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Abstract

A dynamic flow-shop is considered consisting of one
slow and one fast machine. Production capacaties of
both machines vary randomly according to a Markov
chain whose transition rates are consistent with the
time scale of the fast machine. Problem of minimiza-
tion of a discounted cost of manufacturing is formu-
lated. A conjecture is presented regarding the asymp-
totic behaviour of the value function for the above
problem when the separation of slow and fast time
scales becomes singular. Natural conditions are formu-
lated under which the conjecture is might be satisfied,
hence this note is a report on work in progress.

1 Formulation of the problem

Notation and terminology used throughout this note
are similar to those used in the book by Sethi and
Zhang [5].

We consider a two-machine dynamic flow-shop char-
acterized by the presence of slow and fast operating
machines. The vector process of capacities on both
machines is denoted by k(¢) = (ki(t), k2(¢)), and is
assumed to be a Markov process such that k;(¢) €
{0,m;},m; > 0,i € 1,2. The infinitesimal generator
matrix for the process k(-) is denoted by Q = [gi;].
By v(t) = (v1(t),v2(t)) we denote a vector process
of production intensities for the two machines, with
vi(t) € [0,1],4 = 1,2. Now, let ¢ > 0 be a small con-
stant representing the ratio between slow and fast time
regimes in our system. We additionally assume that
the capacities of both machines change with rate that
is consistent with the fast time regime. Considering the
first machine as the fast one, and second machine as the
slow one we obtain the following dynamical model of
the flow-shop:
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uy(t) = yuz(?), 21(0) = 21
uz(t) — z,22(0) = z2,

i
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1.1)
where z;(t),7 = 1,2 represent state of the correspond-
ing buffers at time ¢ > 0, u;(t) 2 ki($)vi(t),i = 1,2,
are the production rates, v is a compatibility constant,
and z is a constant demand rate.

We impose the following constraint on the state of the
first buffer:

(A1) 0 < 23(t) <71,V > 0.

For k = (k1,k2) € K £ {0, m1} x {0, mz}, representing

the state of k(¢), and for z = (z;,24) € X S [0,71] x R,
representing the states of the two buffers we define

Ve, k) S {veV 2 [0,1)% : kyvy — kavp > 0if 21 = 0,
k1v1 - kz‘vg $ 0 if I = -151}.

Let also Ff = o{k(s),s < £}, for¢ > 0.

Definition 1.1 (Admissible controls)
A control process v(-) with values in V is admissible
with respect to the initial conditions x € X and k € K

if

(i) v(:) is (F§)e>o0 adapted

(1) the corresponding state process z(-), solution to
(1.1) satisfies (Al).

The class of such admissible control processes is de-
noted by A¢(z, k). 0

Remark 1.1

Similarly to [5] we can define admissible feedback con-
trols, except that now, if v(-) is a feedback control,
then v(t) = v(z(t), k(%)), for some functions »(:,-) and
t > 0. Note that under the control v(-,-) the cor-
responding state process satisfies (Al) if and only if
v(@(t), k(D) € V(2(t), k()), £ 2 0. :
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Let (2, F,P) be the underlying probability space and
define a dlscounted cost functional
T (o, ky0()) 2 LS e (h(a(s)) + c(u(s)))ds

| 2(0) = =, k(0) = &I,

where a > 0, and consider the following optimization
problem,

infu(.)eA.(m,k) Jé (:L‘, k, 'U(-)),V(:L‘, k) EX x K, (Paa)

subject to (1.1).

Denoting by w2 (-, -} the value function for the problem-
(P2), that is
A
wd(z, k) = inf
FER= e

we are interested in limiting behaviour of wg when ¢ —

0.

-.7;(:6’ k’v(')):

Remark 1.2

Due to space limitation we are not specifying here any
assumptions on @, h(-) and C(-). Such assumptions
are implicitly implied by conditions (C1)-(C3) listed in
Section 3 below. O

2 Infinitesimal problem

Fix z,,] € R and consider the following infinitesimal
problem (in the terminology of Artstein and Gaitsgory

[1):

Hm supr_, o0 infv; (Yea, o k) Tr (1, k, Vi) 22,1) (PF>)

subject to
[5 = mOmO-kO¥0 o
@) = a, ~

where, for (z1,%) € [0,71] x K,

Ar(zs, k) £ {Vi() -
adapted to(F;)ipo 2 (o{k(s),s < t})i»0, and such
that the corresponding solution of (2.1)

Vi(-) is a V — valued process,

satisfies (A1), #1(0) = @1, (0} = £} (2.2)
and

Jr(za, k, Vi(-); 29,1) fo {z1(s), z2)

+1(k2(s) Vi2(s) — Z)+C(k1( )VH( ) k (s)Vr2(s))]ds

| 2:1(0) = 2, k(0) = k]. (2.3)

Let us denote the value of the limsup in the formulation
of (PF*) by h(z2,1).

3 A limit conjecture

We impose the following conditions,

532

(C1) limimoo infy, (e oy b) JT (21, K, Vi();20,1) =
h{z2,1) uniformly with respect to z1 € [0,%1] and
z4,l in any compact subset of RZ.

(C2) There exist a constant ¢} > 0 and a function
C(e), limg 3o Ca(€) = 0, such that
SUPg, ¢! c[0,7,] SUPk k'€ K | w (21, z2, k)
— wg(zy, 25, k') |< C1 [ 22 — &y | +Ch(e)
for any xg, 2, in a compact subset of R.
(C3) There exists a unique viscosity solution w®(zz)
to :
dwa(:cz))
d(l?z

It appears that using the techniques similar to
[1, 3, 4] it might be possible to establish the va-
lidity of the following conjecture.

h(.’Eg, = awc‘(mz).

Conjecture 3.1

Assume (A1) and (C1) - (C8). Then

limwd (21, 22) = w*(z2)
el0

uniformly in 2y € [0,%1] and z2 in any compact subset
of R. ]

Remark 3.1

Under some extra conditions the function w*(zz) can
be interpreted as the value function for an appropri-
ately defined so called limit control problem (similarly
as in Bensoussan and Blakenship [2], and Artstein and
Gaitsgory [1, 3, 4]. )
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