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Stochastic Target Hitting Time and the
Problem of Early Retirement
Kang Boda, Jerzy A. Filar, Yuanlie Lin, and Lieneke Spanjers

Abstract—We consider a problem of optimal control of a “re-
tirement investment fund” over a finite time horizon with a target
hitting time criteria. That is, we wish to decide, at each stage, what
percentage of the current retirement fund to allocate into the lim-
ited number of investment options so that a decision maker can
maximize the probability that his or her wealth exceeds a target
prior to his or her retirement. We use Markov decision processes
with probability criteria to model this problem and give an example
based on data from certain options available in an Australian re-
tirement fund.

Index Terms—Markov decision processes, probability criterion,
retirement fund, target hitting time.

I. INTRODUCTION

I N THIS paper, we study a problem of optimal control of
a “retirement investment fund” with, loosely speaking,

the goal of ensuring that an adequate capital accumulates
sufficiently quickly with sufficiently high probability. The
objective is to develop a tool that could be used to advise
nonprofessional investors who place their retirement benefits
in a fund that permits only a limited number of options and
offers only limited opportunity to reallocate the money among
these options; say, once a year. We assume that such an investor
is primarily interested in maximizing the probability of being
to afford early retirement by certain age, and that the word
“afford” means that the fund will equal or exceed a certain
specified target amount at that terminal time. As such, we
believe that the problem is a realistic one.

Since the mathematical framework in which we model this
problem is that of Markov decision processes (MDPs) (e.g., see
[11]) and since a vast majority of MDPs have objective criteria
that depend on one of a number of “expected utility” criteria, it
follows immediately that our problem is essentially different
from these classical MDP models. Instead, the problem belongs
to a class of models that are sometimes called “risk-sensitive
MDPs.” The latter can, perhaps, be traced back to [6] and
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constitutes an area where there has been a fair bit of research
activity in recent years (e.g., see [2], [3], [8], [9], [12], and
[15]–[18]). Some of these contributions tried to capture risk
in terms of tradeoffs between mean and variance of suitable
random variables, some have followed [20] in considering the
expected value of a suitable exponential utility criterion and
some have focussed on the so-called “percentile optimality”
(e.g, [2], [4], [9], and [17]). The present paper is, perhaps, best
classified as a continuation of this last line of research. Of
course, Markowitz [5] pioneered the notion of mean-variance
tradeoffs in finance literature and many more sophisticated,
dynamic and stochastic, financial models involving closely
related issues have been studied in recent years (e.g., see [1],
[13], and [19]).

More precisely, we consider a finite-horizon discounted MDP
model in which the decision-maker, at each stage, needs to de-
cide what percentage of the current retirement fund to allocate
into the limited (small) number of investment options. We as-
sume that both the initial investment and the target retirement
capital are known and that the number of stages is . Now, the
first target hitting time is a random variable whose distribu-
tion is specified by the choice of a policy. As mentioned above
the decision-maker’s goal is to find a policy which maximizes

.
While at first sight, this might appear to be a very difficult

problem it turns out a version of optimality principle can be
shown to hold under mild conditions when we work in an “ex-
tended” state space (see Theorem 1). However, even in the ex-
tended state space the new process is
not a Markov process under a general policy. Hence the ex-
istence and characterization of optimal policies cannot be ob-
tained by standard techniques. Instead, the techniques used here
are similar to those developed in [2] which dealt with a re-
lated problem of minimizing the probability that the total dis-
counted wealth is less than a specified traget level. From the
preceding optimality principle, structural results about optimal
policies can be easily derived (Theorems 2 and 3) which, in
turn, lead to a dynamic-programming type algorithm that is dis-
cussed in Section II-C and an enhanced dynamic-programming
in Section II-D.

The above theoretical results are illustrated with an ex-
ample based on real data from certain options available in an
Australian retirement fund (Section III). Under a number of
simplifying, but reasonable, assumptions the problem becomes
computationally tractable. The results of these calculations are
discussed in terms of their meaning for the decision-maker’s
original problem.
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II. BACKGROUND AND PRELIMINARY RESULTS

A. Model Description

We consider the following discrete-time and stationary
Markov decision process:

(1)

where the state space is countable, the action space in
each state is finite and the overall action space
is countable. The reward set is a bounded countable subset of

. For each from , let and denote
the state of the system, the action taken by the decision maker,
and the reward received at stage , respectively. The stationary,
single-stage, conditional transition probabilities are defined by

(2)

(3)

We shall also assume that future rewards are discounted by the
discount factor .

In our formulation, when making a decision and taking an
action at each stage, the decision maker considers not only the
state of the original system but also his target. Effectively, this
means that a new hybrid state is introduced.
Hence, we expand MDP by enlarging the state space. We refer
to as the hybrid state of the decision maker to distinguish
it from the system’s state , where is the target value. Note that
if the initial state of the decision maker is and an action
is taken according to (2), the decision-maker’s new hybrid state
transits from to with probability .

Thus, if we denote as the extended (hybrid) state–space,
then the extended MDP has the following structure:

(4)

where the state–space , the action space
. Note that

, the extended transition probabilities are
simply

. The reward set and
the discount factor are the same as in MDP .

Since in the model (4), the target is important when making
decisions we must define policies which depend both on the
system’s state and the target, that is on the hybrid state.

Let the vector
denote the admissible history up to stage , where

. If we denote
the -th hybrid state by , then

.
Define the set , then we can

denote the set of all (admissible) histories up to stage by .
Now, we see , and .
Observe that, for each is a subspace of

, and .
Definition 1: A decision rule at time is a conditional

transition probability measure on the control set given
satisfying the constraint

A decision rule is called deterministic, if is a measurable
mapping from to , such that for all

.
Definition 2: A policy is a sequence of decision rules. The

set of all policies is denoted by . A policy
is said to be the following.

• Markov policy, if each only depends on the current
state at time , that is,

.
• Stationary policy, if the policy is a Markov policy,

and the decision rules of are all identical, that
is, which is denoted by .

• Deterministic policy, is any policy such that all of its
decision rules are deterministic.

• TI-policy, a policy which are independent of all targets
.

Let denote the set of all Markov
policies, all deterministic Markov policies, all stationary
policies, all deterministic stationary policies, and all TI-policies
respectively.

Now, given any , and a state-action triple
, we construct the “cut-head policy” from and

which is defined by , where

.
For any two policies
, let denote the truncation of to

the first stages and
denote the policy in which is implemented during the first
stages, and is implemented from the st stage onwards.
Hence, is called an stage switching policy from to

. Observe that, if , then .
Note that a transition law and a policy determine the

conditional probability measure on the space of all possible
histories of the process. Let denote the random variable that
is the sum of discounted rewards generated by policy for the

-stage finite horizon problem. That is, ,
for . To simplify the notation, we will use instead of

when the choice of the policy is clear in the context.
Definition 3: Let denote the first time at which the

random total discounted reward exceeds the target value . Note
that is also a random variable which we name the target
hitting time, that is

Note that for any , the functions

are the objective functions that the decision maker wishes to
minimize if he or she is interested in achieving the target as soon
as possible. Consequently, is called the objective func-
tion generated by . It is clear that:

.
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Definition 4: The following functions
are called the op-

timal value functions.
Definition 5: If the policy is such that

, then is called an -stage
optimal policy. Equivalently

Remark: It can be checked that with the above definitions,
is an -stage optimal policy if and only if is the policy

that minimizes the probability that the cumulative discounted
reward over the first stages does not exceed .

If we now define the lower and upper bounds on the rewards
by , then the
objective functions and have the following properties.

1) If , then obviously the discounted reward over
stages can be only lower or equal to the discounted reward
after the first stage, hence trivially

2) If , then
and hence the probability of the target hitting time being
greater than is monotone nonincreasing, that is

Also, in this case

where if
if .

Now, let us introduce the space
of measurable functions on the extended

state space . For , and define the operators
and by

(5)

(6)

where is the indicator function of the set
. Obviously, when , then

.
In addition, we define

(7)

It can be easily checked that the operators and de-
fined above possess the usual monotonicity properties of dy-
namic programming (e.g., see [11]). These are stated, without
proof, in the following Lemma.

Lemma 1: Let . i) If , then
; ii) If is a nondecreasing and a left con-

tinuous function of for any , then is also a non-

decreasing and a left continuous function of for any ;
and iii) There exists such that .

Proof: The proof is analogous to the classical results in
[11, p. 163].

B. Finite Horizon Model

This subsection studies the finite horizon model. The objec-
tive is to prove the existence of a policy which minimizes the
probability (risk) that the total discounted reward does not ex-
ceed the target value in the preceding finite number of stages.

Lemma 2: Let . Then, for each

(8)

and , is determined by the truncated policy .
Proof: i) By the properties of and the definition of ,

we have

So, from (7), the lemma holds in the case . Now, for
general , we can argue similarly that

This completes the proof of (8) for all . Using (8) repeat-
edly we immediately obtain the last part of the lemma.

In Theorem 1, we establish the “optimality principle” for the
target hitting time criterion studied in this paper.

Theorem 1: (i) The optimal value function sat-
isfies the following optimality equations:

ii) For all is a distribution function of
some random variable taking on values ;

iii) For all , there exists a policy such that
.

Proof: We prove this theorem by induction. When ,
by (7), the theorem holds. By inductive hypothesis, assume the

Archived at Flinders University: dspace.flinders.edu.au
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theorem also holds for . Hence, has the proper-
ties of a probability distribution function. Thus from part iii) of
Lemma 1, such that . Similarly, by
induction assumption, there exists a policy such that

. Let . Clearly, . By Lemma 2, we
have

Hence, .
On the other hand, , again by Lemma 2, we have

Hence, the opposite inequality, also
holds.

From these inequalities, we now have the desired equality:
. Thus by Lemma 1,

is a distribution function of some random variable taking
values . This completes the Proof of Theorem 1.

Remark: A Markov decision problem with a probability cri-
terion such as the one we use might be regarded as quite diffi-
cult. However, a significant simplification can be achieved by
extending the definition of the decision-maker’s state space as
was done here. With this extension under similar conditions to
those normally used in the case of an expectation criterion we
obtained results analogous to those known to hold in the clas-
sical model: there exists a deterministic Markov policy which
minimizes the probability (risk) of the target hitting time ex-
ceeding a specified value .

Corollary 1: There is no loss of generality in restricting con-
sideration to deterministic Markov policies only, that is

Definition 6: We define optimal action sets by

(9)

Note that by the finiteness of and Theorem 1, it follows
that .

Lemma 3: Let be a measurable mapping from to
which satisfies , . Then,
any policy which satisfies is

-stages optimal.
Proof: By induction. By the definition of , we

note that: . When , by Lemma
2 and (7) we have that .

Assume that the lemma holds when . Now, let
, then because , and by inductive

hypothesis , then by Lemma 2 we have:
. So, the lemma holds when

and, hence, for all .
With respect to the structure of -stages optimal policies we

have the following result.

Theorem 2: Let , for a given
, then if and only if
and

(10)

whenever .
Proof: Assume that . By Theorem

1 iii) applied with in place of , there exists a policy
such that and, hence,

. Now, we have

where the second and the forth equalities follow from Lemma 2
and the first inequality follows from Lemma 1. Thereby

These equations can be converted with the help of the operators
(5) and (6) to

(11)

(12)

Thus, by Theorem 1 and (11), we have .
Similarly, from (12), we obtain (10) whenever

.
The necessity part of the theorem is now proved. Note, how-

ever, that the preceding proof is reversible. Hence, the suffi-
ciency part of the theorem also holds.

Remark: i) Theorem 2 shows that a policy is optimal for
a finite horizon model if and only if the action taken by at
each realizable state is an optimal action and before the total
discounted reward exceeds the target value the corresponding
cut-head policy is also optimal at each stage.

ii) From Lemma 2 and Theorem 1, we can further see that
is stages optimal if and only if the actions taken by in the
preceding stages are optimal.

The next result gives a sufficient and a necessary condition
for the existence of a finite horizon optimal TI-policy, namely,
one that does not depend on the targets.

Theorem 3: i) If there exists a policy such that
, then and ; ii) If

, then there exists a policy
such that .

Proof: i) Let and . Then by Theorem
2, for all and , it follows that

. Hence for each .
ii) Select such that for each

and . Then, by Lemma 2, for the policy
which satisfies holds.
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C. DP-Algorithm

Since we have now demonstrated that our target hitting time
criterion possesses many of the properties of classical dynamic
programming problems, it is not surprising that the backward
recursion algorithm of dynamic programming can be adapted
to apply to our problem.

Later, we present such an adaptation that computes optimal
value functions, optimal action sets, and optimal policies in a
finite horizon model with the target hitting time criterion.

Henceforth, we assume that and are both finite sets and
that , with .
By Theorem 1,we have

(13)

Then, for notational convenience, define

With the help of Theorem 1, Lemma 2, and Definition 4, we
obtain the following algorithm.

Step 1) Calculate

and select an action
and an arbitrary action

. Then, by (13) and (9)

Let

Step 2) Assume that and have already been cal-
culated and all the jump points of

are known. Calculate the
elements of the set

and denote them by
, in an ascending order. Then, for any

and , we have

(14)

If , then
and, hence, from (13) . Or, there
exists some such that (note that
if we can simply define and take

).
Calculate

Next, select actions
, and

an arbitrary action . Then, by
(13), (14), and (9)

Let the decision rule at the next stage be defined by

Step 3) Repeat Step 2 until .
In this fashion, we construct the optimal function

and an optimal policy .
In the process, the corresponding optimal action sets

are constructed as well.
By Theorem 2, these sets characterize all stages optimal
policies.
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D. Enhanced DP-Algorithm

As we know, DP-algorithm can calculate the optimal value
functions, optimal policies and optimal action sets accurately,
however, it can quickly become computationally prohibitive. At
each iteration more and more points need to be considered.
For a large state space, a large action space and a large reward
set this will have drastic consequences. The number of points
that need to be considered and thereby the time to do this will
grow exponentially.

To overcome this problem a new algorithm is presented
below. This algorithm approximates the solution found by the
DP-algorithm by calculating a fixed number of points at each
iteration. However, by taking this number large enough, the
approximation will be quite good and the computational time
will decrease significantly. We will assume that all rewards in
the problem are positive.

The idea is that—irrespective of the iteration index —a
bounded monotone decreasing function such as on an
interval can be well approximated by an array of values

pro-
vided that is “sufficiently” small. The interpolation
between the values and at and
can be carried out in a number of ways. In the implementation
below the upper end is used. That is,

The following enhanced dynamic programming algorithm can
now be used. For notational convenience, assume and
define

Step 1) Initialize:
Choose points
that will represent the target values. The value of

needs to be 0. The value of is the largest
target value that will be computed. The larger the ,
the more accurate the approximation of the optimal
value functions will be. Taking equi-spaced ’s will
have computational advantages.
Now by Theorem 1:

.

Step 2) Assume that has already been calculated. Now
calculate

Next, select actions
. Then

Let the decision rule at the next stage be defined by

Step 3) Repeat Step 2) until .
The approximate optimal function and an op-
timal policy have now
been constructed. The corresponding approximate
optimal action sets
have been constructed as well.

III. APPLICATION

In this section, we will apply the above theory to the problem
of allocating a fixed amount of funds in a number of invest-
ment options with the goal of attaining enough money for “early
retirement.” This is an important problem facing many people
who are not professional investors. Most retirement funds in de-
veloped and even some developing countries offer its members
the flexibility of choosing between a, typically small, number
of investment options. Generally, the more “risky” options are
associated with higher short term interest payments.

The real-life problem is complicated by the fact that the
above “risks” and amounts of interest are not known precisely,
or remain constant throughout the rather long planning horizons
(e.g., twenty plus years) that many people are interested in.
For the purpose of illustrating the theory and the algorithm
derived above we shall not address these difficulties. Instead,
we shall assume that the historical data on the performance
of the various investment options that are available at the
beginning of the planning horizon, accurately capture their
future performance1 .

A. The Model

For the ease of intuitive understanding we present the re-
sults of the corresponding problem where the decision maker
wishes to maximize, namely, the probability that
the total wealth exceeds the target prior to his or her retire-
ment which is assumed to occur at years in the future. For
instance, if , the target and is such that

, then the decision maker will believe
that by implementing the policy he or she will ensure, with
probability 0.8, that the retirement fund will exceed 130 000
within 15 years. We can now exploit the theory and the algo-
rithm presented earlier to solve this problem under the following
set of simplifying, but reasonable, assumptions.

1There are a number of simple modifications to our problem that can be im-
plemented to address these difficulties. We do not discuss these modifications
in detail because that would necessitate the use of even more complex notation
and further computational effort.
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Assumptions:

• The decision maker invests a fixed amount only once at
the beginning of the -stage planning horizon. However,
once a year, he or she can allocate the current amount in
the fund among three different investment options.

• Following one Australian example the three given options
are: Perpetual’s Inv Choice Pension—Industrial Share,
BT Lifetime Super Pers—Australian Share, Zurich
FIP-Equity.

• Each year prior to , the full amount in the fund is rein-
vested in these three options.

• The historical data available at the initial stage can be used
to predict future behavior.

• Only options with positive rewards are considered.

Based on the previous assumptions, we can consider the model

where, is the decision maker’s state–space and
. The underlying system’s state–space is

composed of disjoint nonoverlapping intervals which represent
the current wealth. More precisely, we define the system’s
state–space as

where, without loss of generality, we assume:
. Since, the wealth is a continuous rather than a discrete vari-

able, we interpret the statement “the wealth is ”
to mean that the actual amount of wealth lies in the interval

for 2 . Depending on the real situation,
it may be possible for and .

The action space is defined as

where is the fraction of the total wealth invested in the op-
tion . We also assume that . For example

is an action which means that the deci-
sion maker allocates 25 percent of the current wealth to the first
option (Perpetual’s Inv Choice Pension—Industrial Share), 25
percent to the second one and 50 percent to the last one.

Next, we will derive the exact form of the immediate rewards
and the reward sets . For ease of understanding, we

shall divide this derivation into a number of separate steps. First,
assume that the current wealth is denoted by and the interest
rates on 1 invested in each of the three options3 : are
all random variables.

If the decision maker takes an action , then
his or her expected wealth next year will be

. Hence, the portfolio interest rate will satisfy

2Instead of the mid-point of the interval (s ; s ] we could also have used
the right end-point, or some other point. If these intervals are narrow and the
time horizon is long the results will not be significantly different.

3For example, if the current wealth is $7000 this year, and the decision maker
allocates his or her total wealth to the option-j, then his or her expected wealth
next year will be $7000(1 + r ); j = 1; 2; 3.

Fig. 1. Probabilities L (10000;x) of reaching target x after ten years using
different algorithms, with initial capital of $10 000, when an optimal policy is
followed.

, and from we know
that

Hence, we will name the as the immediate percentage re-
wards, and note that it is also a random variable. We will present
the second step after the definition of the total reward.

By Corollary 1, we know that we can find an optimal deter-
ministic Markov policy. So, when we calculate the optimal value
function, we only need to find an optimal policy in the set .
That means, we are required to take deterministic actions that
depend only on the current state .

For a given policy , we de-
fine the -year total rewards from the initial state as

We will change this multiplicative formula to an additive one.
If we start from for some , a random additive reward

will be received when the action is taken, following,
the state will transit to with probability ; similarly,
in the next step, another random additive reward
will be received when the action is taken, and so on. So, we
can rewrite the above total rewards from as

Thus, the reward sets, for each state-action pair , are
now given by

So, the aggregate reward set can be written as:
. This completes the second step of the

definition of the reward .
Archived at Flinders University: dspace.flinders.edu.au
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TABLE I
HISTORICAL DATA

Now, the target hitting time, namely the first random time at
which the total reward exceeds the target value , for a fixed

, is given by

As explained at the beginning of this section, we define the ob-
jective functions by

and the optimal value functions by

A policy is called an stages optimal policy, if it satisfies:
.

Obviously, the functions discussed in Section II
and are connected via the simple complementary
relationships

Therefore, we can use the theory and algorithm of Section II to
calculate the optimal value function and the optimal action set
for the function and then apply the above relation to
compute the corresponding function.

Now, the exact values of the transition probabilities and
the reward sets can be calculated from the historical
data of the performance of the three investment options. The
details of these calculations are supplied in the Appendix.

B. Example

As an example, take

and the historical data4

Then for the DP-algorithm takes 6655.5 s, EDP-
algorithm takes 21.86 s for 101 mesh points and 214.43 s for
1001 mesh points.

The results can be used to compare the algorithms. In Fig. 1,
both figures using DP-algorithm and EDP-algorithms are
drawn. It can easily be seen that the enhanced algorithm approx-
imates the DP-algorithm extremely well for 1001 mesh points
(it is hard to see the difference between the two functions).

4The details of H can be found in the Appendix.

Furthermore, it takes the EDP-algorithm 12.4 h to compute
the solution for the stochastic target hitting time problem with
dimensions and time
horizon years (see the illustration in Section IV where
501 mesh points are used). The DP-algorithm however can not
even compute two years in this time.

IV. RESULTS AND INTERPRETATIONS

In this section, we solve an illustrative example constructed
from historical data of three (out of five) top performing
pension funds listed in the Australian Financial Services
Directory (http://www.client.afsd.com.au/). These three funds
will correspond to the investment options in the theoretical
model discussed earlier. They are: Option1-Perpetual’s Inv.
Choice Pension—Industrial Share, Option2-BT Lifetime Super
Pers—Australian Share, Option3-Zurich FIP-Equity.

The capital values and the percentage returns of these three
options over a period of 8 years are listed in Table I. Let be
the percentage return on $1 invested in Option in year . For
instance, %, the underlined number in Table I. Under
the assumption that the data from these eight years are represen-
tative of the future performance of these three pension funds it
is now possible to construct the reward sets for each

and as well as the transition probabilities .
The details of these constructions are given in the Appendix.

The system’s state–space needs to be finite and to consist
of nonoverlapping adjacent intervals . The more inter-
vals, the larger the dimensionality of the problem and thus the
greater the computational time. However, with a small number
of intervals, there will be a lot of rounding that renders results
unreliable. In the case where the state represents accumulated
wealth over a long time horizon an argument can be made that
when the state of the wealth is small, greater accuracy is re-
quired. On the other hand, when the state is large, say of the
order of $300 000 discrepancies of one or two thousands are no
longer important. This leads to the following construction of :

This leads to
, where means that the

current wealth is in the interval . For
computing the transition probabilities and rewards the value

is used. The other intervals are similar,
however the endpoints require an adjustment. Here
means that the current wealth is in the interval [10000, 10 100]
but for the purpose of computation the value of 10 000 is used.
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Fig. 2. Probability L (10000; x) of achieving target x after 20 years with
initial capital of $10 000. Comparison between the optimal policy with jAj = 3
and the optimal policy with jAj = 6.

Further, means the current wealth is greater than
326 000 but for computation the value of 330 000 is used.

The action space is taken to be

for

So the cardinality of the action space . The decision
maker has the choice to put all the money in one fund or to
divide the money equally among two funds. This will be seen to
be less restrictive than might appear at first by comparing with
the action space

The latter means all the money has to be put in one option, so
. The result of this halving of the action space is shown

in Fig. 2. The maximum difference is 0.0238. This means that
by using a simpler policy that comes from the restricted , one
will have at worst 2.38% less chance of getting amount after
20 years than with the policy described in Section IV. However
the computation time halved. For these data it can be said that
this simplified strategy is very good. There is also the added
“intangible” benefit of easier decision making for the user.

Using the EDP-algorithm 2.4 to compute the optimal policy
to maximize the probability to achieve target after 20
years with initial capital of $10 000, leads to the optimal value
function . Representative points are presented in
Table II. As a comparison also the results by using a supersta-
tionary policy are given. A superstationary policy means that
all money is placed in one fund and never reallocated. Here,

TABLE II
PROBABILITY L (10000;x) OF ACHIEVING TARGET x AFTER 20 YEARS

WITH INITIAL CAPITAL OF $10 000, WHEN AN OPTIMAL POLICY

IS FOLLOWED. COMPARED WITH THE NAIVE POLICIES THAT

PLACE ALL THE MONEY IN ONE FUND, PERMANENTLY

Fig. 3. Probability L (10000;x) of achieving target x after 20 years with
initial capital of $10000, when an optimal policy is followed. Compared with
the naive policies that place all the money in one fund, permanently.

means that all money is put in fund . In Fig. 3, the
complete optimal value function is drawn.

V. CONCLUSION

It should be mentioned that the preceding theory and imple-
mentation are simpler than the “real-life” problem of investment
for retirement in a number of aspects that were already men-
tioned in Section II. Some of these problems could be easily in-
corporated into our method. For instance, each year new data be-
come available about the performance of the investment funds.
This means that we could, in principle, update our rewards and
transition probabilities every year prior to making our next de-
cision on the allocations.

In further research it would be interesting to implement better
predictions for future rewards in the model. In this model the
historical data are used to predict future performance. It is as-
sumed that the yield of a given fund in every year in the future
is best modeled as a random variable that takes on the past ob-
served yields from that fund with equal probability. This is a
rather simplistic assumption that may not correspond to reality.5
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To try to alleviate this problem one could consider a model with
rolling horizon policies. The idea of this approach is that an op-
timal policy is found and the first decision rule is implemented.
Then, if new data are available, a problem with updated param-
eters and a new time horizon is solved. The first decision rule
from an optimal policy of the latter is then implemented and so
on. Rolling horizons have been used by many researchers (e.g.,
see [14]).

Another important aspect is that in practice most salaried em-
ployees receive not only a return on the investment from the pre-
vious year but also a new contribution (typically a percentage
of a salary) from their employers. Once again, our methods and
the algorithm can be easily modified to account for this com-
plication by a suitable adaptation of the rewards which will
now become stage-dependent. Of course, such a modification
could also be used to incorporate the anticipated promotions and
jumps in salary.

APPENDIX

In this appendix, we supply details of the derivation of
rewards and transition probabilities from historical data on
the performance of the three investment funds referred to in
Section III.

We assume that the historical data describing the performance
of the investment options6 over a period of past years are
given by the matrix:

...
...

...
...

where each represents the interest rate on $1 invested in the
option- in the th year in the past.

One of the assumptions is that the historical data can predict
future performances. Consider the fund . On the basis of the
past history the yield from that fund is regarded as a random
variable which takes on values with proba-
bility . The assumption made here is that the yield from
the same fund at year in the future is identically distributed
as . Clearly, alternative assumptions could be made. For in-
stance one could assign higher probabilities to yields that result
from historical data from more recent years.

When a decision maker invests and chooses action
he or she will expect to earn a total reward of

where is the interest rate of option . How-
ever, this interest rate is a random variable. There are possibil-
ities for the interest rate, so there will also be possibilities for
the total rewards. The reward sets can now be given by

5On the other hand the historical data on the funds past performance is usually
the best information available.

6In our model, we set m = 3

The transition probabilities can be constructed in a similar way.
Given and , the next state will be determined by the re-
ward that is realized. Let be the distinct values of

in , where and
denotes the columns of . Let

Clearly, , if . The transition proba-
bilities can now be naturally defined by
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