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[1] Recent applications of multimodel methods have demonstrated their potential in
quantifying conceptual model uncertainty in groundwater modeling applications. To date,
however, little is known about the value of conditioning to constrain the ensemble of
conceptualizations, to differentiate among retained alternative conceptualizations, and
to reduce conceptual model uncertainty. We address these questions by conditioning
multimodel simulations on measurements of hydraulic conductivity and observations of
system‐state variables and evaluating the effects on (1) the posterior multimodel statistics
and (2) the contribution of conceptual model uncertainty to the predictive uncertainty.
Multimodel aggregation and conditioning is performed by combining the Generalized
Likelihood Uncertainty Estimation (GLUE) method and Bayesian Model Averaging
(BMA). As an illustrative example we employ a 3‐dimensional hypothetical system under
steady state conditions, for which uncertainty about the conceptualization is expressed by an
ensemble (M) of seven models with varying complexity. Results show that conditioning
on heads allowed for the exclusion of the two simplest models, but that their information
content is limited to further differentiate among the retained conceptualizations.
Conditioning on increasing numbers of conductivity measurements allowed for a further
refinement of the ensemble M and resulted in an increased precision and accuracy of
the multimodel predictions. For some groundwater flow components not included as
conditioning data, however, the gain in accuracy and precision was partially offset
by strongly deviating predictions of a single conceptualization. Identifying the
conceptualization producing the most deviating predictions may guide data collection
campaigns aimed at acquiring data to further eliminate such conceptualizations. Including
groundwater flow and river discharge observations further allowed for a better
differentiation among alternative conceptualizations and drastic reductions of the predictive
variances. Results strongly advocate the use of observations less commonly available than
groundwater heads to reduce conceptual model uncertainty in groundwater modeling.

Citation: Rojas, R., L. Feyen, O. Batelaan, and A. Dassargues (2010), On the value of conditioning data to reduce conceptual
model uncertainty in groundwater modeling, Water Resour. Res., 46, W08520, doi:10.1029/2009WR008822.

1. Introduction and Scope

[2] Groundwater modeling is a key component of sus-
tainable groundwater management. Reliable and accurate
model predictions are therefore needed to ensure an accept-
able level of confidence in the model results. It has recently

been suggested that predictive uncertainty in groundwater
modeling is largely dominated by uncertainties arising from
the definition of alternative conceptual models and that
parametric uncertainty solely does not compensate for con-
ceptual model uncertainty [Neuman, 2003; Ye et al., 2004;
Bredehoeft, 2005; Højberg and Refsgaard, 2005; Poeter and
Anderson, 2005; Refsgaard et al., 2006; Meyer et al., 2007;
Rojas et al., 2008; Seifert et al., 2008].
[3] The debate as to whether or not postulate simplified or

complex/elaborated models to explain a groundwater system
[see, e.g., Neuman and Wierenga, 2003; Gómez‐Hernández,
2006;Hill, 2006;Hill and Tiedeman, 2007;Hunt et al., 2007;
Renard, 2007], the advances in computational power, as well
as the increasing awareness among scientists to address
uncertainty in model predictions [see, e.g., Walker and
Marchau, 2003; Refsgaard et al., 2005; Van der Sluijs,
2005; Pappenberger and Beven, 2006; Refsgaard et al.,
2007] have stimulated a growing tendency of postulating
alternative conceptualizations [e.g., Harrar et al., 2003;
Meyer et al., 2004; Højberg and Refsgaard, 2005; Meyer
et al., 2007; Troldborg et al., 2007; Rojas et al., 2008;
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Seifert et al., 2008; Ijiri et al., 2009; Rojas et al., 2010;
R. Rojas et al., Application of a multimodel approach to
account for conceptual model and scenario uncertainties in
groundwater modelling, submitted to Journal of Hydrology,
2009]. Rather than relying on a single conceptual model, it
seems more appropriate to consider a range of plausible
system representations and analyze the combined multimodel
output to assess the predictivemodeling uncertainty.Whereas
uncertainty estimations based on a single conceptualization
are more likely to be biased and under‐dispersive, uncertainty
estimations based on an ensemble of models are less (artifi-
cially) conservative and are more likely to capture the
unknown true predicted value [Neuman, 2003; Rojas et al.,
2008].
[4] Several multimodel methods have recently been pro-

posed. They seek to obtain an average prediction from a set of
plausible conceptual models by linearly combining individ-
ual model predictions. The weights to aggregate multiple
model outputs can be equal (model average) in the simplest
case, can be determined through regression‐based approaches
[e.g., Abrahart and See, 2002; Georgakakos et al., 2004], or
can be linked to model performance [e.g., Neuman, 2003;
Poeter and Anderson, 2005; Refsgaard et al., 2006; Ajami
et al., 2007; Rojas et al., 2008]. Amongst multimodel
methods based on model performance, the classical idea of
Bayesian Model Averaging (BMA) [Leamer, 1978; Box,
1980; Draper, 1995; Kass and Raftery, 1995; Hoeting
et al., 1999] has recently gained popularity [e.g., Neuman,
2003; Ajami et al., 2005; Vrugt et al., 2006; Ajami et al.,
2007; Duan et al., 2007; Vrugt and Robinson, 2007; Ajami
et al., 2008; Tsai and Li, 2008; Wöhling and Vrugt, 2008;
Hsu et al., 2009; Li and Tsai, 2009; Singh et al., 2010; Ye
et al., 2010a]. In short, BMA weights the predictions of
competing models by their corresponding posterior model
probability, representing each (conceptual) model’s relative
skill to reproduce system behavior in the observation period.
Studies applying the method to a range of different problems
have demonstrated that BMA produces more accurate and
reliable predictions than other existing multimodel tech-
niques [e.g., Raftery and Zhang, 2003; Ye et al., 2004; Ajami
et al., 2005].
[5] Despite the development of these multimodel tech-

niques, performing the aggregation of multiple model pre-
dictions or assessing uncertainty arising from the definition
of alternative conceptualizations is not common practice in
groundwater flow or solute transport modeling [see, e.g.,
Sohn et al., 2000; Harrar et al., 2003; Højberg and
Refsgaard, 2005; Troldborg et al., 2007; Seifert et al.,
2008; Ijiri et al., 2009]. Rather, modelers tend to limit
themselves to use the “best” conceptual model available,
even though observations may be reproduced equally well by
more than one conceptual model. Constraints on available
resources certainly limit the use of alternative conceptual
models for predictive purposes, thus promoting the use of the
“best” available conceptualization. It is amply recognized,
however, that new data may have an impact on the conceptual
understanding and that the selected conceptualization should
be open for improvement as a result. In addition, the (mis)
perception of technical/computational limitations among
practitioners as well as the existence of administrative/
economical constraints hamper the implementation of uncer-

tainty analyses [Bredehoeft, 2003, 2005; Renard, 2007].
Pappenberger and Beven [2006] discuss in a more general
context reasons that justify avoiding uncertainty analysis in
mechanistic environmental modeling.
[6] The ultimate goal of an uncertainty analysis is to

quantify the degree of confidence in the model results given
the uncertainties involved in the modeling task [Cacuci,
2003; Saltelli et al., 2008; Hill and Tiedeman, 2007].
Ideally, the (total) predictive uncertainty, including the
contributions originating from different sources (e.g., forcing
data, parameters and conceptual models), should be assessed.
This information allows the analyst to focus on possible
strategies to increase her/his confidence in the model results,
i.e., to decrease predictive uncertainty.
[7] One strategy to decrease the uncertainty in ground-

water model predictions is to reproduce (or honor) mea-
surements of spatially distributed key parameters. It is
well‐known that the spatial distribution of hydraulic con-
ductivity forms a large source of uncertainty in groundwater
modeling [see, e.g., Freeze, 1975; Dagan, 1989; Gelhar,
1993; Dagan and Neuman, 1997; Rubin, 2003; Moore and
Doherty, 2005]. As a result, methods aimed at obtaining
conditional realizations of hydraulic conductivity (or trans-
missivity) fields to reduce uncertainty arising from this source
are abundant and well documented in the literature. Some of
these approaches are gradient‐based inverse techniques [e.g.,
Carrera and Neuman, 1986a, 1986b, 1986c; Tiedeman et al.,
1997, 1998, 2003, 2004; Foglia et al., 2009], others use direct
measurements of hydraulic conductivity or transmissivity
to generate conditional realizations of the K‐ or T‐field [e.g.,
Delhomme, 1979; Hill et al., 1998; Moore and Doherty,
2005], some use linearized stochastic inverse solutions of
the groundwater flow equation based on cokriging (e.g., of
transmissivity or hydraulic conductivity and head measure-
ments) [see, e.g., Kitanidis and Vomvoris, 1983; Hoeksema
and Kitanidis, 1984; Dagan, 1985; Rubin and Dagan,
1987; Gutjahr and Wilson, 1989; Ezzedine and Rubin,
1996; Fienen et al., 2008, 2009], whereas others employ
Monte Carlo‐based inverse modeling techniques to condition
on observations of system‐state variables such as heads,
concentrations, and/or travel time [e.g., Sahuquillo et al.,
1992; Gutjahr et al., 1994; LaVenue et al., 1995; Poeter
and McKenna, 1995; RamaRao et al., 1995; Gómez‐
Hernández et al., 1997; Oliver et al., 1997; Hanna and
Yeh, 1998; Hendricks Franssen et al., 2003; Alcolea et al.,
2006; Pasquier and Marcotte, 2006; Capilla and Llopis‐
Albert, 2009; Llopis‐Albert and Capilla, 2009].
[8] Another possible strategy to condition simulations is

to consider the full likelihood response surface within a
Bayesian framework. Rather than retaining only those
simulations that “closely” reproduce the observations, e.g.,
by minimizing discrepancies between observations and
simulated equivalents, or rather than using the maximum
likelihood estimate [e.g., Carrera and Neuman, 1986a,
1986c], this strategy acknowledges some departure between
observations and simulated equivalents that expresses the
ability of system simulators to represent the system. This
approach is closer to the philosophy underpinning the Gen-
eralized Likelihood Uncertainty Estimation (GLUE) method
proposed by Beven and Binley [1992], in which a quantitative
measure of performance (also known as likelihood measure)

ROJAS ET AL.: CONDITIONING DATA AND CONCEPTUAL MODEL UNCERTAINTY W08520W08520

2 of 20Archived at Flinders University: dspace.flinders.edu.au



is used to assess the acceptability of system simulators given a
set of observations. Updating of the model likelihood dis-
tributions as new calibration data become available is handled
easily within a Bayesian framework. Several authors have
applied this approach in groundwater modeling to obtain
simulations conditioned on observations of heads [e.g.,Feyen
et al., 2001; Morse et al., 2003], river discharges [e.g.,
Jensen, 2003], concentrations [e.g., Sohn et al., 2000;Hassan
et al., 2008], or travel times [e.g., Feyen et al., 2003]. Despite
the lack of true conditioning, in the sense of reproducing
observations of system‐state variables exactly, we believe
that the Bayesian method is particularly interesting in situa-
tions where new data become available, e.g., in transient
groundwater flow modeling, as it provides a formal mecha-
nism for combining previous information with new infor-
mation. Even so, it is to be expected that in such situations the
conditioning techniques described above will yield different
sets of conditional simulations, depending on the time series
or data set used in the conditioning process. Moreover, in any
real application there is the issue as to whether the simulated
equivalents of system‐state variables are really comparable to
the observations because of the scale effect at the element
scale of the model and because of measurement errors.
[9] Notwithstanding the outstanding level of sophistication

and the robust theoretical grounds of the aforementioned
techniques, the effects of conditioning on parameter values
and observations of system‐state variables within a multi-
model framework have been poorly covered to date. The
conditioning techniques and study cases described above rely
exclusively on a single conceptualization. To the best of our
knowledge, Sohn et al. [2000] are the first and until present
the only to report on the value of conditioning data to assess
conceptual model and parameter uncertainty in the context
of groundwater modeling. They presented a two‐step
Bayesian Monte Carlo (BMC) method to assess the value of
conditioning to head and concentration measurements for
predicting TCE concentrations. To perform the Bayesian
updating, a “Bayes window” method that is analogous to
GLUE was used. In the work of Sohn et al. [2000], however,
no attempt was made to aggregate multimodel predictions, to
quantify the contribution of conceptual model uncertainty to
the predictive uncertainty, or to assess the value of condi-
tioning data on multimodel predictions.
[10] In this paper we employ the multimodel method

developed by Rojas et al. [2008] to assess the value of con-
ditioning data on multimodel posterior statistics. This method
aims at explicitly quantifying uncertainty in the forcing data
(input), model parameters and, especially, the conceptuali-
zation of the system through the combination of GLUE and
BMA. For a range of conceptual models, the likelihood
measures of acceptable simulators, assigned to them based on
their ability to reproduce observed system behavior, are
integrated over the joint input and parameter space to obtain
integrated model likelihoods. The latter are used to weight the
predictions of the respective conceptual models in the BMA
ensemble predictions. Using a hypothetical 3‐dimensional
groundwater system, Rojas et al. [2008] illustrated the
method using unconditional realizations of the hydraulic
conductivity field and conditioning on 16 head observations.
The use of prior information about the plausibility of
alternative conceptualizations (expressed as prior model
probabilities) and its effect on ensemble predictions was

investigated by Rojas et al. [2009]. In that work it was shown
that posterior GLUE‐BMA statistics were very sensitive to
prior model probabilities and that including proper prior
knowledge about the plausibility of alternative con-
ceptualizations considerably improved the predictive per-
formance of the GLUE‐BMA approach.
[11] We extend upon the works of Rojas et al. [2008, 2009]

and present what appears to be the first comprehensive
analysis of the value of conditioning data on posterior mul-
timodel statistics and predictions, and conceptual model
uncertainty estimations. Two conditioning processes are
considered: (1) spatial conditioning of the hydraulic con-
ductivity field on sets of conductivity measurements with
increasing sampling density and (2) conditioning of simu-
lated equivalents on heads, groundwater flows, and river
discharge observations. For illustrative purposes, we employ
a modified version of the 3‐dimensional hypothetical system
described by Rojas et al. [2008] under steady state condi-
tions as study case. Uncertainty about the representation
of this hypothetical system is expressed by an ensemble M
of 7 alternative conceptual models with varying complexity.
Additionally, we improve the sampling scheme implemented
by Rojas et al. [2008, 2009] by replacing the uniform sam-
pling of the input and parameter space with a Markov Chain
Monte Carlo (MCMC) method, more specifically, the
Metropolis‐Hastings (M‐H) algorithm [see, e.g., Metropolis
et al., 1953; Hastings, 1970; Chib and Greenberg, 1995;
Gilks et al., 1995; Gelman et al., 2004]. For a series of
groundwater flow components the effect of conditioning on
the posterior model probabilities (i.e., model weights used
for multimodel aggregation), the posterior GLUE‐BMA sta-
tistics, and the contribution of conceptual model uncertainty
to the predictive uncertainty is analyzed.
[12] It is worth emphasizing that the way the system

simulators (i.e., conceptual model + parameter set) are eval-
uated here against the observations differs from the way
hydraulic conductivity measurements are incorporated.
Rather than retaining only those simulations that closely
reproduce the observations, or rather than using themaximum
likelihood estimate, we take into account thewhole likelihood
surface (cut off at limits of tolerable error). There exist
techniques, like the self‐calibrating (SC) method [Sahuquillo
et al., 1992; Hendricks Franssen et al., 2003], the pilot point
(PP) method [LaVenue et al., 1995; RamaRao et al., 1995],
the Markov Chain Monte Carlo (MCMC) method [Oliver
et al., 1997], the Gradual Deformation (GD) method [Hu,
2000], gradient‐based inverse techniques [Hill et al., 1998;
Moore and Doherty, 2005], which are able to generate
hydraulic conductivity fields conditional to hydraulic con-
ductivity and system‐state data such as heads and flows.

2. Methodology

[13] To render the present paper self‐contained sections 2.1,
2.2 and 2.3 briefly describe GLUE, BMA and the proce-
dure to integrate both methodologies in the frame of the
method of Rojas et al. [2008]. Sampling from the conditional
posterior distributions is performed using the Metropolis‐
Hastings (M‐H) algorithm. A brief description of the M‐H
algorithm as applied here is presented in section 2.4. More
elaborated descriptions of the M‐H algorithm can be found in
work by Chib and Greenberg [1995], Gilks et al. [1995] and
Gelman et al. [2004].
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2.1. Generalized Likelihood Uncertainty Estimation
(GLUE) Methodology

[14] GLUE is a Monte Carlo (MC) simulation‐based
technique that rejects the idea of a single correct represen-
tation of a system in favor of many acceptable system
representations [Beven, 2006]. This idea is based on the
concept of equifinality, i.e., many combinations of model
structures, parameter sets and forcing data may provide
(equally) good reproductions of the observed system
response when compared to a limited data set [Beven and
Freer, 2001; Beven, 2006]. Equifinality arises because of
the combined effects of errors (limitations) in the forcing
(input) data, system conceptualization, measurements, and
parameter estimates, thus acting as triggers for non‐
identifiability, non‐uniqueness and stability problems. In
summary, for each potential simulator of the system (i.e.,
conceptual model + parameter/forcing data vector), sampled
from a prior set of possible system representations, a likeli-
hood measure (e.g., Gaussian, trapezoidal, model efficiency,
inverse error variance) is calculated. This likelihood measure
reflects a simulator’s ability to reproduce the observed set of
system responses (i.e., observations). Simulators that perform
below a subjectively defined rejection criterion are discarded
from further analysis and likelihood measures of retained
simulators are rescaled so as to render the cumulative likeli-
hood equal to 1. Ensemble predictions are based on the pre-
dictions of the retained set of simulators, weighted by their
respective rescaled likelihood.
[15] Following the notation of Rojas et al. [2008], let us

consider a set of plausible model structuresM = (M1,M2,…,
Mk,…,MK), a set of parameter vectorsQ = (q1, q2,…, ql,…,
qL) and a set of input (forcing data) variable vectors Y =
(Y1, Y2, …, Ym, …, YM), and denote the observations and
simulated equivalents vectors asD = (D1,D2,…,Dn,…,DN)
and D* = (D*1, D*2, …, D*n, …, D*N ), respectively. Then
L(Mk, ql, Ym∣D) is the likelihood of model structure (Mk),
parameterized with parameter vector (ql) and forced by
input data vector (Ym), given the observations in (D).
Rojas et al. [2008] observed, for the particular conditions
of their synthetic study case, no significant differences in
the estimation of posterior model probabilities, predictive
capacity, and conceptual model uncertainty when a Gaussian
(equation (1)), a model‐efficiency‐based, or a Fuzzy‐type
likelihood functions were used. The analysis in this work
is therefore confined to a Gaussian likelihood function given
by

LðMk ; ql;YmjDÞ ¼ ð2�Þ�N=2jCDj�1=2

� exp � 1

2
D� D*ð ÞTC�1

D D� D*ð Þ
� �

ð1Þ

where CD is the covariance matrix of the errors of the
observations.

2.2. Bayesian Model Averaging (BMA)

[16] BMA provides a coherent framework for combining
predictions from multiple competing conceptual models to
attain a more realistic and reliable description of the predic-
tive uncertainty. It is a statistical procedure that infers average
predictions by weighing individual predictions from com-
peting models based on their relative skill, with predictions
from better performing models receiving higher weights than

those of worse performing models. BMA avoids having
to choose one model over others, instead, competing
models are assigned different weights based on the data setD
[Wasserman, 2000].
[17] Following the notation of Hoeting et al. [1999], if D

is a quantity to be predicted, the BMA predictive distribution
of D is given by [Draper, 1995]

pðDjDÞ ¼
XK
k¼1

pðDjD;MkÞpðMk jDÞ: ð2Þ

[18] Equation (2) is an average of the predictive dis-
tributions of D under each alternative conceptual model,
p(D∣D, Mk), weighted by their posterior model probability,
p(Mk∣D). This latter term reflects how well model Mk fits
the data D and can be computed using Bayes’ rule

pðMk jDÞ ¼ pðDjMkÞpðMkÞPK
l¼1 pðDjMlÞpðMlÞ

ð3Þ

where p(Mk) is the prior probability of model Mk, and
p(D∣Mk) is the integrated likelihood of model Mk, given by

pðDjMkÞ ¼
Z

pðDjMk ; qlÞpðqljMkÞdql ð4Þ

where p(D∣Mk, ql) is the likelihood of model structure Mk

parametrized with parameter vector ql given the observations
in D, and p(ql∣Mk) is the prior probability distribution of (ql)
given model Mk. For this work p(ql∣Mk) ≡ p(ql) since priors
are equivalent for all conceptual models (see section 5).
[19] The leading moments of the BMA prediction of D

(equations 5 and 6), which are implicitly conditional on the
discrete ensemble of proposed models M, are given by
[Draper, 1995]

E½DjD� ¼ EM½EðDjD;MÞ� ¼
XK
k¼1

E½DjD;Mk �pðMk jDÞ ð5Þ

Var½DjD� ¼ EM½VarðDjD;MÞ� þ VarM½EðDjD;MÞ�

¼
XK
k¼1

Var½DjD;Mk �pðMk jDÞ þ
XK
k¼1

ðE½DjD;Mk �

� E½DjD�Þ2pðMk jDÞ: ð6Þ

[20] From equation (6) it is seen that the variance of the
BMA prediction of D consists of two terms; the first
representing the within‐model variance, and the second
representing the between‐model variance.

2.3. Multimodel Approach to Account for Conceptual
Model Uncertainties

[21] The procedure to combine both methods is summa-
rized as follows.
[22] 1. Propose, on the basis of prior and expert knowl-

edge about the site, a suite of alternative conceptualizations
defining M. Prior model probabilities are assigned for each
member of M. The latter can be achieved following, for
example, Meyer et al. [2007], Ye et al. [2005, 2008a], and
Rojas et al. [2009]. Alternatively, these prior model proba-
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bilities could potentially be used to penalize models to fully
comply with the principle of parsimony.
[23] 2. For each of the model structures define prior dis-

tributions (or pdf ’s) for the unknown parameters and input
vectors. Here, multiuniform prior distributions were imposed,
as we assumed that no information about the unknown
parameter and input variables was present before the data are
collected. Using these priors, we expect that the information
in the data, expressed by the likelihood function, should
dominate the form of the posterior distribution. However, in
real applications some knowledge about the process and/or
model parameters may be available and informative priors
can be used to express this a priori information [see, e.g.,
Ghosh et al., 2006].
[24] 3. Define a likelihood measure (equation (1)) and

rejection criteria to assess model performance. Rejection
criteria can be based on exploratory runs [e.g., Rojas et al.,
2008, submitted manuscript, 2009], subjectively chosen
threshold limits [e.g., Feyen et al., 2001] or set as a minimum
level of performance [e.g., Binley and Beven, 2003].
[25] 4. Sample, for each member of M, parameter

values (and alternatively forcing data) using the Metropolis‐
Hastings (M‐H) algorithm to generate simulators of the
system. In this work, sampling of hydraulic conductivity
realizations is handled differently to guarantee spatial rep-
resentativeness of the conditioning cases and to minimize the
computational demands (see section 4).
[26] 5. Calculate a value for the likelihood measure

(equation (1)) for each simulator. On the basis of the rejection
criteria, add the corresponding simulator to the subset Ak

of retained simulators for model Mk or discard it by setting
its likelihood to zero.
[27] 6. Repeat steps 4–5 until the hyperspace of possible

simulators is adequately sampled. That is, when for each
model Mk the first two moments of the conditional distribu-
tions of predictions (equations 5 and 6) based on the retained
likelihood weighted simulators converge to stable values,
and the R‐score of Gelman et al. [2004] for parameters
and variables of interest converges to values close to 1.
The R‐score expresses the ratio of within‐ to between‐chain
variability and, thus, approximate convergence of the M‐H
algorithm is diagnosed when the variability between chains is
not larger than that within chains [Sorensen and Gianola,
2002].
[28] 7. Approximate the integrated likelihood of each

model Mk (equation 4) by summing up the GLUE‐based
likelihood weights of the retained simulators in the subset Ak ,
that is,

pðDjMkÞ �
X
l;m2Ak

LðMk ; ql;YmjDÞ ð7Þ

[29] 8. Calculate posterior model probabilities for each
member of the ensemble M using equation (3).
[30] 9. Approximate p(D∣D, Mk) after normalizing the

likelihood weighted predictions under each individual model
(such that the cumulative likelihood under eachmodel equals 1).
Amultimodel prediction probability distribution is calculated
using equation (2) with the leading moments of this distri-
bution given by equations (5) and (6).
[31] It is worth mentioning that in the present application

of the GLUE‐BMA method only parameter and forcing data

vectors described in section 5 are updated following the M‐H
algorithm. For the case of (un)conditional hydraulic conduc-
tivity realizations, a different approach was implemented to
render the analysis computationally tractable (see section 4).
[32] As discussed by Rojas et al. [2008], important aspects

of the GLUE‐BMA method are that (1) it does not rely on a
unique optimum parameter set for each conceptual model to
assess the joint predictive uncertainty, thus, avoiding (or
minimizing the risk of) compensation of conceptual model
errors due to forced improvements in model fit; (2) model‐
weights for aggregating multimodel predictions are obtained
considering the full sampled hyperspace dimensioned by the
model, parameter and forcing data vectors; (3) there is no
implicit assumption about the conditional pdf ’s obtained
for each alternative conceptualization; and (4) the possibility
of including different types of conditioning data and prior
knowledge follows naturally from the implementation of
GLUE. We note that the prior model distributions could also
reflect the complexity of different conceptualizations by
penalizing models with a higher number of parameters. How
to efficiently define non‐uniform priors to comply with the
principle of parsimony, however, is beyond the scope of this
article and will be the subject of future research. Some
guidelines can be found in the works of Ye et al. [2005] and
Rojas et al. [2009].

2.4. Markov Chain Monte Carlo (MCMC) Simulation

[33] Following a formal Bayesian inference approach, the
predictive distribution used in equation (2) is given by [e.g.,
Krzysztofowicz, 1999; Mantovan and Todini, 2006]

pðDjD;MkÞ ¼
Z

pðDjD;Mk ; qlÞpðqljD;MkÞdq: ð8Þ

[34] Typically, for hydrological problems the posterior
parameter distribution p(q∣D, Mk) is highly dimensional and
complex, with strong non‐linear parameter interdependences.
Hence, it is not easily amenable to direct sampling or ana-
lytical integration and it is necessary to resort to Monte Carlo
(MC)methods to approximate the distribution. Since the form
of the joint posterior distribution is not known, a Markov
Chain Monte Carlo (MCMC) [see, e.g., Gilks et al., 1995;
Sorensen and Gianola, 2002; Gelman et al., 2004] approach
is adopted to infer p(q∣D, Mk). More specifically, the
Metropolis‐Hastings (M‐H) search strategy [Metropolis
et al., 1953; Hastings, 1970; Chib and Greenberg, 1995] is
used to generate a sequence of parameter sets {q1, q2,…, qN}
that adapts to the target posterior distribution.
[35] The idea of the M‐H algorithm is to stochastically

generate a series of samples through iterative Monte Carlo
(MC) sampling such that, asymptotically, the stationary dis-
tribution of this series is the target posterior distribution
[Sorensen and Gianola, 2002]. The M‐H algorithm uses a
proposal distribution, q(q*∣qi−1), to generate a new proposed
sample [see, e.g., Chib and Greenberg, 1995]. The genera-
tion of the Markov Chain is, thus, achieved in a two‐step
process: a proposal step and an acceptance step [Sorensen and
Gianola, 2002]. In the proposal step the next parameter vector
is proposed as a candidate point from the proposal distri-
bution. Then, in the acceptance step, the joint density of the
current Markov Chain state and the proposal distribution
is corrected to ensure reversibility of the chain [see, e.g.,
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Tierney, 1994]. As a result, there is a natural tendency to
accept parameters with higher posterior probabilities than the
current parameter vector [Gallagher and Doherty, 2007].
[36] Implementation details of the M‐H algorithm are

amply discussed in the literature [see, e.g.,Geyer, 1992;Gilks
et al., 1995; Cowles and Carlin, 1996; Brooks and Gelman,
1998; Makowski et al., 2002; Sorensen and Gianola, 2002;
Gelman et al., 2004;Ghosh et al., 2006;Robert, 2007], and so
they will not be repeated here.

3. Three‐Dimensional Hypothetical Setup

[37] A modified version of the 3‐dimensional hypothetical
setup described by Rojas et al. [2008] is used to assess the
value of conditioning data (see Figure 1). The main differ-
ences lie in the reference hydraulic conductivity fields of the
different layers and the number of pumping wells. We
assumed statistically homogeneous deposits with a constant
mean hydraulic conductivity K. Smaller‐scale variability was
represented using Random Space Functions (RSF), adopting

an isotropic exponential covariance function for lnK in all
three layers (see Table 1). The “true” spatial distribution of
the hydraulic conductivity was generated using the sequential
Gaussian simulation (sgsim) algorithm [see, e.g., Goovaerts,
1997] of the Geostatistical Software Library (GSLIB)
[Deutsch and Journel, 1998]. Vertical hydraulic conductiv-
ity was (randomly) defined for each grid cell between 5%
and 15% of the horizontal conductivity values obtained from
sgsim.
[38] Simulation of steady state flow employed

MODFLOW‐2000 [Harbaugh et al., 2000]. A uniform
recharge of 1.4 × 10−4 m d−1 was applied to the top layer. At
the west boundary a constant head h = 46 m was defined. At
the east boundary a 10 m‐wide river was defined with a
constant stage of 25 m and constant water depth of 5 m.
Underlying the river, a 5 m‐thick sediments layer with a
vertical hydraulic conductivity of 0.1 m d−1 was defined.
Eight wells were distributed in the area pumping a total of
2500 m3 d−1 from the uppermost and lowermost aquifers
(Figure 1). An evapotranspiration (EVT) zone, delineated
by the polygon in Figure 1a, was defined with a surface
elevation (SURF) at 43 m, an evapotranspiration rate (EVTR)
of 1.37 × 10−3 m d−1 and an extinction depth (EXTD) of 5 m.
[39] This setup was run in forward mode, obtaining the

“true” groundwater head distribution for layers 1 and 3 (see
Figures 1a and 1c). At the 16 observation well locations heads
were selected from the “true” head distribution for layers 1
and 3. Additionally, groundwater inflows (655 m3 d−1) at the
west boundary condition (WBC), river gains (192 m3 d−1),
and EVT outflows (63 m3 d−1) were obtained from the for-
ward run. The set of 32 head values as well as the ground-
water inflows (GWF) and river gains (RIV) were used as
conditioning data to estimate the likelihood weights in the
evaluation of the different simulators.

4. Conditioning Procedure

[40] We considered two conditioning mechanisms:
(1) spatial conditioning of the hydraulic conductivity reali-
zations on hydraulic conductivity measurements, and (2) the
conditioning of simulated equivalents on observations of
system‐state variables within a GLUE framework. A summary
of the conditioning cases analyzed in this paper is presented
in Table 2.
[41] To analyze the effect of spatial conditioning of the

hydraulic conductivity fields, four cases were considered.
The first case (Unconditional) corresponds to unconditional
realizations of the hydraulic conductivity field. Cases Con-

Figure 1. Three‐dimensional hypothetical setup including
16 observation wells (circled dot) and 8 pumping wells
(circled cross) overlain by the “true” groundwater head dis-
tribution and hydraulic conductivity realizations used in the
forward run (grid 25 m × 25 m) for (a, c) layer 1 and layer 3
and (b) vertical configuration of the hypothetical setup.

Table 1. Parameters Describing the Spatial Correlation Structure
of Hydraulic Conductivity for the Different Layers of the Three‐
Dimensional Hypothetical Setupa

Layer

Model Parameters

mK (m d−1) slnK IlnK

1 0.1 2.0 400
2 0.01 0.5 800
3 1 1.5 600

aThe spatial correlation structure is isotropic exponential covariance. Here
mK is the mean hydraulic conductivity for the corresponding layer, slnK is the
standard deviation of the lnK values, and IlnK is the integral scale defining the
correlation length (practical range) (based on Tables 2.1 and 2.2 from Rubin
[2003]).
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ditional‐I, Conditional‐II, and Conditional‐III correspond to
realizations conditioned on 10, 20, and 40 hydraulic con-
ductivity measurements, respectively (Figure 2). Measure-
ment points were defined such that smaller sets were a subset
of the larger ones to avoid the effect of varying measurement
locations among the sampling densities [Feyen et al., 2002].
[42] Hydraulic conductivity fields characterized by a spa-

tial correlation structure are not easily amenable to updating
when combined with other parameters in the development of
the Markov chains. Ideally, hydraulic conductivity realiza-
tions could be generated and a chain could be developed for
each individual realization. However, given the high number
of hydraulic conductivity realizations to properly represent
spatial variability and the number of chains required to ensure
convergence of posterior statistics, such approach is com-
putationally still intractable. An alternative to overcome this
limitation is working with “representative” hydraulic con-
ductivity realizations and develop a given number of chains
for them. That is, keep the spatial realizations fixed and
develop a series of chains for non‐spatial parameters. To
obtain such representative realizations we proceeded as fol-
lows: (a) 100 hydraulic conductivity realizations for the
corresponding layers of each conceptual model were gener-
ated, based on the spatial correlation structures defined in
Table 1 (i.e., 100 realizations for one‐layer models, 200
realizations for two‐layer models, and 300 realizations for
model 3L), (b) these realizations created 100 variants of each
of the 7 conceptualizations (i.e., 700 variants in total), (c) each
of these 100 variants was run in forward mode driven by the
“true” parameter values used in the 3‐dimensional hypo-
thetical setup (see section 3), (d) a likelihood value was
obtained (equation (1)) for each of these 100 variants, (e) the
variant with a likelihood closest to the median likelihood of
the 100‐ensemble variants was considered to be representa-
tive. These steps were repeated for the 4 conditioning cases
and for each conceptual model. In total, 2800 preliminary
runs were done to obtain 28 (7 models × 4 conditioning cases)
representative variants. For this set of preliminary runs we
employed CD = I (see equation (1)) as the variants were
driven by the true parameter values obtained from the 3‐D
hypothetical setup. This was done to ensure that the spatial
variability dominated the likelihood estimation for the defi-
nition of the conditioning case. Further development of the
Markov chains was then based on this (fixed) representative
variants.

[43] Conditioning on observations of system‐state vari-
ables was performed within the GLUE framework. Simula-
tions were conditioned on heads (hsim), groundwater inflow at
WBC (GWFsim), and river gain (RIVsim) observations. Model
performances against the observations were assessed using 3
Gaussian likelihood functions (assuming no correlation in
observation errors, i.e., off‐diagonal terms of CD equal zero):
(a) one for the groundwater heads (hobs) centered on each of
the 32 values with a standard deviation (shobs) equal to 2.5 m;
(b) one for the groundwater flow observation (GWFobs)
centered on the observed value (655 m3 d−1) with a standard
deviation (sGWF obs) equal to 20% of this value (131 m3 d−1),
and (c) one for the river discharge observation (RIVobs) cen-
tered on the observed value (192 m3 d−1) with a standard
deviation (sRIV obs) equal to 10% of this value (19 m3 d−1).
These standard deviations were also used to define the
diagonal elements of matrix CD used to calculate the corre-
sponding likelihood values for each simulator. It was
assumed that groundwater inflow observations are more
uncertain than river discharge observations, which explains
the larger spread of the likelihood function for this variable.
We acknowledge that standard deviations defined for RIV
and GWF observations are (to some extent) lower than the

Table 2. Summary of the 12 Conditioning Cases Analyzed in This Work

Spatial Conditioning

System‐State Variable Conditioning

HEADS GWF RIV

Unconditional 32 head meas. 32 head meas. 32 head meas.
+ 1 groundwater flow + 1 groundwater flow

+ 1 river discharge
Conditional‐I 32 head meas. 32 head meas. 32 head meas.

+ 10 k meas. + 1 groundwater flow + 1 groundwater flow
+ 10 k meas. + 1 river discharge

+ 10 k meas.
Conditional‐II 32 head meas. 32 head meas. 32 head meas.

+ 20 k meas. + 1 groundwater flow + 1 groundwater flow
+ 20 k meas. + 1 river discharge

+ 20 k meas.
Conditional‐III 32 head meas. 32 head meas. 32 head meas.

+ 40 k meas. + 1 groundwater flow + 1 groundwater flow
+ 40 k meas. + 1 river discharge

+ 40 k meas.

Figure 2. Sampling locations for the 3 conditioning cases:
Conditional‐I (10 K measurements), Conditional‐II (20 K
measurements) and Conditional‐III (40 K measurements).
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values that could be achieved at field sites. The ratio of stan-
dard deviations, however, serves the purpose of illustrating
the inclusion of relatively certain and uncertain observations.
Lower and upper rejection thresholds, i.e., limits of tolerable
error, were set at the corresponding observations ±3 times the
standard deviations (2.5 m, 131 m3 d−1, or 19 m3 d−1) defined
for each Gaussian likelihood function (equation (1)). Simu-
lators whose likelihood values were not contained within the
ranges defined by these tolerable errors were discarded from
further analysis by assigning their likelihood to zero.
[44] Observations used to assess model performance

were not corrupted by any noise (e.g., aimed at explicitly
accounting for measurement errors). In this regard, results
of Hill et al. [1998] suggest that standard deviations such as
those used in this work are a good approximation in case of
synthetic problems.
[45] In summary, we consider 4 cases of spatial condi-

tioning to hydraulic conductivity measurements and 3 cases
of conditioning on observations of system‐state variables.
Hence, in total, 12 cases were analyzed (see Table 2).

5. Implementation Details

[46] An ensemble M of 7 alternative conceptualizations
was considered to represent the 3‐dimensional hypothetical
setup, ranging from simple one‐layer models to more com-
plex three‐layer systems approaching the true setup (see
Table 3). The spatial distribution of hydraulic conductivity in
the one‐layer conceptualizations 1L‐L1, 1L‐L2 and 1L‐L3
follows the spatial correlation structure of layers 1, 2 and 3,
respectively. Conceptualization 1L‐AVG, on the other hand,
is characterized by a hydraulic conductivity distribution that
follows the average spatial correlation structure of the three
layers in the hypothetical setup (i.e., averaging parameters
defined in Table 3). In the two‐layer (2L) conceptualization
the hydraulic conductivity distributions follow the spatial
correlation structure of layers 1 and 3 of the hypothetical
setup. The 2LQ3D conceptualization corresponds to model
2L but includes an implicit representation of the aquitard

depicted in Figure 1b. This aquitard was represented as a
constant value for the vertical hydraulic conductivity using
the LPF package of MODFLOW‐2000. The last conceptu-
alization represents a three‐layer (3L) system that accounts
explicitly for the aquitard. For this setup, the hydraulic
conductivity distributions of the layers follow the spatial
correlation structures of the corresponding layers of the
hypothetical setup. For the seven conceptualizations the
vertical hydraulic conductivity was (randomly) defined for
each grid cell between 5% and 15% of the horizontal con-
ductivity values, with the exception of model 2LQ3D which
used a constant value of 1 × 10−3 m d−1. Table 3 summarizes
the 7 conceptualizations defining M.
[47] Table 4 shows prior ranges for the 6 parameters

included in the M‐H algorithm for developing the chains. For
pragmatic reasons, we employed the sampling ranges defined
by Rojas et al. [2008]. To exclusively asses the value of
conditioning data we employed multiuniform sampling dis-
tributions. Rojas et al. [2008] showed that the most sensitive
parameters of a similar 3‐dimensional hypothetical setup
were the spatially uniform recharge rate (RECH) and the
constant head elevation (CH) at the west boundary condition
(WBC). Therefore, in this work we focus on obtaining proper
convergence of the M‐H algorithm for these two parameters.
This was done by closely monitoring the convergence of
the R‐score [Gelman et al., 2004] to values close to 1. The
evolution of the chains for the remaining 4 parameters was
monitored as well.
[48] We employed a Gaussian likelihood function to

assess the model performance (equation (1)). As previously
explained, rejection thresholds were defined as the observed
value ±3 times the standard deviations used for conditioning
(see section 4).
[49] To implement the M‐H algorithm, a 6‐dimensional

multivariate normal distribution centered on the current state
of the chain (qi−1) was selected as a proposal distribution, i.e.,
q(q*∣qi−1) ∼ N(qi−1∣Sq), where Sq is the (diagonal) variance
matrix used as “jumping rule” [see, e.g.,Gilks et al., 1995] for
sampling new parameter candidates (q*). The acceptance

Table 3. Description of Seven Alternative Conceptualizations Defining M Used to Approximate the Three‐Dimensional Hypothetical
Setup

Conceptualization Spatial Correlation Structurea Description

1L‐L1 Layer 1 One‐layer model
1L‐L2 Layer 2 One‐layer model
1L‐L3 Layer 3 One‐layer model
1L‐AVG Average of layers 1, 2 and 3 One‐layer model
2L Layer 1 and 3 Two‐layer model not considering the aquitard
2LQ3D Layer 1 and 3 Two‐layer model implicitly accounting for the aquitard
3L Layer 1, 2 and 3 Three‐layer model explicitly accounting for the aquitard

aParameters defining the spatial correlation structure for each layer are presented in Table 1.

Table 4. Prior Range to Select Starting Locations of Multiple Chains of M‐H Algorithm

Parameter Abbreviation True Value

Range

Minimum Maximum

Recharge rate (m d−1) RECH 1.4 × 10−4 0 5.8 × 10−4

Elevation west boundary condition (m) CH 46 25 75
Elevation surface (m) SURF 43 30 50
Extinction depth (m) EXTD 5 0 25
Evaporation rate (m d−1) EVTR 1.37 × 10−3 0 7.0 × 10−3

River conductance (m2 d−1) RIVC 5 1.0 × 10−2 1000
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rate, defined as the proportion of accepted parameter candi-
dates in the set of the last n proposed samples, was set to 40%.
A fixed acceptance rate was chosen to minimize the poten-
tial effects of working with chains obtained with different
acceptance rates. In preliminary runs, the variance terms
included in Sq were adjusted by trial‐and‐error until the
acceptance rate of 40% was achieved. Although RECH and
CH were the most sensitive parameters, Sq accounted for all
six parameters to allow for flexibility in the trial‐and‐error
process. Based on preliminary runs and the results obtained
by Rojas et al. [2008, submitted manuscript, 2009], a pre‐
defined number of 10 chains was used for each of the 7
conceptualizations (Table 3) under each of the 12 condi-
tioning cases (Table 2). Starting locations for the individual
chains were randomly defined from the prior parameter
ranges defined in Table 4. To avoid negative effects induced
by autocorrelation within successive steps of a chain, the final
chains were thinned before calculating summary statistics
[Sorensen andGianola, 2002]. Finally, based on the results of
Rojas et al. [2008] the total sample of parameters should
contain at least 10,000 elements to ensure the convergence of
the first two moments of the posterior distributions.
[50] Thinned samples obtained from the M‐H algo-

rithm were used to estimate GLUE‐based model likelihoods
(equation 7) and posterior model probabilities for each con-
ceptualization (equation 3). Normalized GLUE‐based like-
lihoods were employed to approximate p(D∣D,Mk). Finally, a
multimodel prediction accounting for conceptual model
uncertainty was obtained using equation (2).

6. Results

6.1. Validation of the M‐H Algorithm Results

[51] Several aspects of the implementation of the M‐H
algorithm were checked to validate the results. Based on
visual inspection of the plotting series and values of the
R‐score for exploratory runs, the length of the burn‐in
samples was defined at a maximum of 0.2P (with P being
the total chain length), following Gilks et al. [1995]. After
discarding the burn‐in samples (to minimize the influence of
the starting locations of the multiple chains), this resulted in
chains of 6,000 samples. R‐scores ranged between 1.001
and 1.062 for parameter RECH and between 1.001 and 1.032
for parameter CH. For the predictions of interest (ground-

water inflows from WBC, river gains, recharge inflows and
EVT outflows) R‐scores ranged between 1.001 and 1.061.
This indicates proper mixing of the chains for all parameters
and variables of interest. As an example, Figure 3 shows the
results for model 3L under case Conditional‐III. Figure 3a
shows 10 independent chains after discarding the burn‐in
samples. A good mixing (overlap) of the chains is observed
indicating proper convergence. Additionally, Figure 3b
shows the effect of thinning the original sample of 60,000
elements after every 6 iterations. The autocorrelation
factor quickly vanishes and its value is evenly distributed
around 0. Similar patterns were observed for parameter
CH and the simulated system‐state variables of concern.
Therefore, the thinned parameter samples of 10,000 ele-
ments for each model under each conditioning case were
considered to be an independent sample from the target
posterior distributions. These individual samples were used
to assess the effect of conditioning data on posterior GLUE‐
BMA statistics.

6.2. Likelihood Response Surfaces and the Value
of Conditioning Data

6.2.1. Hydraulic Conductivity Data
[52] The effect of increasing the number of hydraulic

conductivity measurements on the global likelihood response
surface is shown in Figure 4. These likelihood surfaces are
obtained by applying equation (1) using the CD matrix
defined in section 4. Figure 4 depicts the results for parameter
RECH for cases Unconditional and Conditional‐III for
alternative models 1L‐L3, 2L and 3L. It is seen from Figure 4
that when alternative conceptualizations approach the hypo-
thetical setup the global likelihood response surface becomes
better defined, less disperse and less biased compared to the
“true” value for parameter RECH. This implies that a more
correct geological description improves the precision of the
global likelihood response surface. Results for the case
Unconditional, however, show that a proper description of
geology (as represented in Table 1) does not guarantee
unbiased estimations. Conditioning of the hydraulic con-
ductivity field reduces the bias in the parameter estimates and
decreases the range of variation (uncertainty), i.e., improves
both precision and accuracy. For conceptualization 1L‐L3,
however, a reduction in bias is observed while the range of
variation slightly increases. The latter is due to the fact that the
information content in the conditioning data is not fully
coherent with this simplified one‐layer setup. Moreover,
absolute values of the global likelihood measure increase
considerably with increasing levels of spatial conditioning,
which affects the posterior model probabilities as shown in
Table 5. For parameter CH and the simulated groundwater
flow components, the global likelihood response surfaces
showed very similar patterns as those of the RECHparameter,
and are therefore not shown here.
[53] Interestingly, Figure 4 shows a series of outliers

(spurious secondary optima) in various directions. [Kavetski
and Kuczera, 2007] suggest that intricate likelihood
response surfaces (or objective functions in their terminol-
ogy) are not always inherent features of the hydrological
models, but rather may reflect numerical artifacts or model
nonlinearities that are not very important for the accurate
simulation of the relevant system.

Figure 3. Results from the M‐H algorithm for parameter
RECH for model 3L under case Conditional‐III: (a) 10 inde-
pendent chains after discarding the burn‐in samples and (b)
autocorrelogram of original (60,000 elements) and thinned
samples (10,000 elements).

ROJAS ET AL.: CONDITIONING DATA AND CONCEPTUAL MODEL UNCERTAINTY W08520W08520

9 of 20Archived at Flinders University: dspace.flinders.edu.au



6.2.2. Heads, Groundwater Flow, and River Discharge
Observations
[54] The value of including head, groundwater flow

(GWF) and river discharge (RIV) observations on the global
likelihood response surface is illustrated in Figure 5, which

presents the results for model 3L under the case Uncondi-
tional. This case was selected because the value of including
observations of system‐state variables might partially be
masked by the spatial conditioning on hydraulic conductivity
measurements. Because global likelihood values were

Figure 4. Scatterplots of global likelihood values for parameter RECH for alternative conceptual models
(a, d) 1L‐L3, (b, e) 2L and (c, f) 3L for cases Unconditional (Figures 4a–4c) and Conditional‐III
(Figures 4d–4f). Vertical dashed lines represent the true value used in the 3‐dimensional hypothetical setup.

Table 5. Summary of the Integrated Model Likelihoods and Posterior Model Probabilities for the 7 Conceptualizations in M and the 12
Conditioning Casesa

Conditioning Prior or Model Likelihood

Conceptual Models

1L‐L1 1L‐L2 1L‐L3 1L‐AVG 2L 2LQ3D 3L Total

K Observations p(Mk) (1/7) (1/7) (1/7) (1/7) (1/7) (1/7) (1/7) 1.0
0 Heads p(D∣Mk) 0 0 746.8 765.0 802.9 804.9 852.1 3971.3

0 0 (0.188) (0.193) (0.202) (0.203) (0.215) (1.0)
Heads + GWF p(D∣Mk) 0 0 620.0 590.3 739.5 751.2 799.0 3500.0

0 0 (0.177) (0.169) (0.211) (0.215) (0.228) (1.0)
Heads + GWF + RIV p(D∣Mk) 0 0 592.5 507.5 680.9 696.0 783.7 3260.5

0 0 (0.182) (0.156) (0.209) (0.213) (0.240) (1.0)
10 Heads p(D∣Mk) 0 0 785.6 722.1 851.2 923.5 926.8 4209.1

0 0 (0.187) (0.172) (0.202) (0.219) (0.220) (1.0)
Heads + GWF p(D∣Mk) 0 0 607.3 541.3 825.0 867.5 867.9 3709.0

0 0 (0.164) (0.146) (0.222) (0.234) (0.234) (1.0)
Heads + GWF + RIV p(D∣Mk) 0 0 547.2 486.8 712.8 854.7 860.9 3462.4

0 0 (0.158) (0.141) (0.206) (0.247) (0.249) (1.0)
20 Heads p(D∣Mk) 0 0 754.1 0 861.9 942.7 962.7 3521.3

0 0 (0.214) 0 (0.245) (0.268) (0.273) (1.0)
Heads + GWF p(D∣Mk) 0 0 652.4 0 865.7 918.9 926.8 3363.9

0 0 (0.194) 0 (0.257) (0.273) (0.276) (1.0)
Heads + GWF + RIV p(D∣Mk) 0 0 539.4 0 798.6 911.7 925.0 3174.6

0 0 (0.170) 0 (0.252) (0.287) (0.291) (1.0)
40 Heads p(D∣Mk) 0 0 981.2 0 1148.8 1206.2 1208.8 4545.0

0 0 (0.216) 0 (0.253) (0.265) (0.266) (1.0)
Heads + GWF p(D∣Mk) 0 0 781.5 0 1028.9 1063.7 1065.2 3939.2

0 0 (0.198) 0 (0.261) (0.270) (0.270) (1.0)
Heads + GWF + RIV p(D∣Mk) 0 0 595.4 0 823.8 959.2 979.7 3358.2

0 0 (0.177) 0 (0.245) (0.286) (0.292) (1.0)

aFor integrated model likelihoods, see equation (7). Posterior model probabilities are given in parentheses.
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obtained by aggregating point likelihood values using a
geometric mean inference, global likelihood values among
columns of Figure 5 can not be directly compared. The spread
and accuracy of the global likelihood response surfaces,
however, can be fully compared.
[55] Comparison of the global likelihood response surfaces

in Figure 5 shows that including the GWF observation has a
drastic impact on the spread of the groundwater inflows
estimated at the west boundary condition (WBC) (Figure 5b).
The GWF observation also considerably reduces the spread
of the global likelihood response surface of the evapotrans-
piration outflows (Figure 5h), and to a lesser extent also that
of the river gains (Figure 5e). Similarly, including the RIV
observation has the largest impact on the spread of the river
gains (Figure 5f) but also improves the estimation of the other
system‐state variables (Figures 5c and 5i). The truncation of
the global likelihood response surfaces at upper and lower
bounds (see, e.g., Figures 5b, 5c, and 5f) when conditioning

on GWF and RIV observations is explained by the definition
of the limits of tolerable error (rejection criteria in GLUE) for
the Gaussian likelihood functions defined in section 4. When
incorporating the GWF and RIV observations the rejection
criterion is no longer only based on heads. Hence, many
simulators that still produced acceptable simulations based
on head observations fail to meet the acceptance criteria for
the GWF and RIV observations and, as a result, are rejected
and assigned a likelihood value equal to zero. The fact that
simultaneously including GWF and RIV observations con-
siderable reduces (by approximately 75%) the spread for the
evapotranspiration outflows (Figure 5i) compared to when
including only groundwater head observations (Figure 5g),
confirms that conditioning on observations of system‐state
variables less commonly available than groundwater heads
may significantly reduce the predictive uncertainty of other
simulated system‐state variables not included as conditioning
data [see, e.g., Anderman et al., 1996; Feyen et al., 2003]. A

Figure 5. Scatterplots of global likelihood values for groundwater inflows from the (a–c) WBC, (d–f)
river gains and (g–i) evapotranspiration (EVT) outflows for conceptualization 3L under case Unconditional.
Vertical dashed lines represent the reference values obtained from the 3‐dimensional hypothetical setup
(655 m3 d−1, 192 m3 d−1, and 63 m3 d−1). For EVT outflows (Figures 5g–5i) most likelihood values are
located on the y axis or around zero.
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similar pattern was observed across all 12 conditioning cases
analyzed.

6.3. Posterior Model Probabilities and the Value
of Conditioning Data

[56] Table 5 shows the full matrix of integrated model
likelihoods and posterior model probabilities for all 7 con-
ceptualizations and 12 conditioning cases analyzed. Although
in this work we employ a slightly modified version of the
hypothetical setup used by Rojas et al. [2008] and we double
the number of head observations for conditioning, the results
shown in the first two rows of Table 5 are in full agreement
with those observed by Rojas et al. [2008]. Hence, consid-
ering16 extra head observations from the lowermost aquifer
(layer 3) (Figure 1c) that dominates the system dynamics,
compared to the set of 16 head observations from the upper-
most aquifer by Rojas et al. [2008], does not allow further
discrimination among conceptualizations. Rather, the same
five models are selected. Moreover, assigned posterior model
probabilities for the retained 5 conceptualizations remain
unchanged compared to the case when using only 16 head
observations [Rojas et al., 2008]. This indicates that the
information content of heads is limited in its ability to dif-
ferentiate among models or to refine the ensemble M of
proposed conceptualizations. Although it can be argued that
the latter might be caused by the fact that the hypothetical
setup is mainly driven by Dirichlet conditions, or that head
observations are located into a layer that is cut off by the
aquitard, head observations are located in both aquifers to
account for the lowermost aquifer and variations in head
induced by the presence of the aquitard (see section 3).
[57] These results suggest that to effectively reduce the

number of conceptualizations or to further differentiate
among them, other sources of information apart from head
observations must be considered.
[58] Results from Table 5 confirm that GLUE‐BMA tends

to produce more evenly distributed posterior model weights
compared to multimodel frameworks that are based on model
selection criteria such as the Maximum Likelihood BMA
(MLBMA) [Neuman, 2003]. This avoids concentrating all
posterior model weights in a rather small number of alterna-
tive conceptualizations, thus, minimizing the risk of under‐
estimation and biased uncertainty estimations in multimodel
frameworks. These results are in full agreement with the
findings of Rojas et al. (submitted manuscript, 2009), Singh
et al. [2010] and Ye et al. [2010a].
6.3.1. Hydraulic Conductivity Data
[59] Comparison in Table 5 of the respective rows for the

different spatial conditioning cases shows that the integrated
model likelihoods increase with conditioning density. Com-
paring cases Unconditional and Conditional‐III, this increase
is more pronounced for conceptualizations that more closely
resemble the hypothetical setup. This indicates that spatial
conditioning allows for a better discrimination among the
alternative conceptual models by assigning more weight to
models closely describing the hypothetical setup. Compari-
son of cases Conditional‐II and Conditional‐III shows that
additional conditioning does not further improve model dis-
crimination. The latter might potentially be explained by the
particularities of the hypothetical setup and/or the spatial

distribution of the sampling points of the hydraulic conduc-
tivity measurements depicted in Figure 2.
[60] For the two retained one‐layer models increasing the

number of hydraulic conductivity data does not necessarily
result in higher model likelihoods, as the information content
in the conditioning data may not be fully coherent with
the simplified setup. This indicates that spatial conditioning
helps in rejecting those conceptualizations contradicting the
(unknown true) dynamics of the groundwater system. As an
example, conceptualization 1L‐AVG is no longer supported
when the number of spatial conditioning data is high enough
(between 11 and 20 K measurements). This is due to the fact
that using an average spatial correlation structure and average
conditioning values smoothes out the effects of each layer.
The latter clearly emphasizes the importance of using the
correct conditioning data for conditioning and deriving the
spatial correlation structure to constrain potential simulators
of the unknown system. In practical terms, however, (verti-
cally) averaged values of K over alternating well‐screen
sections may often be the only information available about
the hydraulic conductivity in an aquifer.
6.3.2. Heads, Groundwater Flow, and River Discharge
Observations
[61] The effect of including GWF (Heads +GWF) and RIV

(Heads + GWF + RIV) observations is also shown in Table 5.
Results show that conditioning to observations of system‐
state variables less commonly available than groundwater
heads allows for a better differentiation among the alternative
conceptualizations. A tendency to assign more weight to
models more closely resembling the hypothetical setup is
observed across all conditioning cases. Moreover, posterior
model probabilities of simplified conceptualizations tend to
decrease when including observations of system‐state vari-
ables. This suggests that the information contained in these
data (GWF and RIV) does not support simple approximations
of the hypothetical setup.
[62] These results illustrate that to further constrain the

space of potential simulators in the framework of the GLUE‐
BMA method, the information content of heads should be
complemented with observations of other system‐state vari-
ables. The latter is in full agreement with general recom-
mendations for the traditional calibration of groundwater
models, which are supported by a long tradition of modeling
exercises employing nonlinear regression techniques [see,
e.g., Cooley et al., 1986; Cooley and Naff, 1990; Poeter and
Hill, 1997; Hill et al., 1998; Hill and Tiedeman, 2007].
[63] Note that, although it is not the aim of this work,

results as those presented in Table 5 could potentially be used
to design optimal sampling and/or data collection schemes
to further discriminate among alternative conceptualizations
[see, e.g., McLaughlin and Wood, 1988; Wagner, 1995;
Tiedeman et al., 2003, 2004; Tonkin et al., 2007].

6.4. Groundwater Model Predictions Accounting
for Conceptual Model Uncertainty

6.4.1. Hydraulic Conductivity Data
[64] Figure 6 shows the effect of increasing the number of

hydraulic conductivity data on recharge inflows and predic-
tions of evapotranspiration outflows. Results are shown for
these system‐state variables because they were not used as
conditioning data, which allows for a better assessment of the

ROJAS ET AL.: CONDITIONING DATA AND CONCEPTUAL MODEL UNCERTAINTY W08520W08520

12 of 20Archived at Flinders University: dspace.flinders.edu.au



spatial conditioning on hydraulic conductivity. Figure 6a
shows that for the Unconditional case cumulative predictive
distributions for recharge inflows vary strongly in shape,
spread and central moment across the alternative concep-
tualizations. Conditioning to a set of 40 hydraulic conduc-
tivity measurements (Figure 6c), on the other hand, produces
predictive distributions that are less disperse and more similar
in shape and central moment, with the exception of concep-
tualization 1L‐L3. For the latter, the central moment remains
quite dissimilar from the other distributions and fails to
closely reproduce the true value. Rather, a shift from over-
estimation to underestimation of the true value can be
observed. This shift is explained by the inverse correla-
tion observed between the recharge inflows and the ground-
water inflows from the WBC [Rojas et al., 2008] (see also
Figure 7a).
[65] For the evapotranspiration outflows (Figures 6b and

6d), spatial conditioning shows a less pronounced effect
on the predictive distributions, with conceptualizations 2L
and 1L‐L3 even showing a larger spread compared to
the Unconditional case. The latter can be explained by (1)
the strong influence of pumping well W4‐(L3) located in the
surroundings of the evapotranspiration zone (see Figure 1a)
and (2) the shift to higher evapotranspiration outflows for the
case Conditional‐III induced by higher groundwater heads
(compared to the case Unconditional) within the polygon
defining the evapotranspiration zone. This is reaffirmed in
Figure 7, where a shift from lower to higher groundwater

inflows from theWBC (Figure 7a) is observed, explaining the
underestimation of the true recharge inflows observed in
Figure 6a for conceptualization 1L‐L3. In addition, Figure 7b
shows higher groundwater heads downstream of well W4‐
(L3) compared to the Unconditional case, thus, explaining the
tendency to higher evapotranspiration outflows for the case
Conditional‐III. The same applies for model 2L as it is driven
by layer L3 as well.
[66] These results show that, even for the case of heavily

(spatially) conditioned conceptualizations, predictions can
potentially be completely biased if driven by the “wrong”
conceptualization. This will clearly affect the quality of
multimodel predictions, and may even eliminate the gain in
accuracy and precision of individual model predictions from
conceptualizations more closely representing the unknown
dynamics of the groundwater system. A larger spread from
predictive distributions derived from a single “wrong” con-
ceptualization produces a high value for the between‐model
variance term of equation (6), resulting in a BMA prediction
that is more uncertain. As an example, for evapotranspiration
outflows (Figure 6d), the presence of conceptual models 2L
and 1L‐L3 even counterbalances the gain in precision and
accuracy obtained from the spatial conditioning mechanism
for the other conceptual models. In this case, it would be
useful to collect data that is informative on the evapotrans-
piration process to constrain the disagreement among pre-
dictive distributions after spatial conditioning.

Figure 6. Cumulative probability distributions of (a, c) recharge inflows and (b, d) evapotranspiration
(EVT) outflows for alternative conceptual models and Bayesian Model Averaging (BMA) for case Uncon-
ditional (Figures 6a and 6b) and Conditional‐III (Figures 6c and 6d) based on groundwater heads condition-
ing only. Vertical dashed lines represent the reference values obtained from the 3‐dimensional hypothetical
setup (2100 m3 d−1 and 63 m3 d−1).
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[67] The fact that multimodel predictions are largely
affected by individual predictions obtained from a single
(wrong) conceptual model and that this model could not be
eliminated based on the available dataD raises the paramount
question on how to identify “wrong” conceptualizations and
what type of data are more informative in doing so. In the
context of this work, conditioning on head measurements
using the GLUE‐BMA methodology allowed for the refine-
ment of the original ensemble M by discarding 2 out of 7
conceptualizations. Hydraulic conductivity measurements
showed to be highly informative in terms of eliminating an
additional conceptualization that contradicted the basic
dynamics of the hypothetical setup. Moreover, collecting
flow‐relatedmeasurements showed a clear tendency to assign
less weight to “simpler” conceptualizations. It can therefore
be hypothesized that collecting more flow‐related measure-
ments could potentially further constrain the ensemble M.
[68] It might be argued that conducting the model aver-

aging considering solely the best three models (2L, 2LQ3D
and 3L) appears as a legitimate option. This, however, con-
tradicts the main purpose of the methodology applied, which
is to assess the uncertainty arising from the definition of
alternative and valid conceptual models. Working with the
best models only may result in an underestimation of the
predictive uncertainty and biased predictions, which are
precisely the two problems that model averaging intends to
avoid [Ye et al., 2010a].
6.4.2. Heads, Groundwater Flow, and River Discharge
Observations
[69] The effect of including GWF and RIV observations on

the predictive distributions of simulated system‐state vari-
ables is shown in Figure 8. For both Unconditional and
Conditional‐III cases the spread of the cumulative BMA
predictive distributions reduces with increased conditioning,
with the minimum spread observed for the conditioning case
including heads, groundwater flow and river discharge
observations (Heads + GWF + RIV). GWF and RIV obser-
vations contain a different type of information than head
measurements and implicitly convey more valuable infor-
mation on flow‐related system‐state variables.
[70] Also, from the hypothetical setup it is known that

groundwater outflows from the system through the WBC are
physically not possible. When conditioning on heads solely,
this physical constraint is ignored and groundwater outflows
from the system are observed for both Unconditional and

Conditional‐III cases (Figures 8b and 8f). By conditioning on
GWF and RIV observations only physically plausible simu-
lators are retained, resulting in a more accurate physical
representation of the system.

6.5. Predictive Variance

[71] To exclusively assess the worth of hydraulic con-
ductivity measurements in reducing the predictive variance
we compared conditioning cases on the basis of the number of
conceptualizations retained in the ensemble M. Since model
1L‐AVG was excluded from the set of retained models when
increasing the number of conditioning hydraulic conductivity
data, the comparison was done pair wise, i.e., cases Uncon-
ditional with Conditional‐I, and cases Conditional‐II with
Conditional‐III.
[72] Figure 9 shows the comparison between the most

conditioned cases (Conditional‐II and Conditional‐III) for
recharge inflows and evapotranspiration outflows. Results
reveal that a doubling of the number of hydraulic conductivity
measurements drastically decreases the predictive variance,
especially for the recharge inflows. In addition, using ob-
servations of groundwater flow and river discharge further
reduces the predictive variance in both cases compared to
conditioning solely on groundwater heads. Similar patterns
were observed for the other predicted variables and param-
eters (see Table 6).
[73] In all cases analyzed, including more data for condi-

tioning strongly reduces the contribution of within‐model
variance to the predictive variance. The effect on between‐
model variance is less pronounced and does not show a clear
pattern. For example, for cases Conditional‐II and Condi-
tional‐III including the GWF observation reduces the relative
contribution of conceptual model uncertainty to the pre-
dictive variance compared to the case using only ground-
water heads. Including the RIV observation, on the contrary,
results in an increase in the relative contribution of conceptual
model uncertainty to the predictive variance. Moreover, for
evapotranspiration outflows conditioning on extra hydraulic
conductivity measurements results in a slight increase
in between‐model variance compared to conditioning on
groundwater heads only (Figure 5d). As discussed earlier, this
can be explained by the presence of conceptualizations 2L
and 1L‐L3, for which predictions strongly deviate from those

Figure 7. (a) Cumulative probability distributions of groundwater inflows from the west boundary con-
dition (WBC) for the cases Unconditional and Conditional‐III for conceptual model 1L‐L3; (b) longitudinal
groundwater head profiles crossing the middle point of the evapotranspiration zone depicted in Figure 1 for
cases Unconditional and Conditional‐III. Vertical dashed line represents the reference value obtained from
the 3‐dimensional hypothetical setup (655 m3 d−1).
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of the other models when conditioning on extra hydraulic
conductivity measurements.

7. Discussion and Conclusions

[74] In this work we assessed the value of conditioning to
various types of data in a multimodel methodology aimed at
explicitly accounting for conceptual model uncertainty
in groundwater modeling. We considered conditioning on
observations of 3 system‐state variables, namely, heads,
groundwater flow‐passing through a boundary condition and
river discharge, and on increasing sets of hydraulic con-
ductivity. In total 12 conditioning cases were analyzed.
The analysis was applied to a 3‐dimensional hypothetical
groundwater system under steady state conditions. Uncer-
tainty about the conceptualization of this flow system was
represented by an ensemble (M) of 7 alternative conceptual
models. For each conditioning case and conceptualization the
integrated model likelihoods and posterior model probabili-
ties were derived, which were then used to obtain multimodel
statistics and predictions explicitly accounting for conceptual
model uncertainty.
[75] Including extra head observations as conditioning

data, in comparison to the work done by Rojas et al. [2008],
did not significantly alter posterior model probabilities,
hence, did not allow further discrimination among con-
ceptualizations. This confirms that the information content of
the head observations is limited in its ability to further dif-
ferentiate among the retained conceptualizations. Although it
can be argued that this might be caused by intrinsic properties
of the hypothetical setup (flow system dominated byDirichlet
boundaries), in practical applications a limited set of head
observations may often be the only information available

Figure 8. Cumulative BMA probability distributions of (a, e) groundwater inflows from the WBC, (b, f)
groundwater outflows from the west boundary condition (WBC), (c, g) river gains, and (d, h) evapotrans-
piration (EVT) outflows for cases Unconditional (Figures 8a–8d) and Conditional‐III (Figures 8e–8h) based
on groundwater heads, one GWF observation and one RIV observation. Vertical dashed lines represent the
reference values obtained from the 3‐dimensional hypothetical setup (655 m3 d−1, 0 m3 d−1, 192m3 d−1, and
63 m3 d−1).

Figure 9. Predictive variance estimated using equation (6)
for (a, b) recharge inflows and (c, d) evapotranspiration
(EVT) outflows for conditioning cases Conditional‐II
(Figures 9a and 9c) and Conditional‐III (Figures 9b and 9d).
Height of columns shown in Table 6.

ROJAS ET AL.: CONDITIONING DATA AND CONCEPTUAL MODEL UNCERTAINTY W08520W08520

15 of 20Archived at Flinders University: dspace.flinders.edu.au



about the dynamics of the groundwater system, thus, ren-
dering multimodeling analyses particularly challenging. It is
therefore strongly advised to complement the information
content of heads with measurements of key parameters and
observations of other system‐state variables to further dis-
criminate among alternative conceptual models or to further
constrain the ensemble M of proposed conceptualizations.
[76] Including flow‐related observations in the condition-

ing resulted in a strong reduction of the total predictive spread
andmore accurate predictions of head dependent variables. In
particular, river discharge observations allowed for a better
discrimination among the retained conceptualizations com-
pared to only the groundwater flow observation. This shows
that flow‐related observations with a global character have a
high potential to discriminate large‐scale conductivity fea-
tures, such as zonation or layering, and therefore seem highly
valuable to reduce conceptual model uncertainty.
[77] We acknowledge that we have conveniently included

observations of groundwater inflows and river discharges in
the conditioning mechanism. For the first, it might be argued
that this type of observation is seldom available in practical
applications or that the uncertainty in its estimation might be
so high rendering its information content relatively poor. We
do believe, however, that even the inclusion of an uncertain
estimation of groundwater inflows, e.g., derived by applying
fundamental laws of groundwater hydraulics, will help
reduce identifiability (or equifinality) problems by con-
straining the space of potential simulators of the system.
River discharge observations are typically less uncertain, and
as such, they may convey more valuable information about
the dynamics of the groundwater system. In addition, as no
noise was added to the observations to account for error
measurements or potential correlations, the analysis and
conclusions of this work are restricted to that assumption.
[78] Conditioning to hydraulic conductivity measurements

allowed for a better differentiation among the different con-
ceptualizations and for the refinement of the ensemble M. It
also resulted in a more accurate and precise global likelihood
response surface and in a considerable increase in the inte-
grated model likelihoods. These results are in full agreement
with those obtained for a multimodel analysis of a real aquifer
[Rojas et al., 2010]. The gain in accuracy and precision by the
spatial conditioning of the hydraulic conductivity fields,
however, was partially counterbalanced by deviating pre-
dictions of a particular member of the ensemble (M) that
could not be excluded given the conditioning data available.
The presence of such “wrong” conceptualizations resulted in
high between‐model variances. As a consequence, no clear
relationship between the degree of spatial conditioning and
the contribution of conceptual model uncertainty to the pre-
dictive variance could be detected.
[79] Working with a suite of plausible conceptualizations

we explicitly attempted to disentangle the effects of con-
ceptual model uncertainty on the predictive uncertainty. The
application of the GLUE‐BMAmethod resulted in discarding
2 out of 7 conceptualizations based on the head observations,
and one more based on spatial conditioning. The inclusion of
flow‐related variables further allowed for a better discrimi-
nation among the retained conceptualizations. However,
given the available data, some simpler models could not be
eliminated based on their posterior model weight, even
though they resulted in higher between‐model variances for
flow‐related variables that were not included in the con-T
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ditioning. This raises the question as to how valid are the
predictions for such variables from simpler models, which
cannot be resolved on the basis of model weights solely. To
decide on the validity of individual model predictions, or
to identify conceptualizations that may be too simplistic
or erroneous representations of the true flow system, their
contribution to the conceptual model uncertainty and, by
association, to the predictive uncertainty must be established.
The application of the GLUE‐BMA method allows iden-
tifying conceptualizations producing strongly deviating
predictions from the ensemble average. Hence, even though
for cases when alternative conceptualizations cannot be
(strongly) differentiated on the basis of available data,
knowledge about the relative contribution of conceptual
model uncertainty to the total predictive uncertainty may be
useful to guide, for example, data collection campaigns or to
decide on conceptualizations worth to be explored in more
detail. This is a key advantage compared to approaches
focusing on the estimation of the overall variance solely. Data
collection should then be aimed at acquiring data that can
further eliminate such conceptualizations. For example, if
alternative conceptualizations differ in some (key) aspects
or processes, e.g., layering or zonation, collecting data of
quantities related to those aspects or processes may help
toward conceptual model discrimination and further refine-
ment of M.
[80] We recognize that the GLUE‐BMA method does

not penalize more complex models, i.e., models with a
higher number of parameters, through the likelihood func-
tion (equation (1)). In the event where both prior model
probabilities and integrated model likelihoods are equal for
alternative conceptualizations, posterior model probabilities
will be identical independent of the number of parameters of
each conceptualization. Penalizing more complex models to
comply with the principle of parsimony, however, can be
achieved by defining non‐uniform prior model probabilities.
These non‐uniform distributions could be defined on the
basis of model complexity, plausibility, or any other criteria
followed by the analyst. Expert‐based prior knowledge,
expressed as quantitative relationships among the alternative
conceptualizations, can be optimized, for example, using a
constrained maximum entropy approach, to define sound
non‐uniform prior model probabilities [see, e.g., Ye et al.,
2005; Rojas et al., 2009].
[81] Alternatively, an option to penalize more complex

models and/or assess the information content of the data, is
to use model selection criteria to approximate posterior
model weights in multimodel frameworks [see, e.g.,Neuman,
2003; Poeter and Anderson, 2005; Meyer et al., 2007].
However, two main drawbacks of this option are worthwhile
discussing. First, different model selection criteria will lead to
different posterior model weights and, as a consequence, to
drastic differences in uncertainty assessments [see, e.g., Singh
et al., 2010; Ye et al., 2010a; Rojas et al., submitted manu-
script, 2009]. This is due mainly to the differences in how
alternative criteria penalize model complexity, value prior
information on parameter estimates, or interpret the quality of
the available data. Ye et al. [2008b] presented an insightful
discussion about merits and demerits of alternative model
selection criteria in the context of multimodel approaches.
However, the dilemma still remains about using one criterion
over the others, thus, hampering the use of multimodel fra-
meworks relying on model selection criteria [see, e.g., Tsai

and Li, 2008; Singh et al., 2010; Ye et al., 2010a; Tsai and
Li, 2010; Ye et al., 2010b]. Second, criteria‐based multi-
model approaches tend to concentrate posterior model weight
in a rather small number of conceptualizations. This may
result in under‐dispersion and (potentially) more drastic bias
in uncertainty estimations, the two problems that model
averaging precisely intends to avoid. As GLUE‐based BMA
weights are more evenly distributed across alternative con-
ceptualizations [see, e.g., Singh et al., 2010; Ye et al., 2010a],
the risk of under‐dispersed and biased uncertainty esti-
mations is lower compared to criteria‐based multimodel
approaches.
[82] Considering an ensemble of conceptual models avoids

problems with overfitted individual models, under‐dispersive
uncertainty estimations, and (potentially) biased parameter
estimates obtained to compensate for the unknown errors in
the conceptualization of the system. A clear disadvantage of
this approach is that by expanding the sampling space to the
conceptual model dimension, the global likelihood response
surface needs to be extensively sampled. This, however, can
partly be alleviated by including more efficient parameter
sampling schemes such as the Metropolis‐Hastings sampling
method used herein. Despite the computational requirements,
recent applications have shown that the method is fully
applicable to local‐ and regional‐scale aquifer systems [Ye
et al., 2010a; Rojas et al., 2010, submitted manuscript, 2009].
[83] Although it might be argued that the validity of the

results from this work is limited as they are driven by par-
ticularities of the hypothetical setup used, results about the
value of spatial conditioning on global likelihood response
surfaces and posterior model probabilities (model weights)
are in full agreement with results obtained for a multimodel
analysis in a regional aquifer system in North Chile [Rojas
et al., 2010]. We could therefore hypothesize that con-
ditioning on observations of system‐state variables for real
applications will lead to similar results as those presented
here.
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