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1. Introduction 

In the papers [I] and [2], we considered perturbation of systems 
undergoing Markov processes in which the times between two 
consecutive decision time points were equidistant. In this pa- 
per we consider perturbations of processes for which the times 
between transitions are random variables. These are called semi- 
Markov processes and they were introduced by De Cani [6], 
Howard [ 181, Jewell [ 191 and Schweitzer [27]. 

2. Definitions and Preliminaries 

A Semi-Markov Control Process (SMCP, for short) is observed 
at decision time points t = O , l , .  . .; starting at t = 0. At each 
decision time point the system is in one of a finite number of 
states and an action has to be chosen. 
Let S := {1,2,. . . , N }  be the state space, and for each s E S let 
A(a) be the finite set of possible actions in state s. 
If the system is in state s E S and an action a E A(s)  is chosen, 
then the following occurs independently of the history of the 
process: 

(i) The next state s' of the process is chosen according to the 
transition probability p(s'Is, a). 

(ii) Conditional on the event that the next state is s', the 
time until the transition from s to s' occurs is a random variable 
with probability distribution F(.ls, a,.'). 

(iii) If the next decision time point falls after T units of times, 
then the reward in this epoch is denoted by r(T,s,a).  
The transition law p satisfies: 

p(s'Is,a) 2 0; 8,s' E S; a E A(s) ;  and 
p(s'Is,a) = 1, s 6 S, a E A(s) .  

8'ES 

A decision rule a' at time t is a function which assigns a proba- 
bility to the event that any particular action is taken at time t. 
In general at may depend on all realiied states up to time t, and 
on all realized actions up to time t - 1. 
Let ht = (so, a ~ ,  s l ,  . . . , at- l ,  s t )  be the history up to time t where 

a~ E A(so), . . . , a t - ~  E then a'(/~:, .) is a probability dis- 
tribution on A(st), that is, a'(ht, ( ~ t )  is the probability of selecting 
the action 
A strategy A is a sequence of decision rules a = (ao, AI, . . . , at, . . .). 

- -  

at time t, given the history ht. 

A Markov strategy is one in which at depends only on the cur- 
rent state at time t .  
A stationary strategy is a Markov strategy with identical deci- 
sion rules. 

A deterministic strategy is a stationary strategy whose single de- 
cision rule is nonrandomized. 
Let C, C(S) and C ( D )  denote the sets of all strategies, all sta- 
tionary strategies and all deterministic strategies respectively. 
For any t = 0,1, ...; let X t ,  and yt, denote the observed state 
and the chosen action at time point t respectively. 

3. Discounted Case 

In this Section we shall assume that the rewards are continuously 
discounted, that is, a reward r incurred at time t is worth only 
re-at at time 0, where a is a fixed positive real number. 
In order to insure that an infinite number of transitions does not 
occur in a finite interval, we shall assume throughout that the 
following condition holds: 
For all 8,s' E S, and a E A(s) ,  

/," e-atdF(tls, a, s') < 1. ( 3 4  

For any strategy K E C and any initial state s E S, we define the 
expected discounted reward V ( s ,  a) by: 

W 

r(Tn, Xn, Yn)lXo = 81 (3.2) v ( ~ ,  := E,,[X e-a(ri+7i+-.+rn-i) 
n=O 

where TI + 72 + . . . + ~ ~ - 1  := 0 for n = 0, and T,, is the time 
between the n-th and the (n+l)-st transition. 
The discounted semi-Markov control problem is defined by the 
following optimization problem: 

V ( s )  := maz,,cV(s,7r), 

V(s,aO) = V(8).  

s E s. 
A strategy ao is called optimal if for all s E S, 

(3.3) 

It is well known that there exists an optimal deterministic strat- 
egy and there are a number of finite algorithms for its computa- 
tion (e.g., see Denardo and Fox [9], Jewell 1191, Kallenberg [20], 
Ross [25]). 
For every 9,s' E S and a E A(s) ,  we denote by f ( t (e ,a ,s ' )  the 
ptobability density of the probability distribution F(tls, a, s'). 
We define: for all s, s' E S and a E A(s)  

r(s ,  a) := c p(s'ls, a) /," r ( t ,  8, a)f(t ls ,a,  st)dt, (3.4) 
.'E9 

(3.5) 
p(s'ls, a) := p(s'Is, a) e-a'f(tls, a, s')dt. 
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The following two results can be derived (using analogous proofs) 
from Kallenberg [20] or Ross [25]. 

Lemma 3.1 For any deterministic strategy r E C(D) and s E 
s, 

~ ( s , n )  = r(s,n(s))+ p(s' ls ,a)V(s' ,a).  

we assume that there exists eo > 0 such that for all 
satisfying 11q11 < €0 and llgll < EO, pq and f,, define a transition 
law and a probability density respectively. 
We now have a family of perturbed semi-Markov control pro- 
cesses that differ from the original SMCP only in the transition 
law and the probability density. Namely in the perturbed SMCP 
the transition law and the probability density are defined by pq 
and fo respectively. 
The discounted semi-Markov control problem corresponding to 
the perturbed SMCP defined by the transition law pq and the 

and 

8'ES 

Lemma 3.2 For any state s E S, 

~ ( s )  = max { ~ ( s , a )  + p ( s ' ~ s , a ) v ( s ' ) } .  
aEA(8) d E S  probability density f,, is the optimization problem: 

Let r be the Markov control process defined by: 

r =< s, { A ( ~ ) , $  E SI, p ,  F > . 

Vq&) := maz,,cV,,(s,r) , 5 E s 
where Vqs(s,n) is defined in the perturbed SMCP in the same 
way as V ( s ,  r) was defined in the original SMCP. 
We define the following quantities: 
For all s, s' E S, a E A(s ) ,  

We define: 

A := maxi /," e -a t f ( t l s ,  a, 1 s, st E S; a E A ( s ) ) .  
~ pq,,(s'Is,a) := pq(s'ls,a) I," e-u"f,(tls,a,s')dt, (3.8) 
Remark 3.1 Note that from the condition (3.1), it follows that 
A < 1. By using the definition (3.5) of p ,  we have that for any Fqg(3, a)  := Pq(S'b9  a)  /," r(t, 8, a)fp( th  a, s')d(3.9) 
s E S and a E A(s) ,  8'ES 

From the definitions (3.9) and (3.4) of rq,, and i respectively, it 
1 - P ( 8 ' h  a) = 1 - P(Q'ls, a)  e - a t f ( t l s ~ a ,  " I d t  follows that: for any s E S and a E A ( s ) ,  

8'ES 8" 

2 1 - x  
> 0. 

From Remark (3.1), it follows that r is a Markov control process 
with nonzero stop probabilities. This class of MCP's has been 
studied in a more general context (stochastic games) by Shapley 

From Lemma 3.2, we derive that for any s E S, V ( s )  can be 
interpreted as the optimal value in state s for the MCP I?. 
If we define, 

I281. 

llrll := sup{lr(t,s,a)l : t L 0,s E s , a  E ~ ( s ) } ,  

which is assumed to be finite, then by the definition (3.4) of P 
we have that 
I~(s ,a) l  5 )1r)1 for all s E S and a E A ( s ) .  
Now, from Shapley (281, we have the following result: 

00 

T(t ,s ,a)g( t ls ,a ,s ' )d t  + q(s'ls,a) /u r ( t , s ,a ) f , , ( t l s ,a , s ' )d t ,  

where the last equality follows from the definitions (3.6) and (3.7) 
of p ,  and f, respectively. 

Note that for any translation of the function r, of the form 
r ( t , s ,a )  + T ( s , a ) ,  s E S and a E A ( s ) ,  the quantity fq,(s,a) - 
~ ( s ,  a) remains constant. 
Now, we introduce the following assumption: there exists some 
function T(s ,a )  such that for any s E S and a E A ( s ) ,  

8'ES 

l" Ir(t, s, a )  - T ( s ,  a)ldt i s  f inite.  (3.10) 

We shall now consider the situation where the transition prob- 
abilities and the probability density of the original SMCP are 
perturbed slightly. 
Towards this goal we shall define: for all s,s' E S; a E A ( s )  and 
t 2 0 ,  

pq(S'Is,a) := P ( s ' ( s , ~ )  + q(s'ls,a), (3.6) 
f,,(t)s, a, 9') := f(tls, a, s') + g(tls, a, st) ,  (3.7) 

where q and g are the disturbance laws on the transition proba- 
bilities and the probability density respectively. 

Remark 3.2 Note that the assumption (3.10) is satisfied b y  the 
reward structure considered in Kallenberg [go] and Ross 1251. 
That is, if the process is in  state s and an action a E A(s )  is se- 
lected and the nezt transition falls after t units of times, then the 
reward in this epoch i s  given b y  R(s ,a)  + S(s ,a) t ,  where R(s ,a)  
is the immediate reward and S(s,u) is the reward rate. In this 
case, the rewards in our formulation are given by: 

We define: Hence if we define for all s E S and a E A(s) ,  T ( s , a )  := R ( s , ~ ) +  

I(qI[ := ma%{ (q (s ' (s ,  a)  1 : s, 5' E S; a E A ( s ) }  , 
llgll := sup{ )g( t ( s ,  a, s') 1 : s, s' E S; a E A(s) ;  t 

LS(s, a)  then 
m 1 

0). I," Ir(t,s,Q) - T(s,a.)ldt = L \ S ( s , a ) l i  e-"'dt, 
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which is finite. 

Let A, := m a {  . f~e-"t f , ( t l s ,a , s ' )d t  I 8,s' E S; a E A(s ) } .  
By using the definition (3.7) of f,, it follows that: 

A , I A + -  llsll 
a 

Note that if llgll < a ( 1 -  A), then A, < 1. 
Now, from Lemma 3.3, it follows that for all s E S: 

(3.12) 

In what follows we use the following notation: 

IIVqr(.,4 - V(.,~)Il := maZ8ESIVqp(~,~) - V(5,7r)I. 

Lemma 3.4 Assume that llgll < a(1-  A). Then for every s E S 
and A E C(D), 

Proof: By Lemma 3.1, for all s E S and x E C(D) we have that: 

This completes the proof of the Lemma. 
0 

Theorem 3.1 Let be any optimal deterministic strategy in 
the original SMCP. Then for all p > 0, there exbts q > 0 
such that for all q and g satisfying 11q11 < and llgll < E@, 

IIv9,('l~o) - Vqu(*)Il < P-  

Proof: For any s E S, we have: 

Iv(%ro) - vq#(s)I = Imazs€C(D)V(%r) - mazsEC(D)Vqg(8,'IT)I 

5 mazsEC(D)lv(%a) - vqr(si'lT)I 

where the last expression converges to 0 as llqll and llgll go to 0 
by Lemma 3.4 . 
Now, by using the triangle inequality: 

IIVar(.tAO) -Vqu(-)Il I IIVq,(.,AO) -v(.,~o)ll + llv(*9~o) -Vq,(*)lL 

the proof of the Theorem is completed. 

4. Limiting Average Case 
0 

For any strategy x E C and any initial state s E S, the limiting v'#(sf - v(s, = { 'b ,  ( s 'x(s ) )  -F(slx(s))}+ average reward J (s, .) is defined by 

1 
Pq, (9'1% r(.))&,(s', A) - P(s'l% r(s))  v(s', r)-(3-13) 

From the definitions (3.6), (3.7) and (3.8) of pql  f,, and pqg re- 
epectively, it follows that for all s,s' E S: 

(4.1) 
*'E9 8'ES J (8,  r)  := l imi?%fT+m?;JT(S,  r )  

where JT (s, x) denotes the expected reward earned in the interval 
[0, T) when the strategy x is used and the initial state is s. That 

pqu(s' /s ,x(s)):= p q ( s f ~ s , ~ ( s ) ) / m e - a t f ~ ( t ~ s , ~ ( s ) l s ' ) d t  = is : 

n(T) 
J T ( S , A )  := &[E r(TnnrXn,Yn)lXo = 811 

n=O 
I (8' Is, A(.)) + P ( d  Is, A(.)) /," e-atg ( t  1% 4 s )  , 5') dt+ 

q (8' 1 %  44) /," e-""f, ( t  Is, (4 , s') dt . where, n ( T )  := max{n 1 TO + 71 + . . . + rn < T}. 
For any s E S and a E A(s) ,  the holding time and the immediate 
reward are defined respectively by: 

Hence, for all s E S, we have: 

c Iq,(sfI~l"(~))vq,(~'l*) - c P(s'ls,x(S))v(s',a) = m 

#'E9 8'ES ~ ( s , a )  := 1 p(s'ls,a) tf(t ls ,a,s')dt  (4.2) 
a'ES 

#'E.? P(s'lsir(s)) { vq~(s',n) -v(s'iA)}+ a'ES { P ( s f l % ~ ( s ) ) ~ m  I?-"' and 
c(s ,a)  := r ( T ( s , a ) , s , a ) .  (4.3) 

Throughout this Section, it is assumed that: for all 8 E S and 
a E A(s)  

9 ( t  I%.(.) I 8') dt+q (8'18, 4 4 )  /," e-ut f, (tis, 4.) , s') dt}% (s' , 4. 
Now, by using (3.13), it follows that for all s E S, 

0 < +,a)  < 00. (4.4) 
The limiting average semi-Markov control problem is defined by 

I Pq, (.'l5,4s)) Vq,("', 4 - 1 ii (s'ls, 44) v (a', .)I 
dE.9 8'ES 

the following optimization problem: 
I AlIVw(v4 - V(*l4Il  + 

- A )  - llgll 
J ( 8 )  := ma2,ECJ ( S , T )  , 8 E s. (4-5) Finally, by using (3.11), (3.13) and (3.14) we get: 

A strategy is called optimal if, 

J ( s ,xo)  = J (s) for dl s E S. 

It is well known that there exists an optimal deterministic strat- 
egy and there are a number of finite algorithms for its computa- 
tion (e.g., see Federgruen [14], Jewel1 [19], Kallenberg [20], Ross 

AIIV.o(.,") - V(*94Il + a(l - A) - llgll 
which implies that: 

we note that any limiting average semi-Markov control problem 
can be described by: 
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A :=< S, { A ( s ) ,  s E S } ,  p ,  7,  c > 

We shall consider the following transformation which was pro- 
posed by Schweitrer (271: for all s, s' E S and a E A(s)  

where q is chosen such that, 

To the semi-Markov conjrol problem A we can aasociate the 
Markov control pfoblem I' defined by: 

f :=< S, {A(s ) ,  s E S} ,  5, i > 

Remark 4.1 It is shown (e.g. Federgruen [14], Schweitzer [97]) 
that any optimal deterministic strategy in the SMCP A is also 
optimal in the MCP I', and vice-versa, and the optimal values in 
both problems A and I' are equal. It is also true that the vflues 
of any deterministic strategy in  the SMCP A and the MCP I' are 
equal. 

Remark 4.2 From (&7), it follows that ijs' # s thenp'(s'ls,a) = 
p(s'Is,a)& for all a E A ( s ) .  Hence the SMCP A and the MCP 
f have the same ergodicity structure, that is, for any stationary 
strategy A, P ( T )  and P ( n )  have the same ergodic classes, where 
P(A)  and ! (A )  are the transition matrices in the SMCP A and 
the MCP r respectively when the strategy A is used. 

Perturbation on the transition probabilities 

In this case we shall consider the situation where the transition 
probabilities of the SMCP A are perturbed slightly. 

Towards this goal we shall define: 

pr(s'(s,a) := p(s'(s,a) + cd(s'(s,a);  8,s' E S; a E A(s) .  (4.8) 

We shall require that there exists eo > 0 such that for every 
c E [O, eo], p, is a transition law. 
We shall consider a family of perturbed processes {A, I c E 

[O,eo]} that differ from the original SMCP A only in the transi- 
tion law, namely, in the SMCP A, the transition law is pc .  
For each c E [O,co], the associated MCP re to the SMCP A, is 
defined by: 

f ,  :=< S, { A ( s )  : s E S}, j , ,  i >, 

where jf is defined by: 

je (s ' ls ,a )  := 68,8+(pf(s+,a) - b a t a ) L ;  8,s' E s; a E ~ ( 8 1 ,  

(4.9) 
7 (5,a) 

where qr is chosen such that, 

o < qc < min{ r ( s 7 a )  
1 - Pc(s(s,a) 

1 s E S, a E A ( s ) ,  pr(sJs,a) < l}. 

(4.10) 
Note that for c small, tl must satisfy (4.10) and hence without 
la& of generality we can choose qr = 9 .  
From (4.8) and (4.9), it follows that for any 8,s' E S and a E 

er) 
A W ,  

j,(s'Js,a) := j(s 'Is ,a) + -d(s'Is,a). (4.11) 

Note that, from (4.11) it results that the MCP's Fe are exactely 
the perturbed MCP's of the MCP I' under the disturbance law: 

7(8 , . )  

Now, we can use the results in [l] and 121 to the MCP f to derive 
some results concerning the perturbation of the SMCP A. 
In particular, we can derive the limit control principle ( Theorem 
(4.1) ) for the limiting average semi-Markov control processes. 
For any strategy A E C ,  we denote by Jc(s,n) the limiting av- 
erage reward resulting from the use of A in the SMCP Ae and 
when the starting state is s. 
The optimal value function J ,  corresponding to the SMCP h, is 
given by: 

J e ( s )  := maz,EcJc(s,n).  

Let L denote the limit Markov control problem corresponding to 
the perturbed MCP's I'f, c E (0, CO] 

Theorem 4.1 Let no E C ( D )  be any optimal strategy in  i. 
Then for all 6 > 0, there ezists €6 > 0 such that for all e E (0, e t ) ,  

lIJc(.,A0) - J,(.)ll < 6. 

Proof: This follows from Corollary 3.1 in [2] and Remark 4.1. 
0 

Remark 4.3 From Remark 4.R, it follows that if the SMCP A 
is completely decomposable then the transformed MCP I? is also 
completely decomposable. Thus from the ezpressions (4.8) and 
(4.11) we can conclude that the algorithms constructed in [l] are 
also valid in  this case. 

References 

[I] M. Abbad, T. Bielecki and J.A. Filar, Algorithms for Sin- 
gularly Perturbed Limiting Average Markov Control Prob- 
lems, Proceedings of the 29th CDC, editor IEEE, 1990. 

121 M. Abbad and J.A. Filar, Perturbation and Stability Theory 
for Markov Control Problems, Technical Report 90-13, Uni- 
versity of Maryland at Baltimore County, 1990, (Accepted 
by IEEE Transactions on Automatic Control). 

133 R.Aldhaheri and H.Khali1, Aggregation and Optimal Con- 
trol of Nearly Completely Decomposable Markov Chains, in 
Proceedings of the 28th CDC, editor IEEE, 1989. 

(41 T.Bielecki and J.A.Filar, Singular Perturbations of Markov 
Decision Chains, Proceedings of the 28th CDC, editor IEEE, 
1989. 

151 M. Cordech, A. Willsky, S. Sastry and D. Castanon, Hier- 
archical Aggregation of Linear Systems with Multiple Time 
Scales, IEEE Transaction on Automatic Control, AC-28, pp. 
1017-1029, 1983. 

[6] J.S. De Cani, A Dynamic Programming Algorithm for Em- 
bedded Markov Chains when the Planning Horizon is at 
Infinity, Management Science, 10, pp. 716733, 1964. 

492 

Archived at Flinders University: dspace.flinders.edu.au



[7] F. Delebecque, A Reduction Process for Perturbed Markov 
Chains, SIAM Journal of Applied Mathematics, 48, pp.325- 
350, 1983. 

[8] F. Delebecque and J. Quadrat, Optimal Control of Markov 
Chains Admitting Strong and Weak Interactions, Automat- 
ica, 17, pp. 281-296, 1981. 

[SI E.V. Denardo and B. Fox, Multichain Markov Renewal Pro- 
grama, SIAM J. Appl. Math., 16, pp. 468-487. 

[lo] E.V. Denardo, Dynamic Programming, Prentice-Hall, Egle- 
wood Cliffs, New Jersey, 1982. 

[Ill C. Derman, Finite State Markovian Decision Process, Aca- 

112) N.V. Dijk, Perturbation Theory for Unbounded Markov Re- 
ward Processes with Applications to Queueing, Adv. Appl. 
Prob., 20, pp. 94111,1988. 

demic Press, New York, 1970. 

I131 N.V. Dijk and M. Puterman, Perturbation Theory for 
Markov Reward Processes with Applications to Queueing 
Systems, Adv. Appl. Prob., 20, pp. 79-98, 1988. 

(141 A. Federgruen, Markovian Control Problems, Mathematical 
Centre Tracts 97, Amsterdam, 1983. 

(151 B.L. Fox, Markov Renewal Programming by Linear Frac- 
tional Programming, SIAM J. Appl. Math., 14, pp. 1418- 
1432, 1966. 

[lS] V.G. Gaitsgori and A.A. Pervozvanskii, Theory of Subopti- 
mal Decisions, Kluwer Academic Publishers, 1988. 

[17] R.A. Howard, Dynamic Programming and Markov Pro- 
cesses, M.I.T.Presa, Cambridge, Massachusetts, 1960. 

[l8] R.A. Howard, Semi-Markovian Decision Processes, Proceed- 
ings International Statistical Institute, Ottawa, 1963. 

I191 W. Jewell, Markov Renewal Programming, Op. Res., 11, pp. 

[20] L.C.M. Kallenberg, Linear Programming and Finite Marko- 
vian Control Problems, Mathematical Centre Tracts 148, 
Amaterdam, 1983. 

938-971, 1963. 

121) T. Kato, Perturbation Theory for Linear Operators, 
Springer-Verlag, Berlin, 1980. 

[22] P. Kokotovic, Application of Singular Perturbation Tech- 
niques to Control Problems, SIAM Review, 26, pp. 501-550, 
1984. 

[23] R.G. Phillips and P. Kokotovic, A Singular Perturbation 
Approach to Modelling and Control of Markov Chains, 
IEEE Transactions on Automatic Control, AC-26, pp. 1087- 
1094,1981. 

[24] J. Rohlicek and A. Willsky, Multiple Time Scale Decomposi- 
tion of Discrete Time Markov Chains, Systems and Control 
Letters, 11, pp. 309-314, 1988. 

[25] S.M. Ross, Introduction to Stochastic Dynamic Program- 
ming, Academic Press, New York, 1983. 

(261 P.J. Schweitzer, Perturbation Series Expansions for Nearly 
Completely Decomposable Markov Chains, Teletrafic Anal- 
ysis and Computer Performance Evaluation, pp. 319-328, 
1986. 

[27] P.J. Schweitzer, Iterative Solution of the Functional equa- 
tions of Undiscounted Markov Renewal Programming, Jour- 
nal of Mathematical Analysis and Applications, 34, pp. 495- 
501, 1971. 

[28] L.S. Shapley, Stochastic Games, Proceedinga National 
Academy of Sciences U.S.A, 39, pp. 1095-1100, 1953. 

493 

Archived at Flinders University: dspace.flinders.edu.au




