presence or absence of IFN -1. We then 

transduced epithelial carcinoma HeLa cells with the CAG or PML gRNAs. PML was 

efficiently knocked out, as seen by WB (Fig.3.3A). We also performed 

immunofluorescence microscopy to analyze the effect of PML knockout on PML and 

SUMO nuclear bodies. A large part (but not all) of SUMO-1 localizes to PML bodies in 

normal conditions (40). As expected, signal corresponding to PML nuclear bodies almost 

completely disappeared from the cells transduced with the PML gRNA (Fig. 3.3B). 

In addition, SUMO-1 punctate nuclear staining was strongly diminished but not abolished 

(Fig. 3.3B). We then challenged the stably transduced cells with GFP-expressing viral 

vectors like we had done in THP-1 cells. We found that susceptibility to HIV-1 , SIVmac, 

ElA V and B-MLV vectors was identical whether PML wa$ present or not (Fig. 3.3C-D). 

IFN-~ inhibited all four viral vectors, although the magnitude ofthis effect (~2- to 3-fold) 

was much smaller than in THP-1 cells. IFN-~ treatments had identical effects in PML­

expressing and PML-knockout cells, again showing that PML does not modulate this 

inhibitory pathway in human cells. 
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Figure 3.3 PML knockout bas no effect on intrinsic or IFN-I-induced restriction 
of retroviruses in HeLa cells. 
(A) HeLa cells lentivirally transduced with pLCv2 vectors expressing 
either the hPML gRNAl or (as a control) the CAO-targeting gRNA were 
treated with IFN-~ (10 ng/ml). Cellular lysates were prepared 16 h later and 
analyzed by WB using an anti-hPML antibody. Actin was analyzed as a 
loading control. (B) IF microscopy analysis of PML bodies in HeLa cells 
transduced with pLCv2-PMLl (PML-KO) or transduced with pLCv2-
CAO as a control (Ctrl). Puromycin-selected cells were stained for PML 
(top) or SUMO-1 (bottom). Nuclei were stained with Hoechst33342. 
(C) F ACS plots from transduced HeLa cells infected with HIV -1 NL-GFP. 
Control and PML-KO HeLa cells treated or not with IFN-~ were infected 
with HIV -1 NL-GFP (6 Ill). The percentage of infected cells determined at 2 d 
post-infection is indicated for each plot. (D) Virus dose-dependent analysis 
of the role of hPML in IFN-I-induced restriction of retroviral infection. 
Control and PML-KO HeLa cells were treated with IFN-~, followed 16 h 
later by infection with increasing doses of the indicated retroviral vectors. 
The percentage of infected cells was assessed 2 d later by F ACS. 

Rhabdomyosarcoma-derived epithelial TE671 cells were similarly knocked out for 

PML by lentiviral transduction, and knockout was efficient (Fig. 3.4A). Similar to what 

we found in HeLa cells, infectivity of the four vectors tested was identical whether PML 

was present or not (Fig. 3.4B). IFN-~ decreased the permissiveness of TE671 cells to 

aIl four vectors, although we noticed that IFN-~ had a relatively smaller effect on 

HIV-1 NL-GFP compared with the three other vectors in TE671 (Fig. 3.4B). The IFN-~­

induced inhibition of the four retro viral vectors in TE671 ceUs was identical whether PML 

was present or not (Fig. 3.4B). 



A 

B 

,.... 
~ e.... .. 
::: .. 
" bI! 
C 0;; 
'" f: 
1:00 .-. .. 
~ 
'" 

--. 
~ e.... 
.!l 
'E 
.~ c 
-;; 
'" f: 
1:00 

'" III 

~ 

'"' '" 

TE671 

Ctr) KO 

bPMLs [If~ 

actinl ~ =::'1 

100 JOO 

10 JO 

..,tf,." 
,IJ 

,.I:f~ 

:!'~ , , 
::.' 

0.1 . 
i 0.1 +---.---r--..-----..--r---. 

0.4 0.8 1.!' 3 6 12 0.4 0.8 1.5 3 6 12 
Hl -1 "'I..Ct"P (fd) SI" .. " .cn> (Jd) 

100 100 

JO 

1 

0.1 
3 6 12 2!' 50 100 3 6 12 25 !'O 100 

EIAV CFP (Jd) B-l\fLVcFP{Jd) 

"'Ctrl-oo dl·ug 
.... Ct ... +IFN-j! 
OKO-oo dl·ug 

~-KO+IFN-Jl 

"'CtI"I-no dl"Ug 

.... Ctrl+IFN-1I 
KO-llodmg 

-KO+IFN-II 

96 

Figure 3.4 PML knockout bas no effect on intrinsic or IFN-I-induced restriction 
of HIV -1 in TE671 cells. 
(A) WB analysis. TE671 cens were stably transduced with pLCv2-based 
vectors expressing Cas9 and either the hPML-targeting gRNAl or the 
CAG-targeting gRNA as a control. The cens were treated with IFN-p 
(lOng/ml) or left untreated as a control. Cellular lysates were prepared 16 h 
later and analyzed by WB using an anti-hPML antibody along with actin 
as a loading control. (B) Infection assay. Control (CAG gRNA-transduced) 
and PML-KO TE671 cens were treated with IFN-p or left untreated. 16 h 
later, the cens were infected with increasing doses of the indicated 
retroviral vectors. The percentage of infected ceils was assessed 2 d later 
byFACS. 
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A knock-in approach to suppress PML in human cells. In order to achieve 

efficient knockout by transient transfection without the need to isolate cellular clones by 

limiting dilution, we constructed a plasmid to serve as donor DNA in homology-directed 

repair (HDR). This plasmid contains two ~800bp-Iong PML homology arms surrounding 

a neomycin resistance cassette (Fig. 3.5A). It is expected that its co-transfection in cells 

along with Cas9 and the hPML gRNA1 would lead to the knock-in of Ne oR in PML 

through HDR in a fraction of the cells. Selection in neomycin then eliminates cells in 

which the knock-in did not occur. Even if not aIl alleles of a given gene are successfully 

modified by knock-in, recent reports indicate that the remaining ones are usually knocked 

out through NHEJ-dependent mechanisms (41). We designed PCR primers for the specific 

amplification of the knock-in product and another pair to amplify the wild-type (WT) or 

the NHEJ-repair knockout alleles (Fig. 3.5A). To validate this system, we co-transfected 

TE671 cells with pLCv2.PML1 and the HDR donor plasmid, and randomly isolated a 

number of neomycin-resistant cell clones of which a representative analysis is shown in 

Fig. 3.5B. The knock-in product was detected as expected in aIl 7 clones while being 

absent in the parental cells. On the other hand, the band corresponding to WT or NHEJ­

repaired alleles was less intense in these clones relative to the parental ceIls, but was 

always present, suggesting that HDR-mediated knockout did not affect aIl the P ML alleles. 
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(A) Schematic of the HDR plasmid and targeting strategy for the knock-in 
of the Neomycin resistance gene at the PML locus_ Two 800 bp-long PML 
homology arms encompass the NeoR expression cassette on plasmid 
pNMs-Neo.HDR-hPML. The arms are complementary to the PML regions 
on either side ofthe gRNAl-mediated Cas9 cleavage site. Co-transfection 
ofpLCv2-hPMLl and pNMs-Neo.HDR-hPML may yield a knock-in allele 
as indicated ifDNA is repaired by HDR. IfDNA is repaired by NHEJ, WT 
or indel-containing alleles may be generated. Yellow and orange arrows 
indicate the binding sites for the primers used to detect knock-in and 
WT/indel alleles by PCR (1 Kbp and 0.3 Kbp products, respectively). 
(B) PCR analysis of Neomycin-resistant TE671 clones. TE671 cells were 
co-transfected with pLCv2-hPMLl and pNMs-Neo.HDR-hPML, then 
grown in presence of neomycin. Individual NeoR clones were analyzed 
using the two primer pairs described in A. 

PML is important for the efficient inhibition ofSIVmac but not mV-l by IFN-I 

in lymphoid cells. We knocked out PML in Jurkat cells using the transfection approach 

that results in the insertion of NeoR in PML, as described above. We performed WB 

analyses to assess knockout efficiency. (Fig. 3.6A). Treatment with the IFN-I species 



99 

IFN-a, IFN-~ and IFN-(() stimulated PML expression in Jurkat ceIls. PML was efficiently 

knocked out (Fig. 6A), validating the HDR-based approach. In the absence ofIFN-~, PML 

had little effect on the infectivity of aIl four vectors «2-fold) (Fig. 3.6B). The effect of 

IFN-~ treatment differed according to the retroviral vector used (Fig. 3.6B). IFN-~ 

treatment decreased HIV-1NL-GFP infectivity by ~3.5-fold in both control and PML-KO 

ceIls. IFN-~ similarly decreased the infectivity of SIV mac-GFP by about 4-fold, but only in 

the control ceIls. In the PML-KO cells, the inhibitory effect of IFN-~ on SIVmac-GFP 

infectivity was smaller «2-fold). Interestingly, we found the opposite situation upon 

challenge with the ElA V GFP vector: IFN-~ treatment had no effect on ElA V GFP infectivity 

in the WT Jurkat cells, whereas it significantly inhibited this vector in PML-KO cells, 

especially at low vector doses. Finally, IFN-~ decreased the infectivity ofB-MLVGFP in 

both WT cells and PML-KO cells, with no apparent specificity. Thus, Jurkat cells 

provided a more complex situation with respect to the importance ofPML in the antiviral 

effects of IFN -~. In order to further study the contrasting phenotypes of the HIV -1 and 

SIVmac vectors in these cells, we also analyzed the effects of IFN-a and IFN-((). 

(Fig. 3.6C). We found that in control cells, aIl three IFN-I species decreased infectivity of 

both the HIV-1 and the SIVmac vectors, by 2- to 4-fold; IFN-~ appearing to be the most 

consistently inhibitory IFN-I in these cells, similar to what we had observed in other cell 

lines (not shown) and to what was reported in the literature (42). In PML-KO cells, 

HIV -1 NL-GFP was inhibited by aU three IFN -1 species, similar to the control cells. 

ln contrast, IFN-I inhibition of SIV mac-GFP was much less efficient in PML-KO cells 

(Fig. 3.6C, bottom right panel). Thus, PML is important for IFN-I to inhibit the early 

infection stages of SIVmac, but not HIV -1 , in Jurkat cells. 



100 

A 
Jurkat no drug +IFN-a +IFN-~ +lFN-ro 

WT KO WT KO WT KO WT KO 

hPMù[1 f !~ 
actin 1----- 1 

B 
10 100 

'"' -$. 
~ 
.!ri 

6. 'i: 10 ... ~ 

OL 
, 

c: # ... ,,~r-nu d'"Ug 
~ 11 , 
E , , ./:;' ,. .. -"'T+IFN-~ 
c. ,t~ b, ' k' O KO-oo d'"Ug ." 

~ 
, , 

~ 
, , 

~-KO+IFN-II 4- , J..' r.. ~ - I! 
~ 

, , , , , 
0.1 0.1 

0.4 0.8 1.5 3 li 12 0.4 0.8 1.5 3 6 12 

HIV-I NL-GFI' (l'Q SIV mn.GF" (pl) 

10 10 

'"' -$. 
0 
'-' 
~ 
'i: ... .. 

"'WT-nodrug i 
E "-WT+IFN-II 
c. O KO-oudrug ." y 

~-KO+WN-II c.. r.. 
~ 

0.1 0.1 
3 6 12 25 50 1110 3 li 12 25 50 100 

ElA V Gt' P bd) B-MLV GFP (Pl) 

C 
10 10 

'"' ~ 
~ ~ 

,+ " I~ J.. = , 
QI 

~' ..a ... ./ " .. 
" ," "'WT-nu d,"Ug .5 '-~' 1 

~ " ; 1 ..... WT+IFN-« 
c. fi' "-;' .. -'''T+IFN-~ ." '.1 ,:'~ .. 

JY;" .. -WT+IFN-1\' ~ .. , 
~ .-.,. .JI' 
" " 

, , 
~ , , 

0.1 0.1 
0.4 0.8 1.5 3 6 12 0.4 0.8 1.5 3 6 12 

10 100 

'"' -$. 
~ 2 
~ 

, , 
6. 10 ... ()' , .. , ' O KO-no d'"Ug -$. 

, , 
'" 0 ' )l .oO-KO+IFN-u 
l ' ' , ' -6-KO+IFN-1I 
'" , Lf CI 

~ fi " <>-KO+IFN-1\' 
~ ,~ 

" ,:, 
0.1 0.1 

0.4 0.8 1.5 3 6 12 0.4 0.8 1.5 3 6 12 

IIIV-INL-GFP (Pl) SI\' _ ... GFF (pd) 



lOI 

Figure 3.6 PML knockout has virus-specifie effects on the restriction of 
retroviruses in Jurkat cells. 
(A) Jurkat cells were co-transfected with pLCv2.hPMLI and pNMs­
Neo.HDR-hPML. Neomycin-resistant cells (KO) and parental 
untransfected cells (WT) were treated with IFN-a, IFN-p or IFN-(O 
(10 ng/ml). Cellular lysates were prepared 16 h later and anaIyzed by WB 
using an anti-hPML antibody. Actin was anaIyzed as a Ioading control. 
(B) Virus dose-dependent analysis of the role ofhPML in the intrinsic and 
IFN-I-induced restriction ofretroviruses. PML-KO and control Jurkat cells 
were treated with IFN-p for 16 h, followed by infection with increasing 
doses of the indicated retro viral vectors. The percentage of infected cells 
was assessed 2 d later by F ACS. (C) PML-KO and control cells were 
challenged with increasing doses of HIV -1 NL-OFP following treatment with 
IFN -a, -p or -(0 for 16 h. The percentage of infected cells was assessed 2 d 
later by F ACS. 

Over-expression of murine or human PML in Jurkat cells does not affect the 

infectivity of an HIV-l vector. Unlike the PML-KO THP-l , HeLa and TE671 cells, the 

PML-KO Jurkat cells generated do not continuously express Cas9 or a PML-targeting 

gRNA. Thus, these cells provided an appropriate model to test wh ether the over­

expression of specific hPML isoforms in a PML-KO background couid inhibit HIV -1 or 

other retroviruses. In other words, this experiment was designed to reveal a possible 

cryptic restriction activity associated with specific PML isoforms that would normally not 

be apparent due to the presence of other isoforms. We retrovirally transduced the isoforms 

1 to VI of hPML into PML-KO Jurkat cells, separately. Because HIV-l is inhibited by 

mPML in MEFs (32-34), we aiso transduced mPML. A WB analysis showed that all six 

isoforms of hPML were expressed, as was mPML isoform 2 (Fig. 3.7A). We then 

challenged the various cell cultures with the HIV -1 , SIVmac, ElA V and B-ML V vectors 

(Fig. 3.7B). We found that none of the PML isoforms had an effect on GFP transduction 

by HIV-INL-OFP. Interestingly, severai hPML isoforms and mPML slightly increased 

permissiveness to SIVmac-GFP, by - 2-fold. Permissiveness to EIAV OFP was overall not 

modulated by over-expression ofhPML or mPML, although a slight increase in infectivity 

was observed in presence of sorne hPML isoforms at the highest virus doses tested. 

Finally, the presence of hPML-VI slightIy inhibited infection by B-ML V OFP at least at 

sorne virus doses used (Fig. 3.7B). Thus, although individual PML isoforms modestly 

modulated the permissiveness to infection by the SIVmac, ElA V and B-ML V vectors in 
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a virus-specific fashion, none of them affected permissiveness to infection by the HIV-1 

vector. 
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Transduction of mPML or hPML isoforms in PML-KO Jurkat cells 
has virus-specifie effects on the permissiveness to retroviral vectors. 
(A) WB analysis of mPML and hPML expression. PML-KO Jurkat cells 
were stably transduced with mPML or with FLAG-tagged hPML-I to -VI 
separately. The empty vector (EV) was transduced as a control. 
Lysates prepared from the different cell populations were analyzed by WB 
with anti-FLAG (left panel) or anti-mPML (right panel) antibodies. Actin 
was probed as loading control. The arrowheads indicate the expected size 
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for each hPML isoform. (B) Susceptibility to transduction by retroviral 
vectors. The cells were infected with multiple doses of the indicated 
retroviral vectors and the percentage of GFP-expressing cells was 
determined 2 d later by F ACS. 

Restriction of N-MLV by TRIM5a and inhibition of TRIM5a by arsenic 

trioxide are independent of PML. lntriguingly, TRIM5a localizes at PML bodies when 

shuttling to the nucleus, as demonstrated by pharmacological treatment interfering with 

its nuclear export (43). The possibility of PML involvement in the inhibition of 

retroviruses by TRIM5a has been envisioned but not proven. The infectivity of the ElA V 

vector used here (which is restricted 5- to 10-fold by human TRIM5a (44)) was not 

significantly affected by knocking out PML (Fig. 3.2-3.4), suggesting that TRIM5a does 

not require PML. In order to increase sensitivity, we used an "N-tropic" strain of MLV, 

which is even more strongly restricted by human TRIM5a (39, 45) than EIAV, and of 

which restriction is counteracted by AS20 3 in a cell context-specific fashion (46, 47). 

Thus, AS20 3 greatly increases the infectivity ofN-MLV but not B-MLV vectors in many 

human cell lines. The mechanism of action of AS20 3 against TRIM5a has not been 

determined but it was thought to involve PML, since AS20 3 is well-known as a specific 

inhibitor ofPML (27, 48). Interestingly, AS20 3 also enhances the infectivity ofHIV-1 in 

human cells, although the magnitude of this effect is mil der than what is found with 

N-MLV (46, 49). We infected HeLa, TE671 and Jurkat cells with HIV -1 NL-GFP, B-MLVGFP 

and N-MLVGFP in the presence of increasing AS20 3 concentrations (Fig. 3.8A). In the 

absence of AS20 3, N-ML V GFP infectivity was barely detectable or undetectable in all three 

cell lines, reflecting the strong inhibition conferred by TRIM5a in human cells. At the 

same virus dose, B-ML V GFP infected 3 % to 5% of the cells. PML knockout had no effect 

on the infectivity of the two ML V vectors, implying that PML is not required for TRIM5a­

mediated restriction ofN-MLV. In presence of AS20 3, N-MLVGFP infectivity was greatly 

enhanced, although the stimulating effect was partly reversed at high AS20 3 

concentrations in HeLa and TE671 cells (Fig. 3.8A). AS20 3 effectiveness at counteracting 

TRIM5a-mediated restrictions was found to decrease at high concentrations in previous 

studies as well (47, 49). In contrast to N-MLVGFP, B-MLVGFP was only slightly enhanced 

by AS20 3. As reported before, AS20 3 modestly increased HIV -1 NL-GFP infection of HeLa 

and TE671 cells, although it had no effect on this vector in Jurkat cells (Fig. 3.8B). 
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Knocking out PML had no detectable effect on the AS20 3-mediated stimulation of 

N-MLVGFP and HIV-1 NL-GFP in the three celllines tested. We perfonned an additional 

infection of the HeLa cells with the N-MLV and B-MLV vectors, this time at a fixed 

AS20 3 concentration and varying virus doses. Again, we observed that (i) PML had no 

effect on the infectivity ofN-ML V GFP and B-ML V GFP, (ii) AS20 3-mediated stimulation of 

N-ML V GFP was significantly stronger than that ofB-ML V GFP, regardless ofthe virus dose, 

and (iii) knocking out PML had no impact on the effect of AS20 3 on the ML V vectors. 

These data demonstrate that PML is not involved in the restriction ofN-ML V by TRIM5a, 

nor is it involved in the mechanism by which AS20 3 stimulates retroviral infections and 

counteracts TRIM5a. 
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PML is irrelevant for the AS203-induced stimulation of retroviral 
infectivity in human cells. 
(A) Effect of AS20 3 on the permissiveness to retro viral vectors in the 
presence or absence ofPML. Control and PML-KO human celllines were 
treated with the indicated amounts of AS20 3 for 15 min prior to infection 
with HIV -1 , B-ML V and N-ML V vectors expressing GFP (B-ML V OFP and 
N-MLV OFP have identical titers in non-restrictive CRFK cat cells). 
The percent age of infected cells was assessed 2 d later by FACS. 
The values represent the means of three independent infections with 
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standard deviations (**P < 0.01, ***p < 0.001, NID not detected). 
(B) Virus dose-dependent infections. Ctrl and PML-KO HeLa cells were 
infected with increasing doses ofB-MLVGFP or N-MLVGFP vectors in the 
presence or not of 4 !lM AS2Ü3. 2 d 1ater, the percentage of infected cells 
was determined with F ACS. 

PML is not required for TRIM5a-mediated restriction of mV-l in MEFs. 

MEFs provide a cellular environment in which PML restricts HIV -1, as seen by several 

laboratories (32-34). In addition, PML also inhibits HIV -1 transcription in MEFs, an effect 

that we did not observe in human cells (34). Thus, it would be conceivable for PML to 

have an impact on TRIM5a-mediated restriction of HIV -1 in this specifie cellular 

environment. To test this hypothesis, we used PML-KO MEFs (34, 52). WT and 

PML-KO MEFs were stably transduced with the HIV -1-restrictive Rhesus macaque 

TRIM5a or the non-restrictive human TRIM5a as a control. The cells were also 

transduced with the C35A RING domain mutant of each TRIM5a ortholog, which 

abolishes the RING domain-associated ubiquitin ligase activity (53). WB analyses showed 

that the transduced TRIM5a variants were expressed at comparable levels (Fig. 3.9A). 

Colocalization of a fraction of TRIM5a with PML NBs was seen in the presence of the 

nuclear export inhibitor leptomycin B, consistent with published data obtained in human 

and canine cells (43), and exposure of the cells to HIV-l did not modify this pattern 

(Fig.3.9B). The cells were then challenged with HIV-INL-GFP or with the relatively 

restriction insensitive SIVmac-GFP as a control (54), using virus doses at which PML has 

only mild effects on transduction by these lentiviral vectors in the absence of TRIM5a 

(34). HIV-l was very strongly restricted by rhTRIM5a in both WT and PML-KO MEF 

cells (Fig. 3.9C). As expected, C35A rhTRIM5a and hTRIM5a (WT or C35A) had little 

to no effect on HIV -1 NL-GFP, although we observed slightly higher levels of HIV-1 

restriction by C35A rhTRIM5 in the presence of PML, perhaps suggesting that the 

presence of PML could partially compensate for the loss of a functional TRIM5a RING 

domain. SIVmac-GFP was moderately restricted by rhTRIM5a, and PML knockout did 

not affect this inhibitory effect (in fact, restriction was slightly greater in the absence of 

PML) (Fig. 3.9C). In conclusion, PML is not required for rhTRIM5a to restrict HIV-l. 
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Figure 3.9 PML is not required for the TRIM5a-mediated restriction of mV-l 
in MEFs. 
(A) WB analysis ofWT and mutant TRIM5a. MEFs were transduced with 
retroviral vectors expressing WT and C35A variants of FLAG-tagged 
rhTRIM5a and hTRIM5a. Following puromycin selection, cell lysates 
were prepared from the various cell populations transduced with the 
indicated vectors or transduced with the empty vector (EV) as a control. 
TRIM5a was detected using an antibody against FLAG, with actin used as 
a loading control. (B) Immunofluorescence staining of mPML and 
rhTRIM5a in WT MEFs stably transduced with FLAG-tagged rhTRIM5a. 
The cells were treated with either LMB (20 ng/ml) or PBS as a control, 
3 h prior to infection with HIV -1 NL-GFP at a viral dose leading to 
approximately 10% infected cells. 6 h later, the cells were analyzed by 
immunofluorescence microscopy using anti-FLAG (red) and anti-mPML 
(green) antibodies. Nuclear DNA was stained using Hoechst 33342 (blue). 
Images are representative of multiple observations. Scale bar, 5 !lm. 
(C) rhTRIM5a restricts HIV-l in the presence or absence of PML. 
PML-KO or WT MEFs stably transduced with rhTRIM5a or huTRIM5a 
(WT or C35A mutant) were infected with HIV-INL-GFP or SIVmac-GFP, 
using virus amounts leading to infection of about 10% of the parental cells. 
2 d later, the percentage of infected cells was measured by F ACS. 
The values represent the me ans of three independent infections with 
standard deviations. 

3.6 Discussion 

Whether PML has an impact or not on the infection of human cells by HIV -1 has 

been an open question for over 15 years. Trono and colleagues reported that PML is 

transiently exported in the cytoplasm following exposure to HIV -1 and co-Iocalizes with 

the incoming virus in HeLa cells (55); however, this study did not include functional 

evidence for the involvement of PML in HIV -1 infection. Another team found no effect 

ofHIV -1 infection on the distribution ofPML bodies (56). AS203, a known PML inhibitor, 

was found to enhance the infection of human cells with HIV -1 (46, 55) but it also 

stimulated the infection of MEFs with HIV -1 vectors whether PML was present or not 

(46). Interest for PML as a modulator of HIV -1 infection surfaced again in recent years, 

as it was proposed to act as an HIV-l restriction factor in mouse and human cells (33). 

However, the data gathered so far by three different teams, including this study, suggest 

that the restriction activity in human ceIls, if it exists, is cell type-specific. Dutrieux and 

colleagues, using shRNAs, observed a modest inhibition of HIV -1 vector transduction 
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conferred by PML in HeLa cells «2-fold). They also observed a small delay in HIV-l 

propagation in peripheral blood mononuclear cells, but the decrease in infectivity was not 

quantified (33). We previously observed that knocking down PML in T-lymphoid Sup-Tl 

cells increases HIV-l infectivity by 2- to 4-fold (34). On the other hand, Kahle and 

colleagues saw no effect of knocking down PML on the infectivity of an HIV -1 vector in 

T lymphoid cell lines including CEM, HuT78, Jurkat and Molt4 (32). They showed, 

however, that PML reduces HIV -1 infectivity in human foreskin fibroblasts by 2- to 3-

fold (32). Taken together, those previous papers showed that knocking down PML has 

either no effect or modest effects on HIV -1 infectivity in human cells. We were not able 

to efficiently knock out PML in Sup-Tl cells, preventing us from drawing comparisons 

with our previous knockdown results. However, our knockout experiments in Jurkat, 

THP-l, HeLa and TE671 are not consistent with PML being an HIV-l restriction factor 

in human cells. 

A recent study by Kim and Ahn (38) uncovered an additional function for PML in 

human skin fibroblasts: the stimulation of ISG expression through a direct association 

with their promoter. Accordingly, we previously showed that PML was important for the 

efficient inhibition ofHIV-l by IFN-I in MEF cells (34). Although HIV-l is also readily 

inhibited by IFN-I in a variety ofhuman cell types, as illustrated in our study, we find that 

this effect is not affected by knocking out PML. However, we cannot exclude the 

possibility that PML is involved in regulating IFN-I-dependent transcription in specific 

cellular contexts su ch as skin fibroblasts (38). It is also possible that PML stimulates the 

transcription of sorne ISGs but not others. In support of this idea is our observation that 

SIVmac inhibition by IFN-I in Jurkat cells was significantly greater in the presence of 

PML. SIVmac, but not HIV-l, is inhibited by an unidentified restriction factor in Jurkat 

cells and other T cells, provisionally called Lv4 (51). It is conceivable that the gene 

encoding Lv4 is specifically stimulated by IFN-I in a PML-dependent fashion in Jurkat 

cells. This characteristic could be exploited to identify this gene, similar to the strategy 

that led to the identification of Tetherin as a retroviral restriction factor (57). 
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In our previous study (34), we showed that PML inhibited HIV -1 transcription in 

MEFs but not in Sup-T1 cells and in an IFN-I-independent fashion. We analyzed GFP 

mean fluorescence intensity in all our experiments for this study, as a surrogate for HIV-1 

gene expression levels. Consistent with our previous findings, we observed no effect of 

PML on the GFP fluorescence intensity following infection of THP-1 , Jurkat, HeLa or 

TE671 cells with our various vectors (not shown). We conclude that PML does not repress 

HIV -1 transcription in human cells. This apparently contradicts a report by Giacca and 

colleagues that PML inhibits HIV -1 transcription by directly binding the viral promoter 

(31). However, the latter study was based on the use of "J-Lat" clones, which are Jurkat 

cells in which the HIV -1 provirus has become constitutively repressed through unknown 

mechanisms (58). We propose that PML may be involved in the rare silencing events 

leading to HIV -1 latency in Jurkat cells, and that PML is important for the maintenance 

of silencing; however, PML is not a ubiquitous silencer of HIV -1 transcription. 

Finally, our study shows that the AS20 3-mediated stimulation of early retroviral 

infection stages is completely independent of PML, and so is the inhibition of TRIM5a 

by this drug. Our experimental system was tailored to study the effect of AS20 3 on 

restriction by TRIM5a, and we cannot exclude that PML might be involved in other 

restriction activities known to be counteracted by AS20 3 (50, 51). It is not entirely 

surprising that AS20 3 inhibits TRIM5a in the absence of PML, considering that TRIM5a 

could target N-MLV in human cells, and HIV-l in MEF cells, in the absence ofPML. 

However, these results challenge conclusions from another paper that used radioactively 

or chemically labelled arsenate compounds to show that PML was the main target for this 

group of pharmacological agents (27). How, then, does AS20 3 counteract TRIM5a and, to 

a lesser extent, stimulate HIV -1 and B-ML V vectors in human cells? Perhaps addressing 

this long-unanswered question will be helped by an observation that pre-dated the 

isolation of TRIM5a. Indeed, PK11195, a compound which, like AS203, affects 

mitochondrial functions, also counteracts TRIM5a (49). Strikingly, these two drugs 

enhance autophagy (59, 60), an outcome possibly related to their effect on mitochondria. 

It is possible that AS20 3-induced autophagy accelerates the lysosomal degradation of 

TRIM5a and other cytoplasmic restriction factors. 
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3.7 Materials and methods 

Cell culture. Jurkat and THP-l cells were maintained in RPMI 1640 medium 

(HyClone, Thermo Scientific, USA). Human embryonic kidney (HEK) 293T, HeLa, MEF 

and TE671 cells were maintained in Dulbecco ' s modified Eagle ' s medium (DMEM; 

HyClone). AlI culture media were supplemented with 10% fetal bovine serum (FBS) and 

penicillinlstreptomycin (HyClone). 

Plasmids and preparation of retroviral vectors. The pMIP retroviral vector 

plasmids containing individual isoforms ofhPML (pMIP-hPML-I to VI) and the isoform 

2 ofrnPML (pMIP-mPML) have been described in details in a recent publication (34) and 

make use of materials generously provided by Roger D. Everett (60). Retroviral vectors 

were prepared by co-transfection of 293T celIs with pMIP-m(h)PMLs together with 

pMD-G and pCL-Eco using polyethylenirnine (PEI; Polyscience, Niles, IL) as detailed 

previously (34). Virus-containing supematants were collected 2 d later, c1arified by low­

speed centrifugation and kept at -80 oC. 

To produce GFP-expressing retroviral vectors, 293T cells were seeded in 10 cm 

culture dishes and transiently co-transfected with the folIowing plasmids: pMD-G, 

pCNCG and pCIG3-B or pCIG3-N to pro duce B-ML V GFP and N-ML V GFP, respectively; 

pMD-G and pHIV -1 NL-GFP to pro duce HIV -1 NL-GFP; pMD-G and pSIV mac239-GFP to produce 

SIVmac-GFP; or pONY3.1 , pONY8.0 and pMD-G to produce EIAV GFP (see (34, 61) and 

references therein). 

Design of gRNAs and transduction of lentiviral CRISPR-Cas9 vectors. 

The lentiviral expression vector plentiCRISPRv2 (PLCv2) was a gift from Feng Zhang 

(Addgene plasmid # 52961) and can be used to simultaneously express a gRNA, Cas9 

nuc1ease, and puromycin resistance, either by transfection or lentiviral transduction (62). 

Two gRNAs (hPML1 and hPML2) targeting hPML (NG_029036) were designed 

using the Zhang lab online software available at crispr.mit.edu. The sequences 

targeted are 5'CAATCTGCCGGTACACCGAC (hPML1) and 

5'CACCGGGAACTCCTCCTCCGAAGCG (hPML2). A gRNA targeting the CAG 
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hybrid promoter (target: 5'GTTCCGCGTTACATAACTTA) was used as a negative 

control (35). The oligodeoxynucleotides (ODNs) needed for the generation of pLCv2-

based constructs were designed according to the Zhang lab protocol (62, 63) and are 

shown in Table A.2. 

The lentiviral vectors were prepared by co-transfection of 293T cells with 10 !-tg of 

the pientiCRISPRv2 construct together with 5 !-tg ofpMD-G and 10 !-tg ofp~R8.9 (64). 

The viral supematants were collected at 1.5 or 2 d post-transfection and used to transduce 

various cell lines. Stably transduced cells were selected by addition of 0.5 !-tg/ml 

puromycin (Thermo Fisher Scientific) to the medium at 2 d post-infection and for 5 d. 

Control untransduced cells were killed under these conditions. 

Surveyor nuclease assay. To evaluate on-target modifications (indels) in hPML, 

a surveyor nuclease assay was performed. 293T cells were transfected with either 

plentiCRISPRv2-hPML1 , -hPML2 or -CAG using PEI. 3 d later, the genomic DNA was 

extracted from the transfected cells using the QlAamp DNA mini kit (Qiagen, CA, USA). 

Two pairs of primers were designed to amplify 637 bp and 725 bp fragments on either 

side ofCas9 targets guided by gPMLl and gPML2 respectively (Fig. lA). The sequences 

ofthese ODNs are included in Table A.2. PCR amplicons were heat-denatured at 95 oC, 

and re-annealed by slow cooling to promote formation of dsDNA heteroduplexes. 

The heteroduplexes were then cleaved by surveyor nuclease S (Integrated DNA 

Technologies, Coralville, lA), according to the manufacturer' s instructions. Digestion 

products were visualized by agarose gel electrophoresis. 

Construction of the homology directed repair (HDR) plasmid and generation 

of PML-KO Jurkat cells. We used pcDNA3.1 + as the backbone plasmid to prepare a 

HDR "donor" plasmid containing a neomycin selection gene (NeoR
). First, the backbone 

plasmid was cut with BarnHl and BglII, then self-ligated in order to remove the 

cytomegalovirus promoter from upstream of the multicloning site MCS 1. Next, two 

ODNs were designed to introduce the second MCS (MCS2) (see Table A.2); these ODNs 

were annealed, and th~ resulting duplex ligated into the Pcil cut site of the plasmid, 
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downstream of NeoR
, yielding pNMs-Neo.HDR. To construct the PML HDR plasmid, 

homology arms corresponding to 800 bp-Iong regions immediately upstream and 

downstream of the hPML gRNA1-mediated Cas9 cut site in hPML were designed. 

The arms were amplified by PCR from genomic DNA extracted from 293T cells using 

the QIAamp DNA mini kit (Qiagen). The sequences of ODNs used in the PCR reactions 

are provided in Table A.2. The S' arm was cloned into MCS1 ofpNMs-Neo.HDR which 

had been cut with Not! and XbaI. The plasmid was then cut with Mfe 1 and Sbf 1 in order 

to clone the 3' arm into MCS2, yielding pNMs-Neo.HDR-hPML. 

Jurkat cells (300,000) were electroporated with 1.5 Ilg of pNMs-Neo.HDR-hPML 

together with 1.5 Ilg of pLCv2-hPML1 using an MP-100 microporator (Digital Bio 

Technology) according to the manufacturer's instructions. The parameters were 1300 V, 

2 pulses, 20 ms. 48 h later, cells were placed in medium containing 1 mg/ml G418, and 

selection was carried out for 7 d. 

Antibodies and WB analyses. Cells (1 x 106
) were lysed at 4°C in RIPA lysis 

buffer (1 % NP40, 0.5% deoxycholate, 0.1 % SDS, 150 mM NaCI, 50 mM Tris-HCl 

pH 8.0). The lysates were subjected to SDS-polyacrylamide gel electrophoresis, followed 

by WB analysis using mouse anti-mPML mAb (36-1-104, Enzo life sciences, NY), rabbit 

polyclonal anti-hPML (A301-167A, Bethyl Laboratories, TX), rabbit polyclonal anti­

FLAG (Cell Signaling, MA, USA), or mouse anti-~-actin antibody (Sigma, MI). 

Viral challenges and flow cytometric analysis. Cells were seeded into 24-well 

plates at 3 x 104 cells/well and infected the following day with GFP-expressing retroviral 

vectors. HeLa and TE671 cells were trypsinized at 2 d post-infection and fixed in 3% 

formaldehyde (Fisher Scientific, MA, USA). The percentage of GFP-positive cells was 

then determined by analyzing 1 x 104 to 5 x 104 cells on a FC500 MPL cytometer 

(Beckman Coulter, CA, USA) using the CXP Software (Beckman Coulter). 

Pharmacological treatments. A 0.1 M stock solution of AS20 3 (Sigma) was 

prepared in 1 N NaOH, as previously described (28), and diluted in the culture medium 
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immediately before use. Cells were treated for 15 min prior to infection. 16 h post­

infection, the supematants were replaced with fresh medium devoid of drug. Recombinant 

human IFN-a was obtained from Shenandoah biotechnology (Warwick, PA). 

Recombinant human IFN-~ and iFN-ro were obtained from PeproTech (Rocky Hill, NJ). 

IFN -l was added to cell cultures 16 h prior to infection and at a final concentration of 

10 ng/ml. 

Immunofluorescence microscopy. HeLa or MEF cells were seeded on glass 

coverslips placed in 3.5-cm wells. MEFs were treated with LMB (20 ng/ml) 3 h prior to 

infection then infected for 6 h with HIV -1 NL-GFP. The cells were permeabilized and fixed 

for 10 min in Triton X-I00/4% formaldehyde at room temperature (RT), followed by 

4 washes with PBS. Cells were then treated with 10% goat serum (Sigma) for 30 min at 

RT followed by 4 h of incubation with antibodies against FLAG (Sigma, 1: 150), hPML 

(Bethyl Laboratories, 1: 150) or rnPML (Enzo Life Sciences, 1: 150) in 10% goat serum at 

RT. They were then washed 4 times with PBS and fluorescently stained with Alexa Fluor 

488-conjugated goat anti-mouse or 594-conjugated goat anti-rabbit (Molecular Probes, 

Eugene, OR) diluted 1:100 in 10% goat serum for 1 h at RT. The cells were then washed 

4 times with PBS before mounting in Vectashield (Vector Laboratories, Peterborough, 

UK). Hoechst 33342 (0.8 ~g/ml; Molecular Probes) was added along with the penultimate 

PBS wash to reveal DNA. Images were acquired on an AxioObserver Microscope (Carl 

Zeiss Canada, Toronto, ON) equipped with the Apotome module. 
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Chapter IV contains a discussion of the results achieved in Chapters II and III. 

In this chapter, new directions and perspectives of the studies are described as weIl. 



CHAPTERIV 

CONCLUSIONS 

4.1 PML (TRIM19): involvement in the antiviral state against lentiviruses 

To decipher the role of PML in the repli cation of HIV -1 , we performed the study in 

two models, mouse and human cells. In the study presented in chapter II, we focused most 

of our attention on mouse cells and found that MEFs had a drastically reduced 

susceptibility to infection with lentiviruses in the absence of PML. The PML-mediated 

restriction occurred at two distinct phases; the first block was at early post-entry steps of 

infection, while the second block occurred at the level of post-integration transcription 

demonstrating that PML is involved in gene silencing of HIV -1 as weIl. We found that 

PML inhibits lentiviral infection independently of IFNs; however, PML is involved in 

IFN-induced restriction pathways in MEFs. In chapter III, we focused on the role ofPML 

in human cells. Fully PML-deficient human cell lines were generated and the impact of 

PML on lentiviral infectivity was assessed. We found that PML had little or no effect on 

infectivity of lentiviruses inc1uding HIV -1 in human cells. Taken together, our results 

indicate a cell context-dependent isoform-specific anti-retroviral activity ofPML that was 

not specific to HIV -1. 

4.1.1 PML is involved in the pre-integration restriction of lentiviruses 

Mouse cells have been used widely as a model to study infection by human viruses 

inc1uding HIV -1 (Chelbi-Alix et al. 1998; Regad et al. 2001 ; Baumann et al. 2004; Becker 

et al. 2004; El McHichi et al. 2010; El Asrni et al. 2014; Dutrieux et al. 2015; Kahle et al. 

2015). Moreover, they are frequently used to study the physiological consequences of 

selective gene ablations. To study the potential role ofPML in lentiviral infection, we first 

used PML-KO MEFs (see Annex A for more information about these ceIls) . The cells 

were infected with pseudotyped lentiviruses encoding GFP as a marker of viral infection 
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and gene expreSSIOn. We found that MEFs were more permissive to infection with 

lentiviruses in the absence of PML, providing evidence of the involvement of PML in 

mediating intrinsic immunity against lentiviruses. The block was at the reverse 

transcription step, before integration of the viral DNA into the host genome. The early 

post-entry block to HIV -1 was reported in mouse cells a long time ago (Hofmann et al. 

1999; Bieniasz & Cullen 2000). Here, our findings indicate that PML is required for this 

block to HIV-l and two other lentiviruses, SIVmac and EIAV. 

There are only two isoforms of mPML and the one we isolated and overexpressed 

in MEFs was isoform 2. By contrast, seven isoforms have been characterized in human 

cells. Six isoforms (1-VI) localize in the nucleus and participate in NB, while hPML-VII 

is cytoplasmic. To determine whether hPMLs were also involved in restriction, we 

overexpressed hPML-I to VI in PML-KO cells individually. Our results suggest that PML­

mediated restriction of HIV -1 is isoform-specific with hPML-l, II, IV, and VI being 

the most restrictive isoforms. PML-III had no restriction activity (Fig.2.7B). 

Our immunofluorescence microscopy showed that the NBs formed by PML-III were 

sm aller in size and number than the other isoforms (Fig. 2.7). That might influence the 

possible role ofthis isoform in restriction activity. One of the shared hallmarks ofmouse 

and human PML-mediated resistance to lentiviruses in MEFs was that the block is most 

evident at low doses and it was saturable at high doses of the viruses, ev en in the presence 

of excessive PML. This abrogation of restriction is consistent with a model in which PML 

is not the direct antiviral mediator; however, the effector is reliant on PML and limited in 

concentration. Although, up-regulation of PML by exogenous expression or IFN 

treatment was shown to restrict replication of several RNA viruses including VSV, 

influenza virus, and HFV (Chelbi-Alix et al. 1998; Regad et al. 2001). Our hPML 

overexpression results in MEFs can also help to find the antiviral effector, since the NB 

formed by each isoform employs specific associated proteins. For example, the tumor 

protein p53 is activated when it co-Iocalizes with NBs including PML-IV (lvanschitz et 

al. 2015). 
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4.1.2 PML contributes to IFN-induced anti-IDV response, however the PML­
mediated early block to HIV-l is IFN-independent 

PML and sorne other NB associated proteins such as Daxx and Sp 100 are ISGs. 

We also found that infection with retroviruses caused a significant increase in the 

expression of PML (Fig. 2.6A). Regarding these observations, a suggested downstream 

effector would be an IFN-induced restriction factor so that its activity was dependent on 

the presence ofPML. To address this suggestion, the IFN-induced signaling in PML-KO 

and WT MEFs was prevented prior to infection with HIV -1 using a blocking antibody 

against the IFN -a/~ receptor. HIV -1 was still restricted in WT ceIls in the absence oflFN­

induced signaling and it was saturable at high dose of the virus that reveals the IFN­

induced pathway mediators are not incorporated in the PML-mediated early block to 

HIV -1 (Fig. 2.6C). This indicated that PML positively regulates type 1 interferon response 

by promoting transcription of ISGs through increasing the level of activated ST A Tl and 

STAT2, two signal transducers and activators of transcription in IFN -induced pathway 

(Kim & Ahn 2015). We also showed that PML plays a role in innate immunity, so that the 

IFN-induced antiviral response against HIV -1 is more efficient in the presence of PML in 

MEFs (Fig. 2.6D). 

4.1.3 Does restriction take place in the nucleus or the cytoplasm? 

A rapid but transiently cytoplasmic relocalization ofPML early after infection with 

HIV -1 (TureIli et al. 2001; Dutrieux et al. 2015; Kahle et al. 2015) suggested that PML 

likely intervenes with retroviral infection in the cytoplasm, while PML is mainly a nuclear 

prote in. AdditionaIly, our quantitative analysis ofviral cDNA 6 h after infection ofMEFs 

with HIV -1 revealed that PML inhibits the retroviral reverse transcription step (Fig. 2.2B) 

which occurs in the cytoplasm. Our hPML overexpression results provided further insights 

into the site of the restriction. PML-I is the most abundant and the longest isoform and 

harbors nuclear export signal (NES) at its C-terminal domain in addition to a NLS. 

That allows shuttling of aIl isoforms between the two cellular compartments, nucleus and 

cytoplasm, through heterodimer formation (Condemine et al. 2006). Since we 

overexpressed the hPML isoforms individuaIly in PML-KO MEFs, formation of 
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heterodimers was not possible and thus the most restrictive isoforms (PML-II, IV, and VI) 

were all located in the nucleus (Fig. 2.7B). This observation indicates that the nuclear 

localization of PML is adequate for restricting HIV -1 and is consistent with a model 

whereby PML inhibits lentiviruses through a downstream effector which directly interacts 

with the incoming retrovirus in the cytoplasm. However, the reasons why PML localizes 

to the cytoplasm early after infection with HIV -1 and the identity and the viral target for 

the putative effector remain to be determined. 

4.1.4 PML is involved in mv -1 gene silencing 

In the present study, we employed a pseudotyped GFP-expressing HIV-l in which 

the reporter gene was under the control ofWT LTR promoter. Thus, the intensity ofGFP 

expression (MFI) in the infected cells was an indicator of viral gene expression levels. 

To measure only the level of expression of the integrated GFP reporter gene, the MFI was 

monitored on day 10 after infection. We found that PML induced a strong gene silencing 

of HIV -1 in WT MEFs that was not observed in PML-KO cells. In contrast to the pre­

integration restriction, the PML-mediated repression of gene expression was not enhanced 

by IFN treatment in MEFs (Fig. 2.6B), demonstrating that the reverse transcription 

inhibition and the gene silencing were exerted by two different mechanisms which both 

employ PML. 

HDACs regulate HIV latency directly by inducing histone deacetylation at HIV 

integrated sites. SAHA is a member of the hydroxamic acid class of HDACis, shown to 

induce spatial redistribution of PML NBs in J-Lat clones, a human T cell line latently 

infected with HIV-l (Fig. 4.1), and resulted in strong activation of viral gene expression 

(Lusic et al. 2013). We used SAHA to further analyze the role ofPML in HIV-l gene 

silencing. We found a significant increase in the level of viral capsid protein upon 

treatment with SAHA in WT MEFs, which was comparable to PML-KO cells (Fig. 2.5D). 

Further quantitative analysis using RT-PCR revealed that PML suppresses the viral 

transcription step. It was aIready shown that the level of infectious HIV -1 is dramatically 

reduced due to low viral transcription in mouse cells, even in the presence of the 
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transcription enhancer hCyclin Tl (Zhang et al. 2008). Here, our findings shed light on 

this inhibition. We also observed a slight SAHA-induced up-regulation of GFP 

transcription in PML-KO cells that was probably related to global gene expression 

changes upon treatment with HDACis (Shirakawa et al. 2013). We also found that hPML 

has a similar inhibitory effect on HIV -1 transcription when individual hPML isoforms 

were overexpressed in PML-KO MEFs, suggesting that both mouse and human PML play 

a role in the establishment and/or maintenance ofHIV-1 latency. 

Figure 4.1 
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Regulation of HIV latency by proximity to PML NBs. 
During latency, PML is located close to the HIV provirus and recruits the 
methyltransfrase G9a to the HIV promoter, leading to dimethylation of 
histone and transcriptional silencing. Upon inducing PML degradation 
with SAHA, AS20 3, and TPA (a phorbol ester), the HIV provirus is 
relocated away from PML NB and transcription is reactivated (Ott & 
Verdin 2013). 

PML inhibits HFV gene expression by complexing the viral transactivator, Tas, and 

prevents its direct binding to the pro viral DNA (Regad et al. 2001). To determine ifPML 

had a same function on the HIV -1 transactivator protein Tat, we infected WT and PML­

KO MEFs with a different pseudotyped virus, HIV-1 cMv-GFP, that was bearing mutations 

in L TRs and the marker GFP was under the control of CMV promoter (Fig. A.3). 

PML was still able to suppress HIV -1 gene expression, demonstrating that the restriction 

mechanism was not through the viral Tat protein. This finding provides more evidence for 
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the suggested model by Lusic and colleagues in which spatial intervention between PML 

NB and the proviral chromatin results in viral gene silencing (Fig. 4.1). We found this 

intervention is isoform-specific and ceIl context-dependent. 

4.1.5 Future experiments 

The mechanism of the early PML-dependent block to lentiviruses in murine cells 

remains unclear.1t is thought that PML indirectly, likely through a partner protein, inhibits 

viral reverse transcription. This may occur through interaction with a viral or cellular 

prote in that modulates reverse transcription and/or PIC formation. Thus, this putative 

effector must be able to shuttle between nucleus and cytoplasm. Other major components 

of PML NBs, such as Daxx and Sp 100, also exhibit antiviral activity through unknown 

mechanisms. Recently, cytoplasmic Daxx was reported to be involved in the inhibition of 

HIV -1 in both mouse and human cells (Dutrieux et al. 2015). Daxx locates in the vicinity 

of incoming HIV -1 capsid in the cytoplasm and inhibits reverse transcription. However, 

these findings were contradicted by another group shortly after publishing (Kahle et al. 

2015). Yet, there is no study that investigates the role of PML NB associated proteins in 

details. Thus, murine Daxx or Sp 100 are interesting candidates for the reverse­

transcription block. Depletion of these proteins alone and/or in combination with mPML 

using shRNA, may give us more conclusive answers to how PML interferes with incoming 

lentiviruses early after infection with HIV -1. A knockout approach in MEFs would be also 

important to address more completely the role of associated proteins in the restriction 

activity against HIV -1. 

PML is typically found concentrated in NBs. PML needs to be SUMOylated in order 

to localize in the NB. However, a fraction of unmodified PML is associated with the 

soluble nucleoplasmic phase (Muller et al. 1998). Interestingly, both forms of PML have 

been found to interfere with viral infections. For example, the PML-mediated restriction 

of HFV transcription does not necessitate PML localization in NBs (Regad et al. 2001). 

On the other hand, HCMV disrupts PML NBs at early stages of infection to promote its 

replication. The disruption is mediated by the viral prote in lEI (Ahn & Hayward 2000). 
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Whether localization in NB is necessary for PML to restrict lentiviruses is not clear yet. 

To answer this question, a PML mutant that can no longer be modified by SUMO-1 and 

forms aberrant aggregates will be helpful when transduced into PML-KO cells. 

The mutations should be introduced in SUMOylation sites as weIl as in the SIM. 

Altematively, expression of HCMV protein lEI in WT cells leads to disruption ofNBs 

without degradation ofPML. The latter method benefits from the presence ofWT protein, 

which provides a situation with less modifications in the protein structure. 

Due to lack of NLS, PML-VII is purely cytoplasmic and does not incorporate in 

NBs. The only unveiled function for PML-VII is as a critical regulator of transforming 

growth factor beta (TGF-beta), a cytokine which controls turnor suppressive functions 

(Lin et al. 2004). To date, no restriction activity or immune function has been reported for 

this isoform. Therefore, it would be of interest to overexpress this isoform of hPMLs in 

PML-KO cells as weIl and to investigate its role in intrinsic immunity against lentiviruses. 

Finally, in order to further analyze whether the PML-mediated early block to 

lentivirus infection occurs in the cytoplasm or nucleus, it would be informative to express 

NLS deficient mutants of PML in PML-KO cells and assess the restriction activity. 

4.2 The PML-mediated restriction of lentiviruses is cell context-dependent 

In humans, the role of PML in the lentiviral replication has been controversially 

discussed for over 15 years. A possible connection between HIV -1 repli cation and PML 

stems from an early report proposing that incoming HIV -1 PICs trigger cytoplasmic 

export of PML in HeLa cells and suggesting that the efficiency of HIV -1 transduction 

increases in the presence of arsenic trioxide, a potent inhibitor of PML (Turelli et al. 

2001). Recently, Dutrieux and colleagues found a modest increase in HIV-l vector 

transduction upon depletion of PML in HeLa and peripheral blood mononuclear cells 

using shRNAs (Dutrieux et al. 2015). Shortly after, PML was shown to interfere with 

HIV -1 replication only in primary human fibroblasts but PML knockdown had no effect 

in myeloid and T cells (Kahle et al. 2015). Taken together, these studies showed that 
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knocking down PML has either no effect or a modest effect on HIV -1 replication in human 

cells. We investigated the effect of PML on lentiviral replication in several human cell 

lines including T cells using two approaches; shRNA-based knock down and for the first 

time, PML knockout. Consistently, our preliminary results showed that knockdown of 

PML in SupT1 cells resulted in a moderate increase in infectivity ofHIV -1 and the related 

lentivirus, SIVmac (Fig. 2.1). The modest effect could be due to incomplete depletion of 

PML by shRNAs that was still adequate to prevent the infection. Thus, to generate a fully 

PML-deficient human celllines, we aimed to knockout both alleles ofhPML using a new 

tool based on a bacterial immune system termed CRISPR-Cas9. Following its initial 

demonstration in 2012 (Jinek et al. 2012), the CRISPR-Cas9 system has been widely 

adopted to target genes in many cell lines and organisms, including human (Mali et al. 

2013). Interestingly, this genome editing tool has been also used to excise the HIV-1 

provirus from the cellular genome by targeting integrated HIV -1 L TR in human cells 

(Ebina et al. 2013). Moreover, CRISPR-Cas9 complex has been used to deactivate HIV-1 

pro viral DNA by mutating rev DNA in latently infected Jurkat cells (Zhu et al. 2015). 

The CRISPR-Cas9 system is able to mediate site-specific DSBs, which can be repaired 

through either NHEJ or HDR. Editing by HDR is inefficient and can be corrupted by 

additional indels (Inui et al. 2014). Herein, we developed an HDR plasmid that provides 

a specific DNA repair template for a DSB. When co-transfected with the CRISPR-Cas9 

plasmid, the HDR plasmid results in the incorporation of a NeoR gene at Cas9-induced 

DNA cleavage sites. Using this technique, we successfully knocked out all PML alleles 

in HeLa, TE671 , THP-1 , and Jurkat. Unfortunately, our efforts to knockout PML in SupT1 

were not successful, preventing us to generate a side by side comparison with our early 

knockdown data in this cellline. However, our data gained from knockout PML in other 

celllines demonstrated that PML has no effect on the replication of HIV -1 in human cells. 

Yet, ElA V was slightly inhibited by PML in Jurkat cells. Additional experiments revealed 

that PML-IV and -VI were involved in the restriction activity. Interestingly, 

overexpression of mPML had no effect on HIV -1 in Jurkat. This observation is also 

consistent with a model in which PML is not the direct mediator and thus its activity is 

dependent on factors specific to the ce]] line in which PML is expressed. 
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4.2.1 Future experiments 

As anti-HIV activity ofPML was found to be dependent on the cell context in which 

the protein is expressed, manipulation of other proteins known to interact with PML, such 

as Daxx and Sp 100, should be considered as well in human cells. One suggestion is 

knocking out Daxx and/or Sp100 in human cells using the same system which was used 

in this study to knockout PML followed by overexpression of murine Daxx or Sp100. 

It would be of interest to find how these murine PML NB associated pro teins change the 

restriction activity of human cells against lentiviruses. 

4.3 AS203-mediated stimulation of retroviral infection is independent of PML 

TRIM5a inhibits N-MLV in human cells (Hatziioannou et al. 2004; Yap et al. 2004) 

and AS203 abrogates this inhibition by modulating TRIM5a (Berthoux et al. 2003). AS203 

was also found to directly bind PML and induce its degradation by promoting the prote in 

SUMOylation (Zhang et al. 2010). The latter observation was consistent with our 

hypothesis that PML is likely involved in TRIM5a-mediated retroviral response and thus, 

AS203 counteracts TRIM5a through its effect on PML. Contrary to our expectation, 

however, we found that PML is not relevant for this drug effect on retroviruses, since 

AS203 blocks the restriction activity ofhTRIM5a against N-MLV, either in the presence 

or absence of PML. Consistently, we later found that PML had no role in the TRIM5a­

mediated restriction ofretroviruses (described in the section 4.4). 

4.4 PML is not involved in the rhTRIM5a-mediated restriction ofHIV-l 

Uncoating of the capsid is linked to reverse transcription, therefore modifications 

that delay or accelerate this process lead to a block in viral replication occurring prior to 

or during reverse transcription (Forshey et al. 2002; Leschonsky et al. 2007; Li et al. 

2009). The host restriction factor TRIM5a provides early intrinsic defense against 

retroviral infections in mammalian cells in a species-specific manner. TRIM5a blocks 

HIV -1 infection by targeting the viral capsid after entry but prior to completion of reverse 
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transcription (Stremlau et al. 2006). The impact of TRIM5a on HIV -1 replication is 

similar to that we found in PML-KO cells, impairing reverse transcription. Interestingly, 

a recent study revealed that several TRIM5a proteins were transported into the nucleus 

and formed nuclear bodies that also contained PML (Diaz-Griffero et al. 20 Il). 

These data led us to hypothesize that TRIM5a-mediated restriction of retroviruses might 

be dependent on the presence of PML NBs. Thus, we overexpressed WT or mutant 

versions ofrhesus and human TRIM5a in WT and PML-KO MEFs that were afterward 

infected with lentiviruses. rhTRIM5a showed the expected restriction activity against 

HIV-1 in the presence or absence of PML, demonstrating that rhTRIM5a-mediated 

restriction ofHIV -1 is independent of the protein colocalization with PML NBs (Fig. 3.9). 

The trafficking ability of TRIM5a proteins and its colocalization with NB could be 

important for induction of IFN-I responses (Portilho et al. 2016) or an as-yet-unknown 

function of TRIM5a. 

4.5 Perspectives: gene therapy targeting incoming or latent HIV-l 

Latent HIV -1 reservoirs are established early du ring primary infection and 

constitute a major barrier to eradication, ev en in the presence ofhighly active antiretroviral 

therapy. The Berlin patient, the only individual that is considered to be cured ofHIV, has 

reinforced the idea that genetic modifications could confer resistance to HIV infection 

after HAART interruption by blocking attachment ofHIV to the cell (described in section 

1.1.8). To date, several strategies, including gene therapy techniques, have been exploited 

to target the HIV latent reservoir. Recently, a population ofpluripotent stem cells has been 

generated that bear a homozygous CCR5b.32 mutation (Ye et al. 2014), just similar to the 

natural mutation in individuals who are resistant to HIV infections (e.g. the Berlin patient). 

Monocytes and macrophages differentiated from these mutated stem cells in vitro were 

resistant to HIV infection. In a separate study, a CRISPR-Cas9-based cure strategy has 

been exploited to mutate and inactivate HIV -1 pro viral DNA successfully in latently 

infected Jurkat cells (Zhu et al. 2015). These findings suggest a promising avenue for 

developing gene therapy to treat HIV infection. PML and/or PML NB associated proteins 

are suggested to be a great target for gene therapy, since they are involved in restriction 
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ofHIV -1 both at pre-integration and post-integration steps (Lusic et al. 2013). It could be 

accompli shed by modifying the NB associated proteins in human cells or introducing of 

a mouse version of the proteins .. 

4.6 Perspectives: development of new antiretroviral drugs 

Whereas the HIV -1 life cycle presents many potential opportunities for therapeutic 

intervention, only a few have been exploited. Among them is the reverse transcription step 

which still remains a potential target for developing new drugs. Of the 26 drugs currently 

approved to treat HIV-1 infections, 14 are RT inhibitors (Arts & Hazuda 2012; Hu & 

Hughes 2012). As with aIl antiretroviral therapies, treatment with any ofthese agents often 

results in the emergence of HIV -1 strains with reduced drug susceptibility. Furthermore, 

sorne cellular factors such as APOBEC3G (Mangeat et al. 2003), have been shown to 

interact with HIV-l replication during the reverse transcription step. In this study, PML 

was shown as a double-edged sword. On one hand, PML also inhibits the HIV -1 reverse 

transcription, and on the other hand, PML helps the provirus to stay latent in the host cell. 

The increase in knowledge regarding the HIV life cycle, in particular the function of the 

HIV RT and its essential interactions with other host factors different from the ones ofthe 

already approved drugs, will reveal potential targets for drug development. 

4.7 Final conclusions 

Taken together, the present thesis introduces PML as a restriction factor 

participating in both innate and intrinsic immunity against lentiviruses. PML is shown to 

be involved in HIV latency as well, a new role that makes this nuclear protein a potential 

target for developing new antiviral drugs to purge latent reservoirs. Our results are also 

relevant to the development of a mouse model for studying HIV persistence and latency. 

We hope that sharing these observations will contribute to the future efforts to cure 

HIV/AIDS. 
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ANNEXA 

SUPPLEMENTARY DATA 

Mouse embryonic fibroblast cells (MEFs) 

By homologous recombination in murine embryonic stem (ES) cells obtained from 

a 129Sv mouse strain genomic library, part of exon 2 of the PML gene, which encodes 

the RING-finger domain, was substituted with a neomycin resistance gene cassette. Mice 

homozygous for the PML mutation (PML -/-) were born with the expected Mendelian 

frequency, were indistinguishable at the gross phenotypic level from PML +/+ and PML +/­

littermates, and were fertile; however, the PML-/- mice were extremely susceptible to 

spontaneous Botryomycotic infections. Successful disruption of the PML gene was 

inferred from the lack of PML mRNA and PML NBs in mouse primary embryonic 

fibroblasts (MEFs) from PML-/- embryos (Gaboli et al. 1998; Wang et al. 1998a). 
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Figure A.l Relative quantification of HIV -1 transcription. 
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WT or PML-KO MEFs were challenged with HIV-1 NL-GFP in triplicate 
(CRFK MOI = 0.01). Ten days later, the cells were treated with either 
DMSO or SAHA for 48 h. Total RNAs were then purified from the cells 
and the levels ofGFP and actin transcripts were determined by qRT-PCR. 
Data are presented as the ratios of GFP compared to actin mRNAs. Total 
RNAs from uninfected cells were used as negative control. The values 
represent the means of three independent experiments with standard 
deviations (*P < 0.05, **p < 0.01 , ****p < 0.0001 , two-tailed Student' s 
t-test). ND, not detected. 
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Figure A.2 Western blot analysis of hPML isoforms overexpressed in PML-KO 
MEFs. 
eeus were stably transduced with hPML isoforms l to VI. The upper panel 
shows a WB analysis of hPML expression using a monoclonal antibody 
(H-238). The bands labeled with asterisks correspond to the expected 
isofonns according to their sizes. The heavier bands are likely to be 
SUMO-modified PML. The lower panel shows the same blot reprobed 
using an anti-FLAG antibody. Actin was used as a loading control. 



168 

,-... 100 
~ 
'-" 

~ -Cl) 
u 
/;;)[) 
s:: 

10 ..... 
CIl 
CIl ~WT Cl) 
1-< 
0.. 

~KO ~ 
Cl) 
1 

~ 
~ 
d 1 

3 6 12 25 50 100 

HIV-1 CMY-GFP (ilL) 

.è 100 
,il 
s:: 
Cl) 

~ ....... 
Cl) 
u s:: 10 Cl) 
u ~WT CIl 
1-< 
0 

~KO ~ -~ 
§ 
Cl) 1 ::E 

3 6 12 25 50 100 

HIV-1 CMY_GFP (ilL) 

Figure A.3 mPML knockout increases CMV promoter-driven GFP expression. 
PML-KO and WT MEFs were infected with increasing doses of 
HIV-1 cMY-GFP and cells were maintained in culture for 10 days, followed 
by F ACS analysis. The percentage of infected (GFP-expressing) cells and 
the mean fluorescence intensity (MFI) were measured (top and bottom 
panels, respectiyely). 
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Table A.1 Sequences of ODNs used in chapter II. 

Mouse PML forward 5'CACGGATCCACCATGGAAACTGAACCAGTTTCC 3' 

Mouse PML reverse 5' ATCCAA TTGCTAGGCCAGGCATCCCTTACTTTCAG 
C 3' 

Human PML forward 5'AATTAGTCGACGGATCCACCATGGACTACAAAGA 
CGATGACGACAAGGAGCCTGCACCCGCCCGATC3 ' 

Human PML-I 5'ATCCAATTGTCAGCTCTGCTGGGAGGCCCTCTCTG 
reverse 3' 
Human PML-II 5' ATCGAA TTCTCAGAGGCCTGCTTGACGGGCGCCTG 
reverse 3' 
Human PML-III 5' ATCCAATTGTCAGCGGGCTGGTGGGGAGGCCAAG 
reverse 3' 
Human PML-IV 5' AGCCAA TTGCT AAATTAGAAAGGGGTGGGGGTAG 
reverse C3 ' 
Human PML-V 5' AGCCAA TTGTCAATGCCTCACTGGAAAATTCCCCA 
reverse G3 ' 
Human PML-VI 5'ATCCAATTGTCACCACAACGCGTTCCTCTCCCTAC 
reverse C3 ' 

5'TGCTGTTGACAGTGAGCGCAAGATGCAGCTGTATC 

shPML1 CAAGATAGTGAAGCCACAGATGTATCTTGGATACAG 
CTGCATCTTTTGCCTACTGCCTCGGA3 ' 

5'TGCTGTTGACAGTGAGCGAGCAAGACCAACAACA 
shPML2 TCTTCTTAGTGAAGCCACAGATGTAAGAAGATGTTG 

TTGGTCTTGCGTGCCTACTGCCTCGGA3 ' 

5'TGCTGTTGACAGTGAGCGCGCACACGCTGTGCTCA 
shPML3 GGATGTAGTGAAGCCACAGATGTACATCCTGAGCAC 

AGCGTGTGCATGCCTACTGCCTCGGA3 ' 

GFP forward 5' GACGACGGCAACTACAAGAC3 ' 

GFP reverse 5' CGGA TCTTGAAGTTCACCTTG3 ' 

2-LTR circles 5' AACTAGGGAACCCACTGCTT AAG3 ' 
forward 
2-LTR circles 5'TCCACAGATCAAGGATATCTTGTC3 ' 
reverse 

Actin forward 5' CCTCCCTGGAGAAGAGCTA3 ' 

Actin reverse 5' ACGTCACACTTCA TGGA3 ' 
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Table A.2 Sequences of ODNs used in chapter III. 

Name Sequence 

PML gRNAI top 5'CACCGCAA TCTGCCGGTACACCGAC 

PML gRNAI botlom 5' AAACGTCGGTGTACCGGCAGATTGC 

PML gRNA2 top 5'CACCGGGAACTCCTCCTCCGAAGCG 

PML gRNA2 botlom 5' AAACCGCTTCGGAGGAGGAGTTCCC 

CAG gRNA top 5' CACCGGTTCCGCGTTACATAACTTA 

CAG gRNA botlom 5' AAACTAAGTTATGTAACGCGGAACC 

Surveyor gRNAI fwd 5' AATGGGGGTA TIGGGGTGCTG 

Surveyor gRNA 1 rev 5'TGGTCAGCGTAGGGGTGC 

Surveyor gRNA2 fwd 5' AAGAGTGGAA TTTCTGGGTC 

Surveyor gRNA2 rev 5'GAAGCACTTGGCGCAGAGG 

PML 5'arm fwd 5' CTAGCGGCCGCATTTCATTTCTTTCT AAC 

PML 5'arm rev 5' AA TTCTAGAGCCGCTGCAGACTCTC 

PML 3 'arm fwd 5'TTACAATTGGGCTGTGTGCACCC 

PML 3 'arm rev 5'CGCCCTGCAGGCTGTACGAA TGTATTAC 

MCS2 top 5' CA TGGCAATTGAAGCTTCCTGCAGGGGATCCA 

MCS2 botlom 5' CATGTGGATCCCCTGCAGGAAGCTTCAA TTGC 

Knock-in fwd 5'TCTGGACGAAGAGCATCAGG 

Knock-in rev 5 ' GATTGCACTCTCTCTCTCCTC 

WT lindel fwd 5' ACACGCTGTGCTCAGGATGC 

WT lindel rev 5'GTTGCGCAGCTCTGCTAGG 


