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Environmental Problems,
Uncertainty, and
Mathematical Modeling
John W. Boland, Jerzy A. Filar, and Phil G. Howlett

In this paper we discuss three rather special characteristics shared by many
environmental problems. Namely, that (i) the environmental variables in which we are
most interested constitute a stochastic process; (ii) the long-term or limiting behavior
and the short-term or transient behavior are often both important; and (iii) the
underlying probability distributions are likely to be influenced by the environmental
policies or remedies that we choose to impose. This third characteristic implies
the need to understand the impact of technologies and controls that influence
the dynamics of the system. The control theoretic perspective of environmental
engineering problems has, we believe, received less attention than it deserves in
the literature. Consequently, after a brief discussion of the exogenous, control-
independent case we focus on illustrating some special challenges and opportunities
embedded in the control-dependent situations.
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T
hroughout history humans have relied
heavily on adaptation to and exploita-
tion of the natural environment. An
unintended consequence of civilization
and the more recent industrial and tech-

nological revolutions has been an ever increasing
reliance on industry and technology and a conse-
quent neglect of the natural world as a legitimate
planning tool of social and economic development.
There are many exemplars. The establishment and
growth of water-thirsty, air-conditioned cities such
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as Dubai and Las Vegas, in hostile desert sur-
roundings, is one such stark reminder of our
unbridled desire to dominate the environment and
our inability to read the warning signs.

However, the acceleration of a multitude of
adverse impacts of human development processes
on the environment, including global climate
change, the loss of biocapacity and biodiversity,
the spread of pollution, and the depletion of
natural resources, has, in recent years, served to
mobilize public opinion in many countries to tackle
environmental problems much more actively. As a
result, industries and regulatory agencies in these
countries are beginning to show real interest in
minimizing undesirable environmental impacts of
human activities.

A prerequisite for the design of effective adapta-
tion and mitigation strategies will be to understand
the underlying processes and the possible effects of
policies and regulatory regimens. Consequently, the
forthcoming decades will offer the scientific com-
munity unprecedented opportunity to contribute
to the development and subsequent refinement
of wide-ranging environmental remedies. The ma-
jority of these remedies will require evidence to
support “proof of concept” before they can be
adopted. The latter will often be obtained with
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the help of quantitative—mathematical—models
and supporting analysis. Thus there will be ample
opportunity for us mathematicians to contribute
to these solutions. Indeed, quantitative modeling
of environmental problems will be done with or
without us; thereby raising the spectre, if we are
not engaged, of improper application of the input
controls, incorrect interpretation of the output
data, and subsequent misguided decision making.

A detailed discussion of minimal requirements
that environmental problems should possess in
order to make mathematical modeling meaningful
is beyond the scope of this short contribution.
However, in Filar 2002 [17] certain principles are
identified that capture what an applied mathe-
matician might call common sense. Violation of
these principles should sound a warning that
mathematical modeling may not be appropriate in
these situations. The main point made in [17] is
that whenever we develop a mathematical model
of a phenomenon or a situation that is not itself a
mathematical entity a certain, minimal, amount of
“domain knowledge” is required. Although the latter
may appear obvious, it is clear that in modeling
certain environmental phenomena, for instance,
the response of the oceans to the doubling or
tripling of atmospheric CO2 concentrations, the
issue of what constitutes domain knowledge is a
challenging question in its own right.

Nonetheless, in this paper we shall assume that
adequate domain knowledge is available and focus
instead on three rather special characteristics
shared by many environmental problems. We
will consider variables (e.g., levels of persistent
contamination in a lake)

(1) which constitute a (possibly multi-
dimensional) stochastic process {Xt},
t ≥ 0;

(2) for which both the short-term or transient
behavior and the long-term or asymptotic
behavior are equally important; and

(3) where the underlying distributions of the
random variables, Xt , are likely to be
continually, but only partially, influenced
by the policies or remedies we are designing
(e.g., regulations or emission filters).

The first of the above characteristics implies
that the need to understand and manage risk
is usually an essential part of the problem. The
second implies that environmental remediation
policies and technological remedies that are costly
and unpopular in the short term require persua-
sive advocacy before they will be accepted and
adopted. The third characteristic implies the need
to understand the impact of the control functions
u(t) that influence the dynamics of the stochastic
processes. History shows us that, often inadver-
tently, economic development policies may act
as controls that influence the trajectory of key

state variables in some important ecosystem. The
need for advocacy and the importance of control
have, we believe, received less attention than they
deserve in the literature. Consequently, after a
very brief discussion of the exogenous, control-
independent case, we focus on illustrating some
special challenges and opportunities embedded in
the control-dependent situations.

Extreme and Rare Events in the Exogenous,
Uncontrolled, Case
In this section we shall make a simplifying—and
increasingly less acceptable—assumption that the
majority of our most feared natural disasters such
as hurricanes, floods, droughts, crop failures, and
bush fires are independent of human activities.
In this case, these disasters certainly constitute
“extreme events” in the common statistical sense
meaning of the phrase.

Consequently, it is prudent to examine what the
now classical “extremal value theory” has to offer
in our context of modeling the probability of such
events occurring. The origins of this theory—that
has evolved out of the twin subjects of statistics
and stochastic processes—date back to the seminal
work of Fisher and Tippett [21] in the first half of
the last century. By now, this challenging subject
has grown enormously, with researchers following
a number of fruitful lines of investigation. For a
comprehensive modern text we refer the reader to
Embrechts et al. [14].

However, before proceeding, we observe that a
substantial portion of the theory of extremal events
was motivated by financial considerations such as
the “risk of ruin”. Thus, to the extent that these
techniques and concepts depend on accumulation
of losses, they may not correspond very well to
the types of problems that are most relevant in
our context. For instance—and without in any
way advocating the underlying connotations—the
phrase “a miss is as good as a mile” captures
some of the above distinction. Thus, a severe flood
at a level that does not breach existing levees
presumably has little or no effect on the probability
that future floods will breach these defenses.
However, an investor who only just avoided ruin
when the market had its last downturn has probably
suffered such losses that his or her likelihood of
failing to avoid ruin in the next downturn is severely
reduced.

Due to the above considerations we will not
discuss those aspects of the theory of extremal
events that deal with sums of random variables
exceeding certain thresholds1 and will focus instead

1It should be noted that such random sums could still be
of interest in our context if, for instance, we were try-
ing to analyze the accumulated degradation of certain
natural protective barriers, such as Louisiana’s “barrier
islands” (e.g., see [13]). Thus the issue of partial sums of
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on the aspects that deal with the properties of
the so-called “extremal statistics”. We shall now
introduce some of the notation needed to make
the discussion a little more precise.

Consider a sequence{Xn},n ∈ N, of independent
identically distributed random variables (iid rv’s,
for short), all of which are distributed as a
given random variable X that has a cumulative
distribution function F . The random variables of
interest in the classical extremal value theory are
the induced sequence of sample maxima

Mn :=max(X1, X2, . . . , Xn) for n ≥ 2.
Note that the analysis of the sample min-
ima, defined analogously, is not any different
because of the identity min(X1, X2, . . . , Xn) =
−max(−X1,−X2, . . . ,−Xn) and hence we shall
restrict our discussion only to the sequence {Mn},
n ∈ N. It is now clear that the distribution function
of Mn is simply

P(Mn ≤ x)
= P(X1 ≤ x,X2 ≤ x, . . . , Xn ≤ x) = F(x)n.

(1)

Since in this theory we are primarily interested
in “failures” corresponding to the sample maxima
exceeding certain thresholds, we shall be partic-
ularly interested in the “tail” of the distribution
of Mn, namely in P(Mn > x) = 1 − F(x)n. For our
underlying distribution F(x) the tail is defined
simply by F̄(x) := 1− F(x).

Of course, for small n, equation (1) provides
a means of calculating the tail probabilities for
the distribution of Mn, but for large n a direct
computation could be very cumbersome. Thus, a
major thrust was made to derive asymptotic results
that are in the spirit of the celebrated “Central
Limit Theorem” of statistics, which states thatΣnXn − nµ

σ
√
n

→ Z,

as n → ∞ where X1, . . . , Xn are independent and
identically distributed random variables and Z is a
standard normal distribution.

This naturally led to the question of whether it is
possible to find constants cn > 0 and dn such that
for some nondegenerate probability distribution H

(2)
Mn − dn
cn

→ H,

in distribution, as n tends to infinity. Clearly, if (2)
holds, then the equation

(3) P(
Mn − dn
cn

≤ x) = P(Mn ≤ un) =
∫ un
−∞
dH(x),

sequences of random variables exceeding certain thresh-
olds and the amounts by which they exceed these thresh-
olds is very relevant to the assessment of environmental
risk. The latter has received considerable attention in the
financial risk literature, in which these concepts are known
as “Value-at-Risk” and “Conditional-Value-at-Risk”. We do
not discuss these concepts here but refer the interested
reader to Rockafellar and Uryasev [33].

where un = cnx+dn, provides a basis for calculating
an approximation of the tail probabilities of interest.
The problem contained in equations (2) and (3)
is actually more challenging than the analogous
problem for random sums. The validity of these
equations seems to require delicate conditions
on the tail F̄ of the distribution F to ensure the
existence of a nontrivial limit of P(Mn ≤ un) as n
tends to infinity. In particular, the tail F̄(un) needs
to decay at an appropriate rate as un tends to
infinity with n.

One of the fundamental results is the so-called
Poisson approximation that states, that for any
given nonnegative number τ and a sequence {un}
of real numbers, the following equivalence holds:

(4) nF̄(un) → τ ⇐⇒ P(Mn ≤ un) → e−τ

as n tends to infinity. An elegant special case where
the above limit can be directly computed is the
case when F(x) = 1− e−x, that is, the exponential
random variable with parameter 1. In this case a
direct calculation shows that

P(Mn − ln n ≤ x) = [P(X ≤ x+ ln n)]n

= [1− n−1e−x]n → exp{−e−x}

(5)

as n tends to infinity. Note that Λ(x) := exp{−e−x}
is the well-known Gumbel distribution. Indeed, the
remarkable conclusion of the famous Fisher-Tippett
theorem is that ifH is a nondegenerate distribution
such that (2) holds, then H must belong to one
of only three families of distributions: Frechet,
Gumbel, or Weibull. Thus these three well-known
distributions provide a basis for many of the
approximations of the probabilities of interest.

Of course, while mathematically very convenient,
the independent, identically distributed distribu-
tion assumption on the random variables of the
process {Xt}; t ≥ 0 is not realistic in many envi-
ronmental applications. After all, for the majority
of natural phenomena of interest, such as levels of
pollution in the air or water or salinity in the soil,
previous values of relevant indicator variables def-
initely influence current values of these variables.
Consequently, perhaps, the mildest and yet still
powerful way of relaxing the above assumption is
to replace it by the stationary Markov transition
assumption, which, in discrete time, states that,
for every possible pair of values x and x′, the
probability that Xt+1 = x′ given that Xt = x is
independent of time and any previous states and
actions. That is, there exist stationary transition
probabilities:

(6) p(x′|x) := P{Xt+1 = x′|Xt = x}
for all t = 0,1,2, . . . .

The above—seemingly still quite restrictive—
assumption facilitates a lot of very useful modeling,
especially when it is reasonable to discretize the
range of the random variables Xt by finitely

1288 Notices of the AMS Volume 57, Number 10



many values {x1, x2, . . . , xN}. In such a case, an
N ×N probability transition matrix P of a Markov
chain whose (i, j)th entry is p(xj |xi) contains all
the required information about the probability
distributions of all the random variables Xt for all
t = 0,1,2, . . .. This simple approximation makes it
possible to apply a wide range of computationally
effective, matrix analytic methods to understand
many important characteristics of the underlying
Markov process. The reader is referred to [27]
and [30] for both the classical and more modern
perspectives on this interesting subject.

We conclude this section with a simplistic
but still illustrative, example. Consider a process
{Xt}; t ≥ 0, whereXt denotes the stock of a certain
species of fish in year t . Assume that, without any
harvesting, the natural marine ecosystem cycles
ensure that the stock is in one of only three
states: abundant (x1), average (x2), and low (x3).
Suppose also, for instance, that the corresponding
Markov chain is adequately described by the 3× 3
probability transition matrix:

P =
 0.70 0.25 0.05

0.10 0.80 0.10
0.00 0.30 0.70

 .
The entries in the above matrix are completely
fictitious, but they may reflect the anticipated
cyclic pattern of the population of that particular
species of fish. Furthermore, it is well known that
the successive powers of Pn yield probabilities of
n-step transitions from state to state. It is easy to
verify that, for this particular transition matrix, the
limit P∗ := limn→∞ Pn exists and has identical rows,
each coinciding with the row vector π of so-called
stationary distribution probabilities satisfying the
fixed-point equation π = πP .

Indeed, in this particular instance, the latter is ap-
proximately given, given by π = [0.19, 0.58, 0.23].
Thus it is possible to conclude that, if the prob-
ability transition matrix P continues to describe
accurately the stochastic process of interest, then,
in the long-run average sense, the population of
this particular species of fish will be abundant
approximately 19% of the time, average 58% of the
time, and low 23% of the time.

Of course, in the above example, all probability
distributions were exogenous in that they were
assumed to remain unchanged over time and
independent of human activities. It is clear, however,
that the essence of most environmental problems
lies in the violations of such assumptions. For
instance, in the fish population example, fishing
regulations and market prices for fish are likely
to impact the intensity of harvesting and will,
therefore, alter these distributions. This naturally
leads to the class of models and some of the issues
discussed in the next section.

Stochastic Sequential Decision Models
To address some of the issues alluded to in
the preceding section, it is natural to move from
consideration of Markov chains to the more general
framework of Markov decision processes (MDP’s,
for short). The latter are stochastic, sequential
processes in which a “decision maker” has some
control over the distributions of a future stream
of random benefits or costs frequently referred to
as positive or negative “rewards”.

More precisely, we shall now consider a processΓ that is observed at discrete time points t =
0,1,2,3, . . . that will sometimes be called stages.
At each time point t , the state of the process will
be denoted by Xt . We shall assume that Xt is a
random variable that can take on values from the
finite set X = {1,2, . . . ,N}, which from now on will
be called the state space. The phrase “the process
is in state x at time t” will be synonymous with the
event {Xt = x}.

We shall assume that the process is controlled
by a controller or a decision maker who chooses an
action a ∈ A(x) = {1,2, . . . ,m(x)} at time t if the
process is in state x at that time. We may regard
the action chosen as a realization of a random
variableAt denoting the controller’s choice at time t .
Furthermore, we shall assume that the choice of
a ∈ A(x) in state x results in an immediate reward
or output r(x, a) and in a probabilistic transition
to a new state x′ ∈ X.

Now the previous stationary transition prob-
abilities assumption of (6) is extended by the
assumption that, for every x, x′ ∈ X and a ∈ A(x),

(7) p(x′|x, a) := P{Xt+1 = x′|Xt = x,At = a}
for all t = 0,1,2, . . . .

Suppose that the decision maker wishes to
influence a stream of expected values of these
rewards, denoted by

{Exf (Rt)}∞t=0,

where x is the initial “state”, f is the control,Rt is the
random reward or benefit at stage t , and E denotes
the mathematical expectation operator. We assume
that specifying x and f uniquely determines the
probability distribution of Rt for every time period
t in the future.

The decision maker might then wish to choose
f so as to maximize either the discounted perfor-
mance criterion

vd(x, f ) :=
∞∑
t=0

βtExf (Rt),

where the parameter β ∈ [0,1) is called the dis-
count factor, or the long-run average performance
criterion, defined by

va(x, f ) := lim
T→∞

inf
1

T + 1

T∑
t=0

Exf (Rt).
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Note that the discounted criterion has a natural
accounting interpretation as the so-called “present
value” of the stream of rewards {Exf (Rt)}∞t=0.
This type of criterion is so widely accepted by
economists that, often, the question is not really
whether it ought to be a criterion of choice
but only of what value the discount factor β
should take. However, it can be argued that most
dedicated environmentalists would favor the long-
run average criterion as the more likely to guarantee
sustainability.

Even in this relatively simple setting some
conceptual complications quickly arise. What con-
stitutes a “control” in this dynamic, stochastic
setting?

The standard approach is to consider a history
of the process at time t , namely,

ht = (x0, a0, x1, a1, . . . , at−1, xt)

and to define a decision rule at time t as the map
ft : ht → ft(ht , a) ∈ [0,1]. Next, a control is defined
as a sequence of decision rules, one at each time,
denoted by f := (f0, f1, f2, . . . , ft , . . .). Let FB be the
space of all controls. If for every t the decision rule
ft depends only on the current state at that stage,
then the control f is called Markov or memory-less.
Let FM be the space of all Markov controls. If f ∈ FM
and ∀ t, x, a the probability of choosing any action
a, namely, ft(x, a), is independent of t , then f is
called a stationary control. Let f ∈ FS (the set of
stationary controls). Finally, if∀x, a the probability
f (x, a) ∈ {0,1}, then f is called a deterministic
control. Let FD be the set of deterministic controls;
then clearly

FD ⊂ FS ⊂ FM ⊂ FB .
Next, we consider two “optimal control” prob-

lems: (i) find a (simple) control f 0 such that

(8) vd(x) :=max
f
vd(x, f ) = vd(f 0),

where vd(x) will be called the discounted value of
the corresponding discounted MDP, and (ii) find a
(simple) control f? such that

(9) va(x) :=max
f
va(x, f ) = va(f?),

where va(x) will be called the long-run average
value of the corresponding long-run MDP.

It is well known (e.g., see [32]) that both of these
problems have simple solutions in deterministic
controls. Namely, there exists f 0 ∈ FD optimal ∀x
in the discounted problem, as well as f? ∈ FD
optimal ∀x in the long-term average problem.
Furthermore, there are “good” algorithms for
computing f 0, vd(x), f?, va(x).

In some sense the above means that, separately,
with regard to the preferred performance criterion
of either the economist or the environmentalist,
the corresponding optimal control problem is
well posed and well solved. However, it is worth
considering what happens if we wish to somehow

combine these two performance criteria. Surely the
most benign way of attempting to do so would be
to choose a weight parameter λ ∈ [0,1] and to try
to find a control f so as to maximise

(10) vλ(x, f ) := λ(1−β)vd(x, f )+ (1− λ)va(x, f ),
thereby creating the so-called weighted reward
criterion and the corresponding weighted reward
MDP. Clearly it follows that

(11) sup
f
vλ(x, f ) ≤ λ(1− β)vd(x)+ (1− λ)va(x),

where the right-hand side constitutes the utopian
bound for this new criterion.

Unfortunately, but, perhaps, not surprisingly, in
[28] it has been shown that:

(1) The following inequalities hold:

sup
FD
vλ(x, f ) ≤ sup

FS
vλ(x, f ) ≤ sup

FM
vλ(x, f ),

with < possible in both places.
(2) In general, an optimal control for vλ(x, f )

need not exist. However, for eachλwhen the
discount factorβ is sufficiently near 1, there
exists an optimal deterministic control.

(3) Nonetheless, it is reassuring that

sup
FM
vλ(x, f ) = sup

FB
vλ(x, f ).

(4) Given any ε > 0 there exists an ε-optimal
control fε such that

(12) vλ(x, fε) ≥ sup
FM
vλ(x, f )− ε.

(5) In particular, there exists a “switching time”
τ(ε):

fε = (f1, f2, . . . , fτ(ε)︸ ︷︷ ︸
be “greedy”

for a while

, f?, f?, f?, . . .︸ ︷︷ ︸
switch to optimal

long-run average

control

),

Of course, τ(ε) depends critically on the
parameter λ and the underlying data.

In a sense, properties 1–5 above capture the
essence of the conflict between the “industrialist”
and the “environmentalist”, a conflict that is
captured in—but not reconciled by—the dilemma
of the “right choice” of the switching timeτ(ε) in the
structure of nearly optimal controls given in item
5 above. In the context of the previous motivating
example of a fishery, this dilemma lies in the dual
desires of wishing to profit from harvesting the
species and ensuring that its population remains
at sustainable levels in perpetuity.

It should be mentioned that the preceding
discussion and results are conceptually similar
to and consistent with results published in 1996
by Chichilnisky [12]. The latter are presented in
a more general axiomatic framework but do not
supply the switching structure of nearly optimal
controls mentioned in item 5 above.
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We conclude this section by pointing out that
there is now a substantial literature dealing with
weighted reward criteria (including multiple dis-
count factors) in Markov decision processes and
stochastic games (e.g., see [19] and [15]). For a sur-
vey of that interesting topic the reader is referred
to [16].

Environmental Engineering: The Inter-
play Between Mathematical Modeling,
Technology, and Stochastic Control
The main point of this section is to emphasize that
environmental engineering is invariably aimed at
controlling the evolution of systems that contain
inherent uncertainty. There is much that could
be said about the mathematical background to
stochastic control and many different specialist
areas—state space models, Markov decision pro-
cesses, dynamic programming, control of linear
systems, Kalman filtering, system identification,
and adaptive control. An excellent introductory
reference is the book by Kumar and Varaiya [29].
See also a more modern look at a variety of
applications in the edited volume by Abed [1].
Our purpose here is not to survey the existing
theory but rather to illustrate the way in which
environmental engineering immediately challenges
us to come to terms with managing uncertainty. Of
all the twentieth-century advances in mathematical
control, perhaps the most insightful and elegant is
the optimality principle of dynamic programming.
However, despite its theoretical elegance, a direct
search implementation is still likely to be plagued
by the curse of dimensionality—especially in a
stochastic situation. We choose an elementary
model of a solar-powered desalination plant with
which to illustrate the principle.

Illustration: A Model for a Solar-Powered
Desalination Unit

We now move to a more specific but in some
sense still generic application. Suppose the energy
collected by a solar panel can be used immediately
to power a desalination unit or stored in a battery
for later use. As the level of power supplied to
the unit increases, the volume rate of fresh water
produced also increases, but the process becomes
less efficient. This is a classic case of the “law
of diminishing returns”. Thus, when energy r is
supplied to the desalination unit at constant power
for a single day, we assume the volume of fresh
water produced is given by a performance function
x : [0,∞), [0,∞), which is increasing and strictly
concave with x(0) = 0. For convenience suppose
x′ : (0,∞) , (0,∞) is continuous with x′(r) ↓ 0
as r ↑ ∞ and further that x′′(r) : (0,∞), (−∞,0)
is continuous. The solar energy collected on
day t will be modeled as a Markovian random
variableSt ∈ S = [0,M]with well-defined transition

probabilities P{St ∈ [0, v] | St−1 = u} for each
(u, v) ∈ S × S. Define Fu : S , [0,1] for each u ∈ S
by setting

Fu(v) = P{St ∈ [0, v] | St−1 = u}

for each v ∈ S. For each allowable configuration of
the state variables we wish to find an energy usage
policy that maximizes the expected volume of
fresh water produced by the desalination unit from
day t = n+ 1 to day t = N. The state variables are
the index t of the day, the amount of energy b = bt
in the battery at the beginning of day t , and the
amount of solar energy ut−1 = u collected on day
t − 1. The control variable is the amount of energy
r = rt we decide to use on day t . We use the Bellman
principle of dynamic programming [6, 7, 8] to find
a stochastic control policy that maximizes the
expected total volume of fresh water produced. We
show in one special case that a long-term (infinite
horizon) optimal strategy uses the same amount of
energy each day. Since a long-term strategy must
be sustainable, it is intuitively obvious in this case
that the energy used each day must be equal to the
average solar energy collected.

This model was first formulated to find strategies
that maximized the distance traveled by solar-
powered racing cars in a given time period. The
initial studies [22, 24] treated the problem as a
deterministic control problem where the solar
radiation was known in advance. These studies
evolved from closely related work on optimal
train control. For a recent reference see [26]. The
solar car problem was later reformulated as a
stochastic control problem [25] in which the daily
solar radiation evolved according to a known
Markov process. The Markovian nature of the
process underlying the evolution of solar radiation
is well documented. There have been models for
discrete space [2, 4, 23] and for continuous space
[3, 9]. More recently, Boland [10] has described the
similarity of the Markov structure in solar radiation
persistence on two time scales, daily and hourly.
The cited treatises overcome the seasonality of
solar radiation time series in various different ways.
In [2], separate Markov transition matrices for each
month are constructed to forecast levels of solar
radiation on a daily time scale. On the other hand,
[4, 10, 31] make extensive use of spectral analysis
to identify significant embedded cyclical behavior
in the time series and to model that part as a
deterministic component using Fourier series. In
the present work any seasonal component has been
ignored. This is a reasonable assumption if the
time period is relatively short. In general we would
need to assume that the seasonal component has
been identified and removed, in which case the
analysis would focus on the remaining stochastic
component.
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The Mathematical Model

Define value functions WN[u] : [0,∞), [0,∞) for
each u ∈ S on day N, the final day of the given
period, as the expected volume of fresh water
produced on day N given that the energy collected
on dayN−1 was SN−1 = u and given that all energy
will be used by the end of day N. If b is the energy
in the battery at the beginning of the final day, then

(13) WN[u](b) =
∫
S
x(b + vN)dFu(vN).

In general we wish to define value functions
Wt[u] : [0,∞) , [0,∞) for each u ∈ S and each
t = n,n + 1, . . . ,N given that the solar energy
collected on day t − 1 was ut−1 = u. We begin by
defining auxiliary value functions wt[u] : [0,∞)×
[0,∞), [0,∞) for each u ∈ S on day t given that
the solar energy collected on day t−1 was ut−1 = u
and the energy in the battery at the beginning of
day t is b. Thus we define
(14)

wt[u](b, r) = x(r)+
∫
S
Wt+1[vt](b+ vt − r)dFu(vt).

The auxiliary value function determines the ex-
pected volume of fresh water produced for every
possible level of energy use on day t . The idea
now is that the true value function should give the
expected volume of fresh water produced given
that we make an optimal decision about the level
of energy use on day t . Thus the value Wt[u](b)
is obtained by maximizing wt[u](b, r) over all
possible values of r . The optimal control policy is
obtained by solving the following mathematical
problem. For each state (t, u, b) with t < N find
r =ϕt[u](b) such that

Wt[u](b) =max
r
wt[u](b, r).

We have used t = N to denote the final time.
Thus, in general, we will start at t = n where
n < N and where q = N − n is the duration of the
operation. In the sequel it is convenient to allow
the length of the time interval to increase without
bound. Thus we allow n = N − q where q increases
without bound.

A Recursive Equation for the Optimal Controls

For each t < N let r = ϕt[u](b) denote the energy
usage that gives the maximum of the auxiliary
value function wt[u](b, r) over all r . A necessary
condition can be found by setting the partial
derivative with respect to r equal to zero. The
following results are established in [25]. For each
u ∈ S the valueWN−1[u](b) is given by the formula

WN−1[u](b) = x(ϕN−1[u](b))

+
∫
S

[∫
S
x([b + vN−1 −ϕN−1[u](b)]

+ vN)dFvN−1(vN)
]
dFu(vN−1)

(15)

and the optimal energy consumption ϕN−1[u](b)
satisfies the equation

x′(ϕN−1[u](b))

=
∫
S

[∫
S
x′([b + vN−1 −ϕN−1[u](b)]

+ vN)dFvN−1(vN)
]
dFu(vN−1).

(16)

In general, for each integer t < N − 1 and each
u ∈ S, the value Wt[u](b) is given by the formula

Wt[u](b) = x(ϕt[u](b))

+
∫
S
Wt+1[vt](b + vt −ϕt[u](b))dFu(vt)

(17)

and the optimal energy consumption ϕt[u](b)
satisfies the recursive equation

x′(ϕt[u](b))

=
∫
S
x′(ϕt+1[vt](b + vt −ϕt[u](b)))dFu(vt).

(18)

A Simple Special Case

Consider the case where the performance function
is x(r) = a[1− e−kr] for some positive constants a
and k and the function Fu : [0,M], [0,1] is given
by

Fu(v) = v/M,
where M is the maximum value of the solar
irradiance. This is a truly stochastic situation but
is simplified by the uniformity of the probability
distribution. We need an elementary result before
we begin the solution. Let θ > 0 be a constant. The
function f : (0,∞), (0,∞) defined by the formula

(19) f (r) =
[

sinh rθ
rθ

]1/r

is strictly increasing. At the first stage equation
(16) can be rewritten explicitly in the form

ak exp(−kϕN−1[u](b))

= ak exp(−kb + kϕN−1[u](b))
M2

×
∫ M

0
exp(−kv1)dv1

∫ M
0

exp(−kv0)dv0

= a exp(−kb + kϕN−1[u](b))
kM2

× [1− exp(−kM)]2.
If we define θ = kM and if f is the function defined
in equation (19), then some elementary algebra
gives

ϕN−1[u](b) = b/2+M/2− c1,
where c1 = (1/(2k)) ln f (1/2). If cq = (q/(q + 1))[
cq−1 + (1/(2qk)) ln f (1/(2q))

]
for each q > 1 and

we make the inductive assumption that

ϕN−q+1[u](b) = b/q +M/2− cq−1,
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then equation (18) and some elementary algebra
can be used to show that

ϕN−q[u](b) = b/(q + 1)+M/2− cq.
Thus the formula is true for all q > 1. From the
formula it follows that cq < cq−1 if and only if
cq−1 > (1/(2k)) ln f (1/2q). Once again a simple
inductive argument shows that this is true. Since
{cq} is positive and strictly decreasing cq ↓ c ≥ 0
as q ↑ ∞. By applying the recursive formula one
can show by induction that

cq = (2/(q + 1))c1 + (1/2k(q + 1))
× [ln f (1/4)+ · · · + ln f (1/2q)] .

For each ε > 0 choose Q = Q(ε) such that
(1/2k) ln f (1/2q) < ε for all q > Q. It follows that

cq = (2/(q + 1))c1 + (1/2k(q + 1))
× [ln f (1/4)+ · · · + ln f (1/2Q)]
+ (1/2k(q + 1))
× [ln f (1/2(Q+ 1))+ · · · + ln f (1/2q)]

≤ (2/(q + 1))c1 + (1/2k(q + 1))
× [ln f (1/4)+ · · · + ln f (1/2Q)]
+ [q − (Q+ 1)]ε/(q + 1).

By taking the limit as q ↑ ∞ we see that c ≤ ε. Since
ε > 0 is arbitrary, we conclude that c = 0 and that
ϕN−q[u](b)→ M/2 = s̄ as q ↑ ∞ for all u ∈ [0,M].

An Open Question

The elementary example suggests that long-term
strategies may exist and that such strategies
may be independent of the present state. For
an ergodic system we believe that the limit
ϕ[u](b) = limq→∞ϕN−q[u](b) exists and is well
defined. Furthermore we conjecture that in such
cases ϕ[u](b) = s̄ for all (u, b). This formula is
certainly true for the example considered above. Is
it true in general?

Conclusions
In such a short, expository article, it is impossible
to do justice to the fast-exploding research field
aimed at developing mathematical models and
techniques that adequately deal with the problems
of uncertainty encountered in environmental de-
cision making. There are many fast-developing
branches of mathematics that contain concepts,
techniques, theorems, and algorithms that have
much to offer in this area. The latter include
the theories of signal processing, stochastic and
robust programming, large deviation theory, and
the theory of singular perturbations of operators.
However, a special mention is made here of viability
theory, pioneered by Aubin in [5], as its central
concept of a “viability kernel” offers a very general
perspective of managing the natural environment
without pushing it to potentially unacceptable
regions of an appropriate state space. We also refer

interested readers to a recent collection of papers
on this topic, contained in [18].

In these concluding remarks we recall that
Rachel Carson’s Silent Spring [11] is widely credited
with helping launch the environmental movement.
This book inspired widespread public concern
with pesticides and pollution of the environment.
Silent Spring facilitated the ban of the pesticide
DDT in 1972 in the United States. The book
documented detrimental effects of pesticides on
the environment, particularly on birds. Carson
said that DDT had been found to cause thinner
egg shells and to result in reproductive problems
and death. She also accused the chemical industry
of spreading disinformation and public officials
of accepting industry claims uncritically. Most
recently, Silent Spring was named one of the
twenty-five greatest science books of all time by
the editors of Discover magazine.

Most environmentalists believe that, early in
our development, the human race lived within
the environment and adapted to it, but as the
industrial revolution turned into a technological
revolution we outgrew our environment and began
to change it. On June 23, 1886, the New York
Times reported that the Reverend J. P. Newman
delivered an address before the literary societies
of St. John College. The address was titled “The
March of Civilization” and was reported thus: “All
civilization,” he said, “has been abnormal in that
some one element has tyrannized over the others. A
perfect civilization is that wherein all the elements
essential to individual development and social
progress blend harmoniously.” But he warned that
“the master thought of our civilization is the power
of wealth; to the prosperity of our commerce we
subordinate education, morality, Government, and
religion”. One cannot know precisely what was in
the reverend gentleman’s mind at the time, but 123
years later his warning has passed into history, and
the march has become a stampede that threatens
everything in its path.

On a more positive note, we should observe that
at the dawn of the twenty-first century, modern
societies are beginning to focus on slowing and,
ultimately, stopping at least those aspects of the
above-mentioned stampede that threaten our life
support systems. As with any great endeavor of
civilization, mathematics and mathematicians have
an important part to play in this global effort.
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