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Abstract 

A dynamic flow-shop is considered consisting of one 
slow and one fast machine. Production capacaties of 
both machines vary randomly according to a Markov 
chain whose transition rates are consistent with the 
time scale of the fast machine. Problem of minimiza- 
tion of a discounted cost of manufacturing is formu- 
lated. A conjecture is presented regarding the asymp- 
totic behaviour of the value function for the above 
problem when the separation of slow and fast time 
scales becomes singular. Natural conditions are formu- 
lated under which the conjecture is might be satisfied, 
hence this note is a report on work in progress. 

1 Formulation of the problem 

Notation and terminology used throughout this note 
are similar to those used in the book by Sethi and 
Zhang [5]. 
We consider a twc-machine dynamic flow-shop char- 
acterized by the presence of slow and fast operating 
machines. The vector process of capacities on both 
machines is denoted by k ( t )  = ( k l ( t ) ,  k z ( t ) ) ,  and is 
assumed to be a Markov process such that ki ( t )  E 
{O,mi},mi > 0 , i  E 1 ,2 .  The infinitesimal generator 
matrix for the process IC(.) is denoted by Q = [q i j ] .  
By v ( t )  = ( w l ( t ) ,  wz(t)) we denote a vector process 
of production intensities for the two machines, with 
v i ( t )  E [0 ,1 ] ,  i = 1 ,2 .  Now, let E > 0 be a small con- 
stant representing the ratio between slow and fast time 
regimes in our system. We additionally assume that 
the capacities of both machines change with rate that 
is consistent with the fast time regime. Considering the 
first machine as the fast one, and second machine as the 
slow one we obtain the following dynamical model of 
the flow-shop: 
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= q ( t )  - yu2( t ) ,  q ( 0 )  = 2 1  

U2(t) - z ,22 (0 )  = xz, 
(1.1) 

where zi( t ) ,  i = 1 , 2  represent state of the correspond- 
ing buffers at time t 2 O,ui ( t )  = Ici(:)vi(t),i  = 1 ,2 ,  
are the production rates, y is a compatibility constant, 
and z is a constant demand rate. 

A 

We impose the following constraint on the state of the 
first buffer: 

( -41 )  0 5 Q ( t )  5 C1,Vt 2 0.  

A 
For k. = ( k i ,  kz) E h' = (0, ml}  x (0, mz}, representing 
the state of IC(t), and for z = ( 2 1 ,  x ~ )  E X = [ O , Z , ]  x R, 
representing the states of the two buffers we define 

V ( t ,  I C )  = (w E V = [0, 1J2 : IClq - k2v2 2 0 if x1 = 0, 

A 

A A 

Iclvl - k2v2 5 0 if z1 = T I } .  

Let also Ff = a{IC(s), s 5 4 3 ,  for t 3 0. 

Definition 1.1 (Admissible controls) 
A control process U(.) with values in V is admissible 
with respect to the initial conditions x E X and k E I< 
if 

(i) U(.) is (Ft)t>~ - adapted 

(ii) the corresponding state process x(-), solution to 
(1.1) satisfies (AI).  

The class of such admissible control processes is de- 
noted by d"(z, k). 0 

Remark 1.1 
Similarly to [5] we can define admissible feedback con- 
trols, except that now, if .(.) is a feedback control, 
then w(t) = v ( z ( t ) ,  IF($)), for some functions v(., .) and 
t 2 0. Note that under the control U(.,.) the cor- 
responding state process satisfies (Al )  if and only if 

0 v ( z ( t ) ,  k ( f N  E V ( x ( t ) ,  k(f ) ) , t  2 0. 
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Let (0, F, P )  be the underlying probability space and 
define a discounted cost functional 
J';(z, k ,  w(.)) 

(C1) limt+, infvr( ) E d I ( z l , k )  J ~ ( 2 1 ,  k ,  VI(.);  X Z , ~ )  = 
h ( z 2 , l )  uniformly with respect to 2 1  E [0, FI] and 
x2,l  in any compact subset of R2. E[JF  e - a s ( h ( z ( s ) )  + c(u(s) ) )ds 

((32) There exist a constant C1 > 0 and a function I z(0) = 2, k ( 0 )  = k ] ,  

CZ(E), limEJo CZ(E) = 0, such that 

- wF(zi,  2'2, k') II C1 I xz - x i  I +CZ(E) 
for any 52, x; in a compact subset of R. 

where (Y > 0, and consider the following optimization 
problem, 
inf,( ) E d C ( z , k )  J ' , ( x ,  k, U(.)), V(x, k )  E X x I(, 

s~P,l>,;E[o,sl] SUPk,k'EK I w:(x1,22, 

(C) 
(C3) There exists a unique viscosity solution ~ ~ ( 2 2 )  

subject to (1.1). to 

Denoting by wF(., .) the value function for the problem h(22, ___ d W " ( Q )  = Cyw~(z2). 
d X 2  

It appears that using the techniques similar to 
[1, 3, 41 it might be possible to establish the va- 
lidity of the following conjecture. 

(P,"), that is 
a 

U$(., k )  = inf ,7:(x, k ,  U(.)), 

we are interested in limiting behaviour of w,* when E -+ 
0. 

u ( . ) E d = ( Z , k )  

Conjecture 3.1 
Assume (A l )  and (Cl) - (C3). Then Remark 1.2 

Due to space limitation we are not specifying here any 
assumptions on Q, h( . )  and C(.).  Such assumptions 

Section 3 below. 

l i m w , " ( z l , ~ )  + wa(z2 )  
€40 

uniformly in  x1 E [0,:1] and 22 an any compact subset 
of R. 0 

are implicitly implied by conditions (Cl)-(C3) listed in 

2 Infinitesimal problem Remark 3.1 
Under some extra conditions the function wa(x2)  can 

Fix ~ 2 1 ~  E R and consider the following infinitesimal 
problem (in the terminology of Artstein and Gaitsgory 

be interpreted as the value function for an appropri- 
ately defined SO called limit control problem (similarly 
as in Bensoussan and Blakenship [2], and Artstein and 
Gaitsgory [l, 3, 41. ) 

[11): 

limSU&%'+oo infVr(.)Edr(rl,k) ~ % ' ( 2 1 >  k ,  &('); xZ,l) (P;"") 
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subject to  

q = k1(4VI l ( t )  - kZ(t)VrZ(t) 
(2.1) 

21 I { Xl(0) = 

where, for (21, k )  E [0,51] x K ,  

dI(z1 , k )  = A {VI(.) : VI(.) is a V - valued process, 
A adapted to(Ft)t>O = ( u { k ( s ) ,  s 5 t)) t>o, and such 

that the corresponding solution of (2.1) 

and 
satisfies (Al ) ,  zl(0) = 21, k (0 )  = k) 

+ ~ ( k Z ( S ) V I Z ( S )  - z )  + C(kl(S)VIl(S), kZ(S)Vr2(S))I~S 
I Zl(0)  = 2, k ( 0 )  = k ] .  

(2 .2)  

~T(~lrk,VI(.);XZ,1) $ $ E [ ~ , [ h . ( ~ l ( S ) , z Z )  

(2.3) 
Let us denote the value of the limsup in the formulation 
of (P;"') by h ( ~ 2 ,  a ) .  

3 A limit conjecture 

We impose the following conditions, 
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