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Analytic perturbations and systematic

bias in statistical modeling and inference∗

Jerzy A. Filar1 , Irene Hudson1 , Thomas Mathew2 and Bimal Sinha2

University of South Australia and University of Maryland Baltimore County

Abstract: In this paper we provide a comprehensive study of statistical infer-
ence in linear and allied models which exhibit some analytic perturbations in
their design and covariance matrices. We also indicate a few potential applica-
tions. In the theory of perturbations of linear operators it has been known for a
long time that the so-called “singular perturbations” can have a big impact on
solutions of equations involving these operators even when their size is small.
It appears that so far the question of whether such undesirable phenomena
can also occur in statistical models and their solutions has not been formally
studied. The models considered in this article arise in the context of nonlinear
models where a single parameter accounts for the nonlinearity.

1. Introduction

The problem of estimating parameters and drawing suitable inference about them
from noisy data that follow classical linear models has a long history in experimen-
tal science and engineering. A standard assumption in such models is the normality
and independence of the random error terms, and a complete and certain knowl-
edge of the associated design matrices. Since there may be situations where such
assumptions are not valid, or satisfactory, it is of interest to develop appropriate
modifications of the usual standard solutions. In this regard, some robustness stud-
ies have been reported in the literature. Kariya and Sinha [12] discuss distributional
robustness in terms of deviations from normality of the error terms. They show that,
under quite general conditions, the standard inference for the fixed effects under
normality based on the F test continues to hold under a broad class of elliptically
symmetric distributions. Calafiore and Ghaout [5] discuss some aspects of linear
models in the presence of uncertainties in the mean and covariance matrix of the
observed data, and study robust estimation of the underlying parameters. We also
refer to Chandrasekaran et al. [6], Ghaoui and Lebret [9] for some related work.

Our goal in this paper is to study some aspects of analytic perturbations in
statistical modeling and inference in the context of linear and allied models in the
presence of certain “structured and systematic uncertainties” in the design and
covariance matrices. With respect to these uncertainties in the design matrices in
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18 J. A. Filar et al.

linear models, our approach is different from the usual errors-in-variables models
in that the uncertainties in the design matrices in our context are non-stochastic
in nature and may be a result of small (but unknown) measurement errors that
persistently underestimate or overestimate the true values of certain variables. Note
that these kinds of deviations from true measurements are not random as they
may be caused either by a persistent deficiency in the measurement sensors or
even by consistent attempts at deception in a small (and hence hard to detect?)
way. We propose the name systematic measurement bias to describe this class of
uncertainties in the design and covariance matrices. The scenario considered here
may also arise when we have nonlinear models where a single parameter accounts
for the nonlinearity; in other words, the model is linear if this particular parameter
is zero.

Our ability to identify, quantify and analyze this kind of a bias stems from certain
recent developments in the well established subject of analytic perturbation theory
of matrices and operators. The reader is referred to the famous treatise by Kato
[13] for a comprehensive treatment of this subject. However, in this study, results
obtained by Avrachenkov [2], Avrachenkov and Haviv [3] and Avrachenkov et al.
[4] (see Section 2) provide us with tools to assess the impact of these systematic
measurement biases on the quality of the estimates and the inferences drawn from
these models. Note that in the theory of perturbations of operators it has been
known for a long time that some small perturbations can have a big impact on
solutions of equations involving these operators; these are the so-called “singular
perturbations”. The question of whether such undesirable phenomena can also occur
in statistical models and their solutions appears not to have been formally studied
so far. Our application in the area of principal component analysis (PCA) involves
perturbations in the estimated sample covariance matrix via perturbations in the
underlying design matrices while the application in a factor analysis model deals
with perturbations in the covariance matrix.

The organization of the paper is as follows. We introduce some background of
perturbation theory and give associated Laurent series and fundamental equations
in Section 2. The context of linear models with perturbations in the design matrices
is developed in Section 3, a core section of the paper. We derive the necessary expan-
sions of the associated estimates of the parameters and their covariance matrices,
and provide an outline of the inference on estimable linear parametric functions
under perturbations of the underlying design matrices. Perturbations in principal
component analysis appear in Section 4, and Section 5 deals with perturbations in
the context of factor analysis models. Some applications are indicated in Section 6.

2. Background: Laurent series and fundamental equations

In this section we briefly review some results concerning analytic perturbations of
matrices. We refer the reader to Avrachenkov [2] and Avrachenkov et al. [4] for
details of proofs and derivations of these results.

Let {Ak}k=0,1,... ⊆ Cn×n be a sequence of matrices that defines an analytic
matrix valued function

(2.1) A(ε) = A0 + εA1 + ε2A2 + · · · .

The above series is assumed to converge in some non-empty neighbourhood of ε = 0.
We say that A(ε) is an analytic perturbation of the matrix A0 = A(0), and that it
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is a regular perturbation if A0 is nonsingular, and a singular perturbation otherwise.
Even though all results of this paper can be extended to the above general analytic
perturbation, the statistical considerations are sufficiently well illustrated by the
somewhat simpler case of a linear perturbation where (2.1) is replaced by

(2.2) A(ε) = A + εB,

where A0 = A, A1 = B, and Ak = 0, k ≥ 2. Assume the inverse matrices A−1(ε)
exist in some (possibly punctured) disc centred at ε = 0. Beyond linear pertur-
bations, we may also have a quadratic or a polynomial perturbation though the
contributions of the higher order terms will in general be small. Let us consider the
following example of an analytically (linear) perturbed singular matrix

A(ε) =
[

1 − ε 1 + ε
1 − 2ε 1 − ε

]
=

[
1 1
1 1

]
+ ε

[
−1 1
−2 −1

]
.

Its inverse is given by

A−1(ε) =
1

−ε(1 − 3ε)

[
1 − ε −1 − ε

−1 + 2ε 1 − ε

]
.

It should be clear that the above inverse admits a Laurent series expansion. To
see this, we just expand det A(ε))−1 = 1/(−ε(1 − 3ε) as a scalar power series in
ε, multiply it by adjA(ε) and equate coefficients with the same power of ε. In this
case, we have

A−1(ε) = (−1
ε
− 3 − 9ε − · · · )

[
1 − ε −1 − ε

−1 + 2ε 1 − ε

]

=
1
ε

[
−1 1
1 −1

]
+

[
−2 4
1 −2

]
+ ε

[
−6 12
3 −6

]
+ · · · .

which is obviously a Laurent series. Clearly, the above is a very inefficient method
of deriving this Laurent series. Fortunately, in the case of a linear perturbation, the
following result that follows from the analysis in Avrachenkov [2] and Avrachenkov
et al. [4] provides a much better method.

If A−1(ε) exists in a punctured neighborhood of ε = 0, then it can be expanded
as a Laurent series

(2.3) A−1(z) = A−1
S (ε) + A−1

R (ε) =
1
εs

Y−s + · · · + 1
ε
Y−1 + Y0 + εY1 + · · · ,

where A−1
S (ε) is the singular component of A−1(ε) and consists of the part of the

series made of terms involving negative powers of ε, and A−1
R (ε) is the regular

component consisting of all the remaining terms. The coefficients Yk, k = −s,−s+
1, . . . satisfy the following recursions

(2.4) Yk+1 = (−Y0B)Yk, k = 0, 1, . . . ,

(2.5) Y−k−1 = (−Y−1A)Y−k, k = 1, . . . , s − 1.
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20 J. A. Filar et al.

Thus the knowledge of the matrices A, B, Y0 and Y−1 is sufficient to determine
all coefficients of the Laurent series expansion (2.3).

There are now two cases to consider. In the case of a regular linear perturbation,
A−1

S (ε) = 0 = Y−1 = Y−k, k = 2, . . . s, and Y0 = A−1 = A−1
0 . However the

singularly perturbed case is a little more complicated even when the perturbation
is linear. Firstly, the order of the singularity, the index s in (2.3), which is also
known as the pole of the expansion of A−1(ε), needs to be determined. Secondly,
the identity A(ε)A−1(ε) = I provides a set of fundamental equations obtained by
equating the coefficients of like powers of ε that supplies the unique set of coefficients
of the expansion (2.3). Fortunately, only s + 1 of these are needed to determine
Y−s, Y−s+1 · · ·Y−1, Y0 uniquely.

In particular, for each t = 0, 1, . . . let us define the following augmented matrix

A(t) =

⎡
⎢⎢⎢⎢⎢⎣

A0 0 0 · · · 0
A1 A0 0 · · · 0
A2 A1 A0 · · · 0
...

...
...

. . .
...

At At−1 · · · A1 A0

⎤
⎥⎥⎥⎥⎥⎦

.

Of course, in the case of a linear perturbation the above augmented matrices have
the form

A(t)
L =

⎡
⎢⎢⎢⎢⎢⎣

A 0 0 · · · 0
B A 0 · · · 0
0 B A · · · 0
...

...
...

. . .
...

0 0 · · · B A

⎤
⎥⎥⎥⎥⎥⎦

.

The determination of the order of the pole s in (2.3) can be achieved with the help
of the following result that is proved in Avrachenkov [2] and Avrachenkov et al. [4].

Theorem 2.1. The order of the pole s is given by the smallest value of t for which
rank[A(t)] = rank[A(t−1)] + n, where n is the dimension of A(ε).

Now if we define two block column matrices Y := [Y−s, . . . , Y−1, Y0]T and J :=
[0, . . . , 0, I]T and let s be the order of the pole of the expansion of A−1(ε), then the
coefficients of the non-positive powers of ε in (2.3) are given as the unique solution
of the linear system:

(2.6) A(s)Y = J .

Next, we obtain a recursive formula for the Laurent series coefficients in (2.3). To
eliminate negative indices in subscripts, it will be convenient to define Xk := Yk−s,
k ≥ 0 and to introduce the Moore-Penrose generalized inverse of the augmented
matrix A(s). In particular, let G(s) def

= [A(s)]+ be the Moore-Penrose generalized
inverse of A(s) and define the submatrices G

(s)
ij ∈ Cn×n for 0 ≤ i, j ≤ t by

G(s) =

⎡
⎢⎢⎣

G
(s)
00 · · · G

(s)
0s

...
. . .

...
G

(s)
s0 · · · G

(s)
ss

⎤
⎥⎥⎦ ,
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Perturbations and bias in statistical modeling 21

where the dimensions and locations of G
(s)
ij are in correspondence with the block

structure of A(s).
In Avrachenkov et al. [4] it is shown that the first n rows of the generalized inverse

G(s), namely, [G(s)
00 · · · G

(s)
0s ] are all that is needed to calculate the coefficients of

the expansion (2.3). Indeed, the following recursive formula provides the solution:

(2.7) Xk =
s∑

j=0

G
(s)
0j (δj+k,sI −

k∑
i=1

Ai+jXk−i), k = 1, 2, . . . ,

initialising with X0 = G
(s)
0s .

To illustrate these formulae we next use them to verify the first two coefficients
in the expansion of A−1(ε). First, we note that A(0)

L = A, and

A(1)
L =

[
A 0
B A

]
.

It is now easy to check that rank[A(1)] = 3 = rank[A(0)] + n = 1 + 2. Thus, by
Theorem 2.1, the order of the pole is indeed s = 1 and

G(1) =

⎡
⎢⎢⎣

1 1 −1 1
−.5 −.5 1 −1
.75 .75 −.5 1
.75 .75 −.5 1

⎤
⎥⎥⎦ .

It immediately follows from the notation introduced earlier and (2.7) that

Y−1 = X0 = G
(1)
01 =

[
−1 1
1 −1

]
.

Now, using (2.7) again and the fact that Ak = 0 for k ≥ 2, we obtain

Y0 = X1 = G
(1)
00 [I2 − BX0] + G

(1)
01 [0 − 0X0],

that is,

Y0 =
[

1 1
−.5 −.5

] [[
1 0
0 1

]
−

[
−1 1
−2 −1

] [
−1 1
1 −1

]]
=

[
−2 4
1 −2

]
.

It is, perhaps, worth commenting that while, at first sight, the dimension of A(s)

may appear prohibitively large, it appears that the singularity of order s = 1 occurs
very frequently (this is made precise in Avrachenkov [2]).

3. Perturbed linear model

We begin with the standard linear model

(3.1) Yn×1 = XT (ε)n×mβm×1 + ξn×1

and assume that the underlying design matrix X(ε) admits an analytic perturbation
expansion of the form

(3.2) X(ε) = X0 + εX1 + ε2X2 + ε3X3 + · · ·
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where X0, X1, X2, . . . are known component design matrices, and the error terms ξ ∼
N [0, σ2], which is the usual assumption in linear models. Here ε > 0 is referred to as
a perturbation parameter which is typically small and also unknown. As mentioned
above, our goal in this section is to study the effects of the perturbation parameter
ε on the statistical inference about β. In view of the representation of X(ε), the
relevance of the discussion in Section 2 is obvious.

Towards this end, we first note that for a given ε, the maximum likelihood (also
the least squares) estimate of β, which is obtained by minimizing [Y−XT (ε)β]′[Y−
XT (ε)β] with respect to β, is given by

(3.3) β̂(ε) = [X(ε)XT (ε)]−1X(ε)Y.

Moreover, an estimate of the error variance σ2 is obtained from the residual sum
of squares SSE(ε) given by

SSE(ε) = YT [In − XT (ε){X(ε)XT (ε)}−1X(ε)Y(3.4)
= YT P (ε)Y

where P (ε), the usual projection operator, is given by

(3.5) P (ε) = [In − XT (ε){X(ε)XT (ε)}−1X(ε)].

To study the dependence of β̂(ε) and SSE(ε) on ε, let us recall from (3.2) that
X(ε) = X0 + εX1 + ε2X2 + · · · , which yields

X(ε)XT (ε) = X0X
T
0 + ε{X0X

T
1 + X1X

T
0 }(3.6)

+ ε2{X0X
T
2 + X1X

T
1 + X2X

T
0 }

+ · · ·
= B0 + εB1 + ε2B2 + · · ·

where B0 = X0X
T
0 and Bi is symmetric, ∀i. We now distinguish between two cases

depending on whether B0 is nonsingular or singular.
Case 1: B0 is nonsingular. In this case which corresponds to a regular perturbation
of X(ε), we readily get for small ε

(X(ε)XT (ε))−1 = (B0 + εB1 + ε2B2 + · · · )−1(3.7)
= C0 + εC1 + ε2C2 + · · ·

where C0 = B−1
0 ↔ C−1

0 = B0 and the remaining Ci’s can be computed following
the ideas of Section 2. It then follows from (3.3) that

β̂(ε) = (C0 + εC1 + ε2C2 + · · · )(X0 + εX1 + · · · )Y(3.8)
= C0X0Y + ε[C1X0 + C0X1]Y
+ ε2[C2X0 + C1X1 + C0X2]Y + · · ·
= β̂ + ε[C1C

−1
0 β̂ + C0X1Y]

+ ε2[C2C
−1
0 β̂ + C11X1Y + C0X2Y]

+ · · ·
= [C0 + εC1 + ε2C2 + · · · ]C−1

0 β̂

+ ε[C0X1Y] + ε2[C1X1Y + C0X2Y] + · · ·
≈ β̂ + ε[C1B0β̂ + C0X1Y] for small ε
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where

β̂ = B−1
0 X0Y = C0X0Y

is the usual regression coefficient estimate without any perturbation parameter.
Moreover, from (3.7), we get

XT (ε)(X(ε)XT (ε))−1X(ε)(3.9)
= (X0 + εX1 + ε2X2 + · · · )T

×(C0 + εC1 + ε2C2 + · · · )(X0 + εX1 + · · · )
= XT

0 C0X0 + ε[XT
1 C0X0 + XT

0 C1X0 + XT
0 C0X1]

+ε2[XT
2 C0X0 + XT

0 C2X0 + XT
0 C0X2 + XT

1 C1X0

+XT
0 C1X1 + xT

1 C0X1]
+ · · ·
≈ XT

0 C0X0 + ε[XT
1 C0X0 + XT

0 C1X0 + XT
0 C0X1] for small ε

which readily yields the following expansion of the projection operator

P (ε) = In − XT (ε){X(ε)XT (ε)}−1X(ε)(3.10)
= [In − XT

0 C0X0] − ε[XT
1 C0X0 + XT

0 C1X0 + XT
0 C0X1]

−ε2[XT
2 C0X0 + XT

0 C2X0 + XT
0 C0X2 + XT

1 C1X0

+XT
0 C1X1 + XT

1 C0X1]
− · · ·

so that, from (3.4), we get

SSE(ε) = SSE − εYT [XT
1 C0X0 + XT

0 C1X0 + XT
0 C0X1]Y(3.11)

−ε2YT
[
XT

2 C0X0 + XT
0 C2X0 + XT

0 C0X2 + XT
1 C1X0

+XT
0 C1X1 + XT

1 C0X1

]
Y − · · ·

where SSE = YT (In − XT
0 C0X0)Y is the standard error sum of squares without

any perturbation parameter. The expansions in (3.8) and (3.11) clearly reveal the
effects of the perturbation parameter ε on the estimates of β and σ2.

We now turn our attention to the problem of testing H0 : β = β0 vs H1 : β �= β0.
Under normality and independence of the error terms, a standard test in this context
is the familiar F -test based on the F -statistic given by

F (ε) =
(β̂(ε) − β0)T [X(ε)XT (ε)](β̂(ε) − β0)/m

SSE(ε)/(n − m)
∼ Fm,n−m(H0).(3.12)

To study the dependence of F (ε) on ε, we proceed as follows. From (3.8) and (3.11),
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we get

(β̂(ε)) − β0)
T [X(ε)XT (ε)](β̂(ε) − β0)(3.13)

= [(β̂ − β0) + ε(C1X0 + C0X1)Y
+ε2(C2X0 + C1X1 + C0X2)Y + · · · ]T

[B0 + εB1 + ε2B2 + · · · ]
[(β̂ − β0) + ε(C1X0 + C0X1)Y
+ε2(C2X0 + C1X1 + C0X2)Y + · · · ]

= (β̂ − β0)
T B0(β̂ − β0)

+ ε[(C1C
−1
0 β̂ + C0X1Y)T B0(β̂ − β0)

+(β̂ − β0)
T B1(β̂ − β0)

+(β̂ − β0)
T B0(C1C

−1
0 β̂ + C0X1Y)]

+ ε2[2(C2C
−1
0 β̂ + C1X1Y + C0X2Y)T B0(β̂ − β0)

+ (β̂ − β0)
T B2(β̂ − β0)

+2(C1C
−1
0 β̂ + C0X1Y)T B1(β̂ − β0)

+(C2C
−1
0 β̂ + C1X1YB0(C2C

−1
0 β̂C1X1Y + C0X2Y + C0X2Y)]

+ · · ·
= (β̂ − β0)

T B0(β̂ − β0)

+ε[2β̂
T
C−1

0 B0(β̂ − β0) + 2YT XT
1 (β̂ − β0)

+(β̂ − β0)
T B1(β̂ − β0)]

+ · · ·

Hence, up to the first order approximation, we can express F (ε) as F (ε) = N(ε)/
D(ε) where

N(ε) = {(β̂ − β0)
T B0(β̂ − β0) + ε[2β̂

T
C−1

0 B0(β̂ − β0) + 2YT XT
1 (β̂ − β0)

+(β̂ − β0)
T B1(β̂ − β0)]}/m

and

D(ε) =
[SSE − εYT (XT

1 C0X0 + XT
0 C1X0 + XT

0 C0X1)Y]
(n − m)

.
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The expression F (ε) can be further expanded as

F (ε) =
(n − m)

m
[(β̂ − β0)

T B0(β̂ − β0)(3.14)

+ ε{2β̂
T
C−1

0 B0(β̂ − β0)

+ 2YT XT
1 (β̂ − β0)

+ (β̂ − β0)
T B1(β̂ − β0)}]

1
SSE

[1 +
εYT (XT

1 C0X0 + XT
0 C1X0 + XT

0 C0X1)Y
SSE

] + · · ·

= F0 + ε[(
n − m

m
) · 2 · (β̂

T
B0C1B0(β̂ − β0) + YT XT

1 (β̂ − β0)
SSE

+(
n − m

m
) · (β̂ − β0)T B0(β̂ − β0)

SSE

·Y
T {XT

1 C0X0 + XT
0 C1X0 + XT

0 C0X1}Y
SSE

] + · · ·

where F0, the usual F statistic for testing H0 versus H1, is defined as

(3.15) F0 =
(β̂ − β0)T B0(β̂ − β0)/m

SSE/(n − m)
.

Lastly, we discuss the nature of the confidence set for β under the perturbed
linear model (3.1). Obviously, under the assumption of normality and independence
of errors, the (1 − α) level confidence set for β is given by the following.

C(ε) = {β : (β̂(ε) − β)T (X(ε)XT (ε))(β̂(ε) − β)

≤ m

n − m
· Fα ; m,n−m · SSE(ε)}(3.16)

≡ {β : F (ε) ≤ Fα ; m,n−m}.

The dependence of C(ε) on ε can then be studied based on the expansion of F (ε)
given in (3.14) , and we have up to the first order

C(ε) = {β :
(β̂ − β)′B0(β̂ − β)/m

SSE/(n − m)
(3.17)

+ε · n − m

n
[
2β̂

T
B0C1B0(β̂ − β) + YT XT

1 (β̂ − β)
SSE

+
(β̂ − β)T B0(β̂ − β)

SSE
· YT (XT

1 C0X0 + XT
0 C1X0 + XT

0 C0X1)Y
SSE

]

≤ Fα ; m,n−m}.

Case 2: B0 = X0X
T
0 is singular. We now turn our attention to the case when

B0 is singular which is the singular perturbation situation and study the nature
of dependence of the above estimates and test statistics on ε. We define B(ε) =
X(ε)XT (ε), and consider first the case when

(3.18) B−1(ε)X(ε) =
∞∑

k=0

εkC∗
k .
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The above condition will not always hold, and necessary and sufficient condi-
tions on the basic design matrices X0, X1, . . . can be developed under which such a
representation holds by equating X(ε) to B(ε) ×

∑∞
k=0 εkC∗

k . For example, equat-
ing the first two terms yields conditions on the existence of C∗

0 and C∗
1 satisfying:

X0 = (X0X
T
0 )C∗

0 and X1 = (X0X
T
0 )C∗

1 + (X1X
T
0 + X0X

T
1 )C∗

0 .
Under the above representation (3.18), let β̃ = C∗

0Y which is the limiting es-
timate of β as ε approaches 0. It should be noted that β̃ = BG

0 X0Y for some
generalized inverse BG

0 of B0 = X0X
T
0 . To see this, note that under the represen-

tation (3.18),

X(ε) = B(ε)B−1(ε)X(ε) = X(ε)XT (ε)(
∞∑

k=0

εkC∗
k).

Taking the limit as ε → 0, we get

X0 = X0X
T
0 C∗

0 = B0C
∗
0 .

Thus
C∗

0 = BG
0 X0

for some generalized inverse BG
0 of B0.

Returning to the error sum of squares SSE(ε), recall that

SSE(ε) = YT [I − XT (ε)B−1(ε)X(ε)]Y

and

P (ε) = In − XT (ε)B−1(ε)X(ε)(3.19)

=
∞∑

k=0

εkD∗
k (say),

where we have used the representation (3.18). We define limε→0 SSE(ε) = YT D∗
0Y,

where
D∗

0 = P (0) = In − XT
0 C∗

0 = In − XT
0 BG

0 X0,

which is always idempotent. Thus SSE = SSE(ε = 0) = YT [In − X0B
G
0 X0]Y

and because of the idempotency of D∗
0 we conclude that SSE

σ2 follows a non-central
chisquare distribution with non-centrality parameter β′X(ε)D∗

0XT (ε)β/σ2 and de-
grees of freedom ν given by

ν = rank{P (ε = 0)}
= n − rank(X0B

G
0 X0)

= n − r, r = rank(X0).

Returning to the testing problem, let us define

F (ε) =
(β̃(ε) − β0)T [X(ε)XT (ε)][β̃(ε) − β0]/m

SSE(ε)/(n − m)

(3.20)
→

ε → 0 F̃ =
(β̃ − β0)T B0(β̃ − β0)/m

SSE/(n − m)
.
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We note that when ε = 0, for testing H0: Xβ = Xβ0, the F statistic, say F0, is
given by

F0 =
(β̂ − β0)T B0(β̂ − β)/r

SSE/(n − r)

where
β̂ = BG

0 X0Y

and r is the rank of X0. Thus F̃ is a scalar multiple of F0.
When the representation (3.18) assumed earlier under Case 2 does not hold,

we would actually have a Laurent series expansion of B−1(ε) (as opposed to a
Maclaurin series), resulting in

(3.21) B−1(ε)X(ε) =
∞∑

k=−s

εkC∗
k .

In this case
β̃(ε) = B−1(ε)X(ε)Y

has no limit as ε ↓ 0, but

E[β̃(ε)] = B−1(ε)X(ε)XT (ε)β = β, ∀ε

⇒ β̃(ε) is an unbiased estimate of β.

Var[β̃(ε)] = σ2B−1(ε)X(ε)XT (ε)B−1(ε)
= σ2B−1(ε).

Moreover, β̂(ε) is also unbiased as ε → 0 and

Var[β̂(ε)] ∼ σ2BG
0 X0X

T
0 BG

0

= σ2BG
0 .

Obviously, β̃(ε) and β̂ are equivalent for small ε if B−1(ε)
→

ε ↓ 0 BG
0 .

Remark 3.1. Interestingly enough, as proved in Avrachenkov [2], the projection
matrix P (ε) is uniformly bounded in ε > 0, and it does admit a Maclaurin series
expansion at ε = 0, irrespective of the nature of B−1(ε)X(ε). Incidentally, the
following simple example demonstrates that the projection matrix P (ε) can be
even independent of ε.

Example 3.1. Take

XT
0 =

⎛
⎜⎜⎝

2 0
2 0
1 0
1 0

⎞
⎟⎟⎠ , XT

1 =

⎛
⎜⎜⎝

0 1
0 1
0 1
0 1

⎞
⎟⎟⎠ .

Then

XT (ε) =

⎛
⎜⎜⎝

2 ε
2 ε
1 ε
1 ε

⎞
⎟⎟⎠ .
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One might imagine that the two columns of XT (ε) are generated by two sensors:
the first one is accurate but the second one systematically overestimates the true
reading of 0 by the amount ε. If

X̃T =

⎛
⎜⎜⎝

2 1
2 1
1 1
1 1

⎞
⎟⎟⎠ ,

then we have
I4 − P (ε) = X̃T (X̃X̃T )−1X̃.

Thus P (ε) is free of ε. Hence, in this example, the systematic bias leaves the pro-
jection matrix (and hence also the residual sum of squares) unchanged.

Remark 3.2. Incidentally, an estimate of ε can be provided by minimizing the error
sum of squares, SSE(ε), which is essentially the maximum likelihood estimate of ε.
Recalling from (3.11) the representation of SSE(ε) and keeping terms up to ε2, we
can verify that SSE(ε) is convex in ε, and hence the minimizer solution is given by

(3.22)

ε̂ =
YT [XT

1 C0X0 + XT
0 C1X0 + XT

0 C0X1]Y
2YT [XT

2 C0X0 + XT
0 C2X0 + XT

0 C0X2 + XT
1 C1X0 + XT

0 C1X1 + XT
1 C0X1]Y

.

When the perturbation parameter ε is unknown, the point estimate ε̂ provides
information about its magnitude. It is quite likely that the parameters of primary
interest in a perturbed linear model are β and σ2. After obtaining ε̂, the maximum
likelihood estimate of β can be computed as β̂(ε̂). Similarly σ2 can be estimated.

4. Perturbation in principal component analysis

In this section we discuss some effects of perturbation in principal component analy-
sis (PCA). It is well known that in the standard PCA approach, one tries to reduce
the dimension of a random p×1 vector y with a mean vector μ and a dispersion ma-
trix Σ by successively taking suitable orthogonal linear combinations of y such that
the resultant linear combinations, known as principal components, have decreasing
variances; see, for example, Anderson [1].

Generalizing the model (3.1) to a multivariate set up, we write

(4.1) Yn×p = XT (ε)n×mβm×p + ψn×p

where Y is a matrix of observations, the matrix X(ε) is assumed to be of full column
rank, and the rows of ψ are assumed to be independently distributed with mean
vector 0 and a common dispersion matrix Σ. An estimate of the dispersion matrix
Σ is then obtained as

(4.2) Σ̂(ε) = YT P (ε)Y

where, as before, P (ε) is the projection matrix defined in (3.5). The sample principal
components dT

1 y, dT
2 y, . . . are then obtained by solving the equations:

(4.3) Σ̂(ε)d(ε) = λ(ε)d(ε)
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where λ(ε)’s are the eigenvalues of Σ̂(ε). When ε = 0, which means absence of any
perturbation, the usual PCA applies. When ε > 0, the sample eigenvalues and the
eigenvectors will depend on the perturbation parameter ε. There are quite a few
papers dealing with the behaviors of such eigenvalues and eigenvectors as functions
of ε from a deterministic point of view.

In our context, the statistical properties of the random eigenvalues and eigenvec-
tors can be studied based on such behaviors. It turns out that while the behaviors
of the eigenvectors are smooth, those of the eigenvalues are not!

Following Remark 2.4, we can write P (ε) as

(4.4) P (ε) = P0 + εP1 + ε2P2 + · · ·

which readily yields

(4.5) Σ̂(ε) = S0 + εS1 + ε2S2 + · · ·

where S0 = SSE. The eigenvalues λ(ε) then satisfy the determinantal equation:

(4.6) |S0 + εS1 + ε2S2 + · · · − λ(ε)Ip| = 0

and once the λ(ε)’s have been determined, the eigen vectors d(ε)’s are obtained
from the equations given in (4.3).

In the special case when P (ε) = P0 + εP1, the equation (4.6) reduces to

(4.7) |S0 + εS1 − λ(ε)Ip| = 0

which when further specialized to p = 2 yields

λ1(ε) + λ2(ε) = tr(S0) + εtr(S1)λ1(ε)λ2(ε) = |S0 + εS1|.

Since (λ1(ε) − λ2(ε))2 = (λ1(ε) + λ2(ε))2 − 4λ1(ε)λ2(ε), up to the first order of
approximation, we get

(4.8) λ1(ε) − λ2(ε) ∼ A + ε
[(s111 − s122)(s011 − s022) + 4s012s112]

A

where

(4.9) A = [(s011 − s022)2 + 4s2
012]

1/2.

In the above, we have used the notation

S0 =
[

s011 s012

s012 s022

]

S1 =
[

s111 s112

s112 s122

]
.

The equations (4.8) and (4.9) can be simultaneously solved to get first order
approximations of λ1(ε) and λ2(ε). Once this is done, first order approximations of
the two eigenvectors d1(ε) ∼ d10 + εd11 and d2(ε) ∼ d20 + εd21 are obtained by
solving the equations:

(4.10) [S0 + εS1](d10 + εd11) = λ1(ε)(d10 + εd11)
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(4.11) [S0 + εS1](d20 + εd21) = λ2(ε)(d20 + εd21)

Writing λ1(ε) ∼ λ10+ελ11, we readily get d10 and d11 as solutions of the equations:

S0d10 = λ10d10S0d11 + S1d10 = λ11d10 + λ10d11.

Likewise, the components of the other eigenvector d2(ε) can be obtained.
It would indeed be challenging to study the statistical properties of the resultant

eigenvectors and eigenvalues.

5. Perturbation in factor analysis

In this section we discuss some consequences of perturbation in the context of factor
analysis (FA).

Let Y = (Y1, Y2, . . . , Yp) be a vector of manifest variables. Then the FA model
postulates that (Christensen [7] and Johnson and Wichern [10]) the manifest vari-
ables are linear functions of some random latent variables plus a residual term. The
functional relationship is typically expressed as

Y1 = λ11f1 + λ12f2 + · · · + λ1kfk + ψ1(5.1)
Y2 = λ21f1 + λ22f2 + · · · + λ2kfk + ψ2

· · ·
Yp = λp1f1 + λp2f2 + · · · + λpkfk + ψp

where f1, f2, . . . , fk represent the random latent or common factors and (ψ1, ψ2,
. . . , ψp) denote the residual or error terms. Here the elements λ’s are known as
factor loadings, the latent variables are assumed to have a normal distribution with
mean vector 0 and a dispersion matrix Φ, and the residuals are assumed to be
independent of f ’s, and independently normally distributed with mean 0 and a
variance-covariance matrix Ψ = diag(ψ11, ψ22, . . . , ψpp). The dispersion matrix Σ
of Y is then given by

(5.2) Σ = ΓΦΓT + Ψ.

The literature on FA usually assumes that the latent variables are orthogonal,
resulting in Φ = Ik and hence the simplification Σ = ΓΓT + Ψ.

Since EY = 0, the sample covariance matrix S can be used to estimate Σ, and
the parameters in Γ and Ψ are estimated by solving

(5.3) S = Γ̂Γ̂T + Ψ̂,

subject to the condition that Γ̂T (Ψ̂)−1Γ̂ is diagonal. Iterative methods can be used
to solve the above equations.

The method of maximum likelihood, on the other hand, is based on maximizing
the likelihood or its logarithm given by

(5.4) L(Γ, Ψ|S) ∼ −[ln{det(Σ)} + tr(SΣ−1)]

which is directly a function of factor loadings and the error variances in view of
(5.2). An old but most successful algorithm due to Joreskog [11] which runs in two
steps, first by maximizing L with respect to Γ for a fixed Ψ, and then by maximizing
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with respect to Ψ, can be used to derive the maximum likelihood estimates. Details
are omitted.

Returning to the perturbation formulation, we can introduce the perturbation
parameter ε in the form

(5.5) Φ(ε) = Ik + εΦ1 + ε2Φ2 + · · ·

which takes us away from the usual assumption of independence of the latent vari-
ables and emphasizes that there may be some uncertainties in this assumption. We
can then rewrite Σ as

Σ(ε) = ΓΦ(ε)ΓT + Ψ(5.6)
= Γ[Ik + εΦ1 + ε2Φ2 + · · · ]ΓT + Ψ
= [ΓΓT + Ψ] + εΓΦ1ΓT + ε2ΓΦ2ΓT + · · ·

which can be used to compute and expand Σ(ε)−1 and also ln |Σ(ε)| in powers of
ε. The maximum likelihood estimates of the factor loadings (elements of Γ) and
the variances (elements of Ψ) would then naturally depend on the perturbation
parameter ε, and it is indeed possible to study the effect of ε on these estimates
along the same lines as in the previous sections. Details are omitted.

6. Applications

In this section we provide an application of the theory developed in this paper.
Consider the nonlinear regression of Y on X given by (Gallant [8], Chapter 1,
Example 1)

(6.1) Yi = θ1x1i + θ2x2i + θ0e
εx3i + ei, i = 1, . . . , n

where the Yi’s are the responses of a treatment-control design, x1 = 1 and 0 rep-
resent, respectively, treatment and control scenarios, x2 represents a variable with
values between 1 and 2, and x3 is the variable showing age of the experimental
material. The errors ei’s are assumed to be (normally) distributed with mean 0 and
variance σ2. For ε = 0, this of course is a simple linear regression of Y on (x1, x2)
for which standard inference applies. For ε > 0, this is an application of a non-linear
regression set up for which drawing appropriate inference about the parameters is
rather complex. An expansion of eεx3i readily yields the matrices X0, X1, X2, . . .
given in (3.2), from which the relevant quantities β̂(ε), SSE(ε), F (ε) and C(ε) can
be computed up to any order of powers of ε.

The data given in Gallant [8], page 4, has all the x2i values equal to one. When
this is the case, it is clear from (6.1) that θ2 and θ0 are not identifiable when ε = 0.
Consequently, in order to illustrate our methodology, we shall avoid the choice
x2i = 1 for all i. In the data given in Table 1, the x2i-values were randomly chosen
from a uniform distribution on (1, 2). Also given in Table 1 are four data sets,
simulated based on the model (6.1). The data sets share the same set of values of
the covariates x1, x2 and x3, and differ in the values of the response variable Y . In
each case, n = 30.

To see the effect of ε on the standard analysis, we note that for the given data
sets, XT

o : 30 × 3 is a matrix consisting of the first three columns from Table 1,
XT

1 : 30 × 3 is a matrix whose first column are the elements x3 and the remaining
two columns are null vectors, and lastly, XT

2 : 30×3 is a matrix whose first column

Archived at Flinders University: dspace.flinders.edu.au



32 J. A. Filar et al.

Table 1

Data sets

x0 x1 x2 x3 Y0 Y1 Y2 Y3

1 1 1.3420 6.28 6.92 7.0451 7.6532 8.6632
1 0 1.5813 9.86 4.21 4.4267 5.4939 7.5804
1 1 1.1043 9.11 4.34 4.5297 5.4928 7.3125
1 0 1.6867 8.43 3.81 3.9869 4.8595 6.4576
1 1 1.5164 8.11 3.99 4.1633 4.9944 6.4946
1 0 1.5672 1.82 3.95 3.9820 4.1358 4.3445
1 1 1.9644 6.58 6.28 6.4206 7.0637 8.1464
1 0 1.5411 5.02 5.63 5.7309 6.1986 6.9320
1 1 1.0064 6.52 4.05 4.1857 4.8217 5.8897
1 0 1.8726 3.75 5.53 5.6102 5.9462 6.4438
1 1 1.0314 9.86 5.09 5.3012 6.3684 8.4550
1 0 1.9190 7.31 6.16 6.3080 7.0388 8.3106
1 1 1.6507 0.47 5.80 5.8132 5.8514 5.9001
1 0 1.7083 0.07 4.98 4.9816 4.9873 4.9943
1 1 1.1261 4.07 4.97 5.0493 5.4176 5.9709
1 0 1.1693 4.61 5.38 5.4791 5.9032 6.5561
1 1 1.8063 0.17 7.19 7.1955 7.2092 7.2264
1 0 1.7086 6.99 5.19 5.3309 6.0228 7.2096
1 1 1.4324 4.39 6.20 6.2895 6.6907 7.3021
1 0 1.5265 0.39 5.14 5.1441 5.1757 5.2158
1 1 1.7009 4.73 4.37 4.4670 4.9038 5.5798
1 0 1.5807 9.42 3.82 4.0196 5.0253 6.9523
1 1 1.5538 8.90 5.38 5.5706 6.5055 8.2547
1 0 1.4150 3.02 3.12 3.1812 3.4459 3.8250
1 1 1.8566 0.77 5.06 5.0730 5.1360 5.2176
1 0 1.5010 3.31 4.08 4.1479 4.4406 4.8653
1 1 1.1584 4.51 5.72 5.8164 6.2300 6.8639
1 0 1.3310 2.65 3.89 3.9459 4.1756 4.4991
1 1 1.4981 0.08 6.12 6.1169 6.1234 6.1314
1 0 1.0008 6.11 2.84 2.9685 3.5571 4.5271

elements are (0.5) times the squares of x3 and the remaining two columns are null
vectors. Using these basic matrices, we readily compute

B0 = X0X
T
0 =

⎛
⎝ 30 15 44.8534

15 15 21.7371
44.8534 21.7371 69.3119

⎞
⎠ .

C0 = B−1
0 =

⎛
⎝ 1.1523 −0.1314 −0.7045

−0.1314 0.1372 0.0420
−0.7045 0.0420 0.4571

⎞
⎠ .

B1 = X1X
T
0 + X0X

T
1 =

⎛
⎝ 294.62 74.55 214.3236

74.55 0 0
214.3236 0 0

⎞
⎠ .

C1 = −C0B1C0 =

⎛
⎝ −20.6598 1.3236 9.3912

1.3236 −0.0332 −0.4397
9.3912 −0.4397 −3.7610

⎞
⎠ .

B2 = X2X
T
0 + X1X1

T + X0X
T
2 =

⎛
⎝ 2035.2007 264.923 738.250

264.923 0 0
738.250 0 0

⎞
⎠ .
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C2 = −B−1
0 (B2C0 + B1C1) =

⎛
⎝ −164.4712 32.577 147.827

32.577 −4.3659 −22.4049
147.8266 −22.4049 −110.1712

⎞
⎠ .

Hence, using (3.22), an estimate of ε for the four data sets is obtained as ε̂0 =
0.0505, ε̂1 = 0.0195, ε̂2 = −0.0227, ε̂3 = −0.1861. This results in the estimated
regression coefficients and the estimated F -values (for testing the null hypothesis
H0 : θ0 = θ1 = θ2 = 1), up to the first order, as

Estimated regression coefficients (standard errors) and F-values
Data Set θ̂0 θ̂1 θ̂2 F

1 2.0153 (0.9632) 1.0642 (0.3329) 1.6228 (0.6068) 48.7884
2 2.2057 (0.9513) 1.0629 (0.3287) 1.5645 (0.5993) 55.2427
3 3.0969 (0.9724) 1.0545 (0.3360) 1.2967 (0.6126) 80.1393
4 4.6550 (1.3455) 1.0537 (0.4650) 0.8177 (0.8476) 73.7195

On the other hand, taking ε = 0, the estimated regression coefficients and the
F -values, under the same null hypothesis H0 : θ0 = θ1 = θ2 = 1 as above, are
obtained in the four cases as

Estimated regression coefficients (standard errors) and F-values
when ε = 0

Data Set θ̂0 θ̂1 θ̂2 F
1 2.0142 (0.9605) 1.0640 (0.3327) 1.6235 (0.6064) 48.8080
2 2.2016 (0.9499) 1.0618 (0.3283) 1.5673 (0.5984) 55.3330
3 3.0930 (0.9725) 1.0549 (0.3362) 1.2986(0.6126) 80.0064
4 4.6511 (1.3450) 1.0540 (0.4650) 0.8199 (0.8472) 73.7090

It is interesting to note that there is practically no change in the estimated
regression coefficients or the F -values when ε is zero or non-zero. Thus we conclude
that for inference concerning the model (6.1), the non-linearity due to the presence
of ε is inconsequential; we might as well assume that ε = 0, and carry out the usual
linear model analysis.
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