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Abstract 

In this paper we study a class of optimal stochastic con- 
trol problems involving two different time scales. The 
fast mode of the system is represented by deterministic 
state equations whereas the slow mode of the system 
corresponds to a jump disturbance process. Under a 
fundamental ”ergodicity” property for a class of ”in- 
finitesimal control systems” associated with the fast 
mode, we show that there exists a limit problem which 
provides a good approximation to the optimal control 
of the perturbed system. Both the finite and infinite 
discounted horizon cases are considered. We show how 
an approximate optimal control law can be constructed 
from the solution of the limit control problem. In the 
particular case where the infinitesimal control systems 
possess the so-called turnpike property, i.e. are char- 
acterized by the existence of global attrators, the limit 
control problem can be given an interpretation related 
to a decomposition approach. Due to the constraints on 
page numbers all results are presented without proofs. 
Full details will be supplied in a follow up paper by the 
same authors. 

1 Introduction 

This paper deals with the approximation of the opti- 
mal control of a class of hybrid Piecewise Determinis- 
tic Control Systems (PDCS), where the jump distur- 
bances are state and control dependent and when the 
time scales of the stochastic and the deterministic parts 
are of different orders of magnitude. More precisely 
we shall assume that the deterministic state equations 
defining the evolution of the ”continuous” state vari- 
able correspond to the fast mode of the system whereas 
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the ”discrete” state variable which evolves according to 
a stochastic jump process defines the slow mode. 

PDCS are known to provide an elegant paradigm for 
the study of manufacturing systems (see [17], [7], [2], 
[18]). Typically, in these models, the stochastic jump 
process describes the evolution of the operational state 
of a flexible manufacturing shop, with jumps due to 
failures and repairs of the machines, whereas the de- 
terministic state equations represent the evolution of 
the surplus of parts produced by the system. In most 
of these models the jump Markov disturbances due to 
failures and repairs are assumed to be represented as a 
continuous homogenous Markov chain with jump rates 
which are independent of state and control. In [SI a 
model has been proposed where, for each machine of 
the shop, an additional state variable records the age 
of the machine and the failure rates are age dependent. 
This model provided an example of a PDCS with state 
dependent jump rates. In [9] a manufacturing system 
with control (production rate) dependent failure rates 
is studied. 

The class of systems we study in this paper corresponds 
to a situation where a basically deterministic plant (for 
example a production system), called the fast subsys 
tem is subject to infrequent modal disruptions occuring 
randomly (for example the machine failures process), 
called the slow subsystem. The limit optimal control 
problem, obtained when the time scale ratio between 
the slow and the fast processes tends to infinity, is non- 
trivial as long as the transition probabilities for the 
perturbing stochastic process depend on the control ex- 
ercised on the fast system and on its state evolution. 
In a production system environment this would be the 
case if, among the (fast) state variables one has, for ex- 
ample, the temperature or the pressure which not only 
influences the yield of the process but also influences 
the probability of failures. Indeed, this defines an en- 
vironment which is natural but significantly different 
from the one considered in [17]. 

The method of approximation of the optimal control 
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proposed in this paper is related to the theory of con- 
trol of singularly perturbed systems. A traditional 
approach to the control of singularly perturbed sys- 
tems is to equate the perturbation parameter to zero 
and then use the so-called "Boundary Layer Method". 
This reductzon technique proved to be very successful in 
many applications (see overviews in [5], [14], [15], [16]). 
We shall use a different approach here. It is related 
to the averaging technique developed in [3], [4], [ll]. 
The technique uses the dynamic programming tenet of 
transition associated with a change of time scale in a 
class of locally defined znfiniteszmal control problems. 
The technique has been mostly used for singularly per- 
turbed deterministic systems and the results reported 
here seem to be its first adaptation to a stochastic con- 
trol context. We specialize the analysis to a class of sin- 
gularly perturbed PDCS's that lend themselves nicely 
to a nice dynamic programming approach which is well 
adapted to our averaging technique. In [12] a different 
averaging technique is proposed for the analysis of sin- 
gularly perturbed controlled jumpdiffusion processes. 
The very general technique of [12] is based on Martin- 
gale theory and weak convergence of probability mea- 
sures. Our method uses more straightforward analysis 
to derive the approximation error bounds. More impor- 
tantly, in our approach we have been able to analyse the 
case where the fast mode of the system is controlled, 
which belongs to a notoriously difficult class of prob- 
lems (cf [12]). 

2 A Two-Time-Scale Piecewise Deterministic 
Control System 

We consider a hybrid control system with a "fast" mode 
described through deterministic state equations and a 
"slow" mode described as a continuous time stochastic 
jump process. 

2.1 Fast deterministic system 
Assume that a "continuous" state variable x E Rp is 
"moving fast" according to the state equation 

dx 
E-& = f i ( X , U )  

U E ui (2) 

where U i  c R" is a given control constraint set 
and f" (2, U )  satisfies the usual smoothness conditions 
for optimal control problems (C' in 2, continuous in 
U ) .  This state equation is indexed over a finite set 
(i E I )  which describes the different possible opera- 
tional modes of the system. The perturbation param- 
eter E will eventually tend to 0. An admissible control 
for the system (1)-(2) is a measurable1 function u ( t )  
taking its values in Ui so that the solution of (1) exists 
and is unique for any initial values from a sufficiently 
large domain. 

It will be convenient to define a "stretched out time 
scale" via the transformation r = 4 .  In this case, given 
an initial state xo and an admissible control u ( t )  there 
exists a unique trajectory iE( .) : [O, m) ++ IRP which is 
the solution to 

G ( T )  E ui 
Z(0) = xo, 

where we have used the following notations Z(r) = 
% ( E T ) ,  C(T) = U ( E T ) .  

2.2 Slow stochastic jump process 
We assume that a discrete state variable is "moving 
slowly" according to a continuous time stochastic jump 
process with transition rates (for i # j )  

P [ [ ( t  -t S )  = jl[ = i, x ( t )  = 2,  .(t) = U ]  = qij(z, u)6 
+0(4  (6) 

4 6 )  lim- = 0, (7) 
6-tO 6 

where the qij(z, U )  are continuous functions and limit 
in (7) is uniform in x and U from a sufficiently large 
domain. Here, as usual, qij( . ,  .) 2 0 if i # j ,  q i i ( . ,  .) < 
0, and CjEI q i j ( . ,  .) = 0. We also use the notation 
qi(-;) = z j g i q i j ( . , . )  > 0 for the jump rate of the 
[-process. 

2.3 Admissible policies and performance crite- 
rion 
Let Li(x, U )  be a continuous function which gives the 
rate at which cost accumulates in this system. We de- 
fine a control policy as follows. 

Let s = ( c ,  x )  be the hybrid composite state of the sys- 
tem. Let t ,  denote the n-th jump time of the [ process. 
At t ,  < T the controller observes s" = (in, 2") = s ( tn )  
and chooses an admissible control U ( . )  : [t,, T )  H Ui". 
The associated trajectory P(.) : [t,,T] I-) E'' is the 
solution of 

E- dx" ( t )  = f ( x " ( t ) , u n ( t ) )  
d t  

U " @ )  E ui" (9) 
x,(t,) = 2,. (10) 

This control and trajectory will be acting until the (- 
process jumps again at time tn+l or until the terminal 
time T if that is reached first. A policy is a mapping 
y(., ., .) : [ O ,  T ]  x I x IRp I-) U ( t ,  i) where U ( t ,  i) is the 
class of measurable mappings U ( . )  : [ t , T )  H Ui. A 
policy defines the action (i.e. the selection of a control) 
to be chosen at each jump time of the (-process. A 
policy is admissible if it defines a measurable random 
process {t,, sn}, n = 0,1, .  . . . 
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Associated with an initial time f, state S and an ad- 
missible policy y we define the following performance 
criterion, for the time interval [f, 2'1, 
J,y (f, s) = 

L t ( t ) ( x ( t ) ,  u ( t ) )  d t  + G([(T)) l s ( f )  = S , 

(11) 
[1' 1 

where G(i) is a terminal cost incurred when [ (T )  = i. 
Notice that we assume that this terminal cost does not 
depend on the value of the "fast" state variable z ( T ) .  
We are interested in approximating the optimal value 
function 

J,*( t ,s)  =infJ,Y(t,s) (12) 
Y 

by a suitably constructed limit value function. 

3 Convergence to a Limit-Control Problem 

For 6 > 0 a policy y is said to be 6-optimal if J,'(f, 3) < 
J: (5, S) $6 for all 5, S. We make the following coercivity 
assumption. 

Assumption 1 The class of controls and initial states 
considered is such that, for some S > 0,  for any 6-  
optimal policy, x ( t )  and u( t )  remain uniformly bounded 
over [O,T]. From now on we assume that x ( t )  E X ,  a 
bounded subset of lRp. 

3.1 An associated class of infinitesimal control 
problems 
For any vector v = {w(j)}jc~ consider the family of 
optimal control problems 

(13) 
s.t. 

- = f ( Z ( T ) , G ( T ) )  (14) 

G(T) E ui (15) 
Z ( 0 )  = to. (16) 

d2(r )  
d r  

These problems, defined over the stretched out time 
scale, will be called the infinitesimal control problems'. 
The term infinitesimal emphasizes the fact that, in the 
fast time scale, we shall have an essentially infinite hori- 
zon control problem defined locally for almost every 
intermediate time f E [0, TI. 

'The term infinitesimal control problem has been coined by 
Zvi Artstein. 

Assumption 2 There exist two constants A > 0 and 
0 < Q 5 1, and for each i a function Hi(v), such that 
for all i E I ,  xo E X and v in some bounded set V 

Remark 1 The above assumption clearly resembles an 
ergodicity property. When the time horizon 6 goes to 
CO, the optimal value becomes andependent of the initial 
state. Such a property is expected if the system admits 
an optimal steady state which is a common attractor for 
all optimal trajectories. This has been called the tum- 
pike property and Section 7 will provide more details 
concerning this case. Another possibility for observing 
such an ergodic behavior as to obtain a periodic control 
when 6 4 00. 

Remark 2 A s  H i ( $ ,  so, v) is the value function of a 
control problem depending on the parameter v in a lin- 
ear way, and the bound in (1  7) is uniform, the "limit" 
Hi(v) o f H i ( 8 ,  xo, v) is a Lipschitz function. 

3.2 The limit value function 
Consider the set of coupled differential equations 

with terminal conditions 

Jo(T, i )  = G(i) i E I ,  (19) 

where we have denoted by Jo( t )  the vector 
{ J o ( t ,  j ) l j € I .  

Assumption 3 The system (18), (19) admits a solu- 
tion which satisfies 

Jo( t )  E V Vt E [ O , T ] .  

Theorem 1 There exists Q constant C such that 

4 Approximate Optimal Control 

In this section we again use the averaging technique 
to show that, once the limit problem is solved, it is 
possible to construct from its solution an approximate 
control of the perturbed problem. 
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4.1 Approximate feedback optimal control for 
the associated control problems 

Assumption 4 There exists, for each v E V and i E 
I ,  an admissible feedback control denoted GS(x, r )  E Ui 
such that 

I 

where V ,  A and a are as in Assumption 2, Z(r) is the 
solution of 

G\(Z(.),.) E U' (23) 
Z(0) = 20, (24) 

and where we have used the following notation 

4.2 Control implementation 
Let te be defined as in the proof of Theorem 1, with 
t o  = 0, and te = la(&), l = O , l , . .  ., 1-1 = L ( E ) .  
On each subinterval [it, te+l) the feedback implemented 
will be 

A.(€) 

t - t i  
G e ( l , z , t )  = G$Jz,,-, E U t ,  t E [te,te+1), 

x E X , l E  I ,  (26) 

where = Jo(te+l). We shall denote byJ$(O, i, x) 
the expected cost associated with the use of the above 
defined feedback law, with initial conditions z(0) = z, 
((0) = i. 

Remark 3 Notice that such feedbacks will give rise 
to an admissible policy for the PDCS, in the sense of 
subsection 2.3, since the representataon of the control, 
along the deterministic sections of the trajectories (i.e. 
between two successive random jump times) will be an 
admissible open-loop control. 

4.3 Approximation of the optimal value func- 
tion 

Theorem 2 Under Assumptions 1-4 the followzng in- 
equality holds 

IJ,"(O,i,z)- J,*(O,i,z) 1 L: CE*.  (27) 

5 Infinite Horizon with Discounted Cost 

5.1 The infinite horizon control problem 
We consider the same system as in section 2, with a 
terminal time T + ca. A control policy y is still defined 
as in section 2.3, with the obvious replacement of T 
with co. As usual, when dealing with infinite horizon 
stationary systems, one may restrict the analysis to a 
class of stationary policies. 

5.2 Performance criterion 
Associated with an admissible policy, we define the fol- 
lowing performance criterion 
J,y (f, s) = 

where p > 0 is a given discount rate. We are interested 
in the optimal value function 

J,*(t, s) = inf J,Y(t, s). (29) Y 

As usual when dealing with discounted cost criterion 
we shall use the current-value cost-to-go value function 

V;C(s) = J,'(O,s) = e@JJ,*( t ,s) .  

6 Convergence to a Limit-Control Problem 

In this section we obtain a convergence result, similar 
to the one established in Theorem 1 in section 3, but 
valid for infinite horizon, discounted cost problems. 

Let VO = {V0(j)}jG~ be a solution to the algebraic 
equations 

p v q i )  = H i ( V 0 )  i E I .  (31) 

Theorem 3 There exists a constant C such that 

I V:(i, z) - Vo(i) I 5 C E " / ( ~ + " )  V i  E I ,  z E X .  (32) 

7 Approximate Stationary Optimal Feedback 
Controls 

When the system is controlled over an infinite time 
horizon with stationary state equations and a dis- 
counted cost, one can approximate an optimal control 
policy for the perturbed system via appropriately de- 
fined stationary feedbacks. 

Assume the following slightly more restrictive version 
of Assumption 4 

In the next three sections we extend the analysis to 
the case of an infinite horizon control process with dis- Assumption 5 There exists, for each v E V and 
counted integral cost. i E I ,  an admissible stationary feedback control denoted 
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Gt(x) E Ui such that 

where A and a are as an Assumption 2, and Z ( r )  is 
solution of 

fi;(Z(r)) E ui 
Z(0) = xo 

(35) 
(36) 

Given the value vector VO obtained from the solution of 
the limit control problem, we implement the following 
stationiary feedback 

. ; (C,x)  = fi$,(x),zE x,t E I, (37) 

Let's call v," (i, x) the discounted expected cost asso- 
ciated with the use of the above defined feedback law, 
with initial conditions x(0)  = 2, C(0) = i. 

Theorem 4 Under Assumptions 1-3 and 5 the follow- 
ing inequality holds 

I V ( i , z )  - %*ti, x) I 5 C&*. (38) 

8 Turnpikes and Decomposition Principle for 
Stationary Convex Systems 

In this section we show that the limit-control problem 
defined in sections 3 and 5 can be easily solved when 
the system is convex, and that the associated control 
problems (13) - (16) satisfy the following weak turnpike 
property: 

Assumption 6 For each i E I and each v there exists 
a unique optimal steady state 5: E X with a control 
iii E U' such that 
Li(& 2:) + XjEI q i j (& .$)v(j) = 

s.t. 

0 = f " ( z , u )  
U E ui. 

Furthermore, the following equality holds 

H"v) = LL"(& .I) + qij(5;, i i I )v( j ) .  
jU 

The name turnpike has been coined by economists when 
they applied the optimal control formalism to the opti- 
mal economic growth problems (see [19]). For a review 
of the conditions under which such a property holds 
we refer to to the book [lo]. It suffices to say that this 
property will hold in our context under the following 
natural assumption: 

Assumption 7 The controlled system is such that 

1. For each i E I and v E V the function 
p ( x ,  U )  is linear in x and U ,  the control set U' 
is compact and convex, the function L i ( x ,u )  + 
CjEI  qij(z, u ) v ( j )  is strictly convex in 2, convex 
in U ;  

2. The set X i  = {z E X : 0 = f ( (z ,u) ,  U E Vi} is 
nonempty for each i E I ;  

3. Any 5 E X i  can be reached in a uniformly 
bounded finite time from any initial state xo, 
when the system is in mode i E I .  

It will be convenient to introduce the following "action 
sets" Ai = {ii = (5,ii) E X x U' : 0 = f ( $ , U ) }  for 
each i E I. We then define an upper level controlled 
Markov chain as follows: 

i - -  

0 state set I ,  

0 action set Ai for each state i E I ,  

0 cost rate Li((ii) = Li(5 ,g) ,  when in state i E I 
and action zi E A'. 

0 transition rates Qij(zi) = qij(Z, c). 

Then the coupled differential equations (18)-( 19) defin- 
ing the limit value function in the finite time horizon 
case, as well as the algebraic equations (31) in the in- 
finite horizon discounted cost case, correspond exactly 
to the dynamic programming equations for the upper 
level controlled Markov chain.This permits us to give, 
in the infinite horizon case, the following interpretation 
of the limit control problem as a decomposition scheme 
for the perturbed stochastic control problem: 

Let m = III. Consider a set of m + 1 
agents controlling the system. Each agent 
i = 1 , .  . . , m controls the fast system when 
the discrete mode is i E I .  Agent 0 is a co- 
ordinator. The coordinator solves the upper 
level controlled Markov chain problem and 
sends to each agent i = 1 , .  . . , m the opti- 
mal limit value vector Vo = { Vo(j) : j E I } .  
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Now, given this information, agent i con- 
structs an auxiliary cost rate 

hb,,(%, ( U )  = Li (z ,  U )  t- xqij(2, ~ ) V o ( j )  

and pilots the system, when it is in opera- 
tional mode i, as if it were a deterministic 
control problem, with an infinite time hori- 
zon and an average cost criterion. As soon 
as the system jumps to state k ,  agent k 
constructs h b o ( z ,  U )  and proceeds in sim- 
ilar manner, and so on. 

j€I 

In the finite horizon case a similar, although more in- 
volved, interpretation could be developed: 

With the same setting of m + 1 agents as 
above, the coordinator will send an infor- 
mation in the form of a limit value function 

tained from the solution of the upper level 
controlled Markov chain problem on the 
time horizon [ O , T ] .  Then, at each instant 
5 E [O, t] the agent i E I would have to solve 
an infinitesimal control problem which, in 
the stretched out time scale would also cor- 
respond to an infinite horizon deterministic 
control problem with cost rate 

Vo(t) = {Vo(t,j) : j E I } ,  2 E [O,T], ob- 

Li (2 , U )  + Q i j  (. , U )  Jo(f, j )  . 
j € I  
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