
Proceedings 0 1  the 26th Conference 
on Declslon and Control 
Los Angeles, CA December I987 

FP9 = 3:OO 

The  Embedding of the Traveling Salesman Problem in a 
Markov Decision  Process* 

Jerzy A .  Filar 
Department of Mathematics  and  Statistics 
University of hlaryland  Baltimore  County 

Catonsville,  Maryland 21228 

1. Introduction 

In this  paper we derive  a new LP-relaxation of the Travel- 
ing Salesman  Problem  (TSP, for short).  This  formulation 
comes  from  first  embedding  the  TSP in a  Markov Decision 
Process  (MDP:  for  short),  and  from  perturbing  this  MDP 
appropriately. 

A  similar  approach  was  employed  earlier by Derman 
and Klein [2] ,  and  Derman [ l ]?  but  apparently  not for the 
purpose of analyzing  the  TSP.  Indeed,  Derman  and  Klein’s 
(21 embedding  was  called  the  “Stochastic  Traveling Sales- 
man  Problem”  and it  stimulated  a  number of more  applied 
works.  The  relation of the  interesting  results of 121 and [ l ]  
to  this  paper  can  be  summarized as  follows: 

The  perturbation used by Derman  on  page 136 of [ l ]  is 
not  the  same  one  as  that  introduced in  Section 3 below.  In- 
deed,  it  can  be  shown  that  with  Derman‘s  perturbation  our 
Theorem 3.1 would  be  invalid.  Moreover,  our  ‘additional’ 
constraints ( (C4)-(C5) in  Section 3) are  also  different  from 
those  used in [2] and 111. 

At the  time :2], and jlj were written  the  results of 
Hordijk  and  Kallenberg 13; were unavailable,  thereby  mak- 
ing this  approach  appear,  perhaps, less promising for fur- 
ther  theoretical  investigations.  Indeed,  Derman  and Klein 
[2] were apparently not  interested in  solving the  TSP  with 
the  help of their  model,  which  they  appropriately  regarded 
as  interesting in its  own  right. 

2. Definitions and Preliminaries 

A discrete  Markovian  decision  process r is observed at  dis- 
crete  time  points t = 1 , 2 , .  . . ,. The  state  space is denoted 
by E = { 1 , 2 , .  . . , N } .  With  each  state i E E ,  we associate 
a  finite  set A ( i )  of “actions”. At any  time  point t the sys- 
tem is in  one of the  states  and  an  action  has  to  be  chosen 
by the decision  maker. If the  system is in state i and  action 
a E A ( i )  is chosen,  then  an  immediate  reward ria is earned 
and  the  process moves to  a  state j E E with  transition 
probability p ia l ,  where p , , ,  2 0 and pi , ,  = 1. 

Henceforth,  the  process r will  be synonymous  with  the 
four-tuple ( E , A , r , p ) ,  where A = { A ( i )  1 i E E } ,  r = {r, ,  1 
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( i , u )  E E X A ( i ) }  and p = { p , , ,  i ( i , u , j )  E E X A ( i )  X E } .  
Sometimes p will be  referred to as the law of motion of r .  

A decision  rule f‘ at  time t is a  function  which  as- 
signs  a  probability  to  the  event  that  action u is taken at  
time t .  In  general f‘ may  depend  on all realized states 
up  to  and  including  time t ,  and on all realized  actions 
up to time t .  A policy f is a  sequence of decision  rules: 
f = ( f l , f z , .  . . ,f‘ . . .). A Markov  policy, i.e.  one  in  which 
f‘ depends  only  on  the  “current”  state  at  time t ,  is called 
stationary if all its  decision  rules  are  identical. A deter- 
ministic  policy is a  stationary policy with  nonrandomized 
decision  rules.  In  particular, we shall  denote  a  station- 
ary  policy f by the collection of probability  vectors f ( i )  = 
( f ( i , l ) , f ( i , 2 ) , . .  . , f ( i ? m i ) ) ,  where m, = /A(i)l  for i = 
1 , .  . . , N .  Here f( i ,  k) is the  probability  that  action k is 
chosen in state i whenever that  state is visited. If f is de- 
terministic,  each f ( i ,  u )  E (0, l} and hence we shall  write 
f = ( f ( l ) , .  . . , f ( N ) ) ,  where f( i)  now denotes  the  action 
chosen  whenever  state i is visited. 

Let X ,  be  the  state  at  time t ?  Yt be  the  action  at  time 
t ,  and P, (X t  = j , Y ,  = a 1 X I  = i) be  the  conditional 
probability  that  at  timet  the  state is j and  the  action  taken 
is a, given that  the  initial  state is i and  the decision maker 
uses  a  policy f. Now if Rt denotes  the  reward  at  time t ,  
then for  any  policy f and  initial  state i the  expectation of 
Rt is given by 

E, (R’ ,~ )  = P ~ ( X ‘  = j , x  = a 1 x1 = ;)ria. (2.1) 
I’EE ,EA(]) 

The  manner in  which we aggregate  the  resulting  stream 
of expected  rewards {E,(Rt,i);t = 1 , 2 , .  . .} defines the 
Markov Decision Process  discussed  in the sequel: 

Average  Reward  Markovian  Decision  Process (AMD):  
Here  the  corresponding  overall  reward is defined by 

A policy, f’, is called optimal if for every i 6 E 

Archived at Flinders University: dspace.flinders.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Flinders Academic Commons

https://core.ac.uk/display/14947207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


We shall  assume  that  the initial  distribution on  the  states of 
l? is the given vector 7 = (rl , .  . . , Y ~ , ) ~ ,  with yi  = P ( X 1  = i) 
and x,”=, 7 i  = 1. The overall payof resulting  from  the  use 
of a  policy f, if the  initial  distribution is 7 ,  will be  denoted 
by 

. T N 

Given  a stationary policy f, let p , , ( f )  = CaEA(,) p i a j f ( i 7 u ) .  
It is now  clear that f defines a Markov  Chain  with  the 
probability  transition  matrix 

In  the  above, p : ( f )  is the  i-th  entry of the  unique fixed 
probability  vector of P ( f ) .  The  transformations T and f 
have  been  studied by a  number of authors  (e.g., see Derman 
[ l ] ,  Kallenberg [4]).  Those of their  properties  that we shall 
require in the sequel are  summarized in the following result 
which  can  be  reconstructed  with  the  help of [l] and [4].  

Theorem 2.1 Let r be a  unichain  Markov  Decision Pro- 
cess,  and (LPl ) ,  C (S ) ,X ,T  and f be as defined  above. 
Then 

( i )  For all f E C(S) and initial  state i E E 

P(f)  = ( P v ( f ) ) : J = l .  (2.3) A(f) = riazta( f ) .  

For any policy f, initial  distribution y, j E E and a E A ( j ) ,  
define (ii) If X’ is optimal  in  (LP1)  then fxil = T(xo)  is  op- 

timal  in r .  Conversely, if fo is an  optimal  stationary 
policy in  r ,  then f ( fo)  = x ( f o )  is optimal i n   ( P I ) .  

(121) For all x E X ,  P ( T ( x ) )  = x .  

t€E & A ( I )  

l T N  
zTa(f) = T C c y i P f ( X t  = j,Yt = a  1 X 1  = i). (2.4) 

t = l 1 = 1  

Further, let X ( f )  denote  the  set of all limit  points of the 
vectors { z T ( f )  1 T = 1 , 2 , .  . .}, where zT(f) is a x;”=, lA(i) l -  
dimensional  vector  with  entries given by (2 .4) .  If X ( / )  = 
{x(f)}, a  singleton,  then  the  entries zjo(f)  of x ( f )  can  be 
interpreted  as  the long-run  ezpected  state-action  frequencies 
induced by f. Similarly,  the  long-run  expected  frequencies 
of visits  to  any  state j E E under f are given by 

A Markov Decision Process is called unichain if for any 
deterministic  policy f, the Markov  chain  induced by P(f)  
has  one  ergodic  set  plus  a  (perhaps  empty) set. of t’ransient 
states. 

Consider  the following linear  program  (LP1): 

m a x C  riazta 
( € A  a E A ( i )  

subject  to: 

(C1) (6ij  - p i a J ) Z i a  = 0, j E E 

(C2) Zia = 1 
IEE a E A ( i )  

% € E  a E A ( i )  

(C3) x,, 2 0, i E E , a  E A ( i ) ,  

where 61j is the Kronecker  delta. Let X denote  the  feasible 
region of the  above  program,  and C ( S )  denote  the class of 
stationary  strategies of the  unichain  MDP. Now consider 
the  map T : X + C(S), where T ( x )  = fi is defined  by 

( 0 ,  i f x , = O a n d a # l ,  

for  every i E E and a E A ( i ) .  Also consider the  map f : 
C(S) + X where ?(f)  = x(!) is defined by (consistently 
with  (2.5)  and  (2.6)): 

xi . ( f )  = p t ( f ) f ( i , a ) ,  i E E ,  a E A ( i ) .  (2.7) 

(iv) I f  L ( S )  = { x ( f )  1 f E C(S)}, then  X = L ( S ) ,  
and the  extreme  points of X correspond to  those x for 
which fx is  a  deterministic  policy. 

We shall now describe  the  famous  Traveling  Salesman 
Problem  (TSP, for short) which  has  been  studied by many 
authors (see [5] for a  recent  survey). 

A “traveling  salesman”  starts  out  at his home  city  and 
must  visit  each of N - 1 other  cities  exactly  once  before 
returning  home. His objective is to  minimize  the  total  dis- 
tance  traveled  in  making  his to-ur. In  graph  theoretic  terms, 
the  problem is to find a  minimum  cost  Hamiltonian cycle 
in  a  complete  graph G with N nodes  and  with  costs c,j 
associated  with  the  arcs ( i , j ) .  

The first MDP which we shall  associate  with  the TSP 
will be  the process r =< E , A , r , p  >, E = {1,2, .  . . , N }  = 
set of nodes of G, A ( i )  = E\{i} for  each i E E and 
A = u f , A ( i ) ,  r = {r,j  = -c,j I i E E ,  j E A ( i ) } ,  and 
p = { p l a J  1 ( i , u ,  j )  E E X A ( i )  X E }  with pi,, = 
t,he  Kronecker  delta. Also, we assume  that 1 is the ini- 
tial  state. We shall  say  that  a  deterministic policy f in r 
is  a  tour in the  TSP if the  state-sequence i l  = 1, i 2  = f ( l ) ,  
is = f ( i Z ) ,  . . , , i ~ + 1  = f ( i ~ )  = 1 is a  Hamiltonian cycle  in 
G. If the  above  sequence  contains  sub-cycles, we shall  say 
that f has  subtours i n  the TSP. Note  that if f is a  tour, 
then q ( f )  = k for  every j E E (see (2 .5) ) .  

3. The  +Perturbed Embedding of the  TSP 

The preceding  embedding of the  TSP in r suggests  that 
analysis  be  carried  out  in  the  space of long-run  state-action 
frequencies,  the  union of { x ( ! ) }  over all policies f .  A char- 
acterization of this  space as a  polyhedral  set is now  avail- 
able  (e.g.,  see  Hordijk  and  Kallenberg  [3]).  However,  it is 
known (141) that  there  are  points  in  that  space  that  cannot 
be  obtained  from  any  stationary  policy  via  the  transfor- 
mation ?, and  furthermore  the long-run  frequency x( f )  is 
not  continuous in f .  These,  and  some  other,  technical diffi- 
culties  would  vanish if r were  a  unichain  Markov Decision 
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Process.  In view of the  above we  now perturb  the law of 
motion of r to p ( t )  = { p t a l ( c )  ~ ( i , a * j )  E E x A ( i )  x E }  
where for any E E ( 0 , l )  we define 

' 1  i f i = l a n d a = j  
0 i f i = l a n d a S j  
1 i f i : > l a n d a = j = l  
e if i :> 1. a 7 j .  and j = 1 
1 - t  i f z : > 1 , a = j , a n d j > l  
0 if i :> 1, a 7 j .  and j > 1. 

P W ( 6 )  = 

The  t-perturbed process r(E) =< E ,  A .  r,p(E) > clearly 
tends  to r as t * 0. It  has  the following properties,  that 
can  be  established by standard  arguments. 

Lemma 3.1 (i) The  hfarkot.  Decision Process r(6) is 
unichain. 

(ii)  Consider  the  Markov  chain  induced b y  a stationary 
policy f in r(6) and  let C C E be an ergodic class in 
that  chain.  Then  (a) 1 E C ,  and (b) if a  state j 4 C ,  
then j is transient. 

Lemma 3.2 Let f be a  deterministic  policy  in r(c) (and 
thereby  also in r) which  is  a tour of the  TSP, and  assume 
that s is the  k-th  city of this  tour  (starting at 1) .  Now, if 
x(f)  = f ( f ) ,  then 

~ if k > 1 and  a = f (s)  

if k = 1 and  a = f ( s )  
otherwise, 

where d ( t )  = 1 t C;"=,(l - E ) ' - * .  

Proof: First we shall  prove  the  result for f' which is the 
tour T~ = (1:2,3. .  . . ~ iV, 1). It  should  be  clear  from  (2.7) 
that  

p ; ( f ' ) .  if 1 < k and a = f(k) 
zka(f') = p;(f'). if 1 = k and a = f(k) 

l o ,  otherwise, 

and  hence  that  to  determine x(!') we must solve the  equa- 
tions 

where 1 is a  vector  with  every  entry  equal to  1. Note  that 
since r(6) is unichain.  the  system of equations  (3.1) pos- 
sesses a unique  solution.  Simple  computation  using  the 
definitions of p ( c )  and f' yields: 

yz = y1: (1 - t ) y , - 1  = y,, j = 3?. . . , N  - 1: 

Consequently,  the  solution of (3.1) is of the  form: 

as  required. 
On  the  other  hand, i f f  is a  tour i different  from ro, then 

i can  be  obtained  from ro by a  permutation of its  entries. 
The  corresponding  permutation of the variables of (3.1) will 
yield the  solution 3 whose  entries  are  the  appropriate  per- 
mutation of the  entries of y and satisfy the  statement of 
the  Lemma. 

0 

Remark 3.1 

(ilNote  that for any f which is a tour. 

( i i )  Similarly, if we  fix any a E A and consider  any f which 
is a  tour,  then zko(f) > 0 for exactly  one k E E 
(otherwise  (2.7)  implies  that  a  city follows more  than 
one  city  on  the  tour  determined by f). Consequently, 
ck,,zkn(f) 2 ! ~ c ~ ~ ~ ~ ?  for  every a E A.  

d ! r )  

We shall now consider  the  polytope X(E) defined by the 
constraints  corresponding  to  (Cl)-(C3) in the  perturbed 
process r(e). Furthermore, we introduce  additional con- 
straints of the  form 

(C4) z,, 2 C ( E ) :  i E E 

I € €  

where C ( E )  = ~ ' ~ ~ / ~ - ? .  We now consider a subset of X(€) 
defined  by: 

G(E) = {x E X(€) 1 x sa t i s f i e s  (C4) - (C5)). 
(3.2) 

The set G(t)  possesses a  number of desirable  properties 
with  respect  to  the  TSP which are  captured in the following 
results. 

Proposition 3.1 Take  any t E (0 ,  I ) ,  and any  determin- 
istic  policy f which is a  tour,  then x( f )  E G(E).  

Proof: By Theorem  2.1 we have  that x(f )  E X(€). The 
satisfaction of constraints  (C4)-(C5) follows from  Remark 
3.1. 

0 

Proposition 3.2 Take any E E (0 ,  l ) ,  and  let x E G(E) be 
such  that fx = T ( x )  is a  deterministic policy in  r(6). Then 
fx is  a  tour in the TSP. 

Proof: Let G be  the  underlying  graph of the  TSP (see 
Section  2),  and G f x  be  the  subgraph of G defined  by: 

a r c ( i : j )  E Gfx * fx(i) = j .  

Note  that by the definition of a  deterministic policy as a 
function  from E to A ,  it is sufficient to prove that GfX is a 
cycle. Now for  each  vertex i E E of GfX define d - ( i ) ( d + ( i ) )  
to  be  the  out  (in)-degree of that  vertex,  namely  the  number 
of arcs  emanating  from  (incident  on)  that  vertex.  Since fx 

is a  function  on E we have 

and  hence  also 

Note,  that d + ( i )  cannot  be  greater  than 1 for any i E E ,  
because if k were  such that  d+(k) 2 2, then by (3 .4)  there 

2257 
Archived at Flinders University: dspace.flinders.edu.au



is some j E E such  that d + ( j )  = 0. That is, fx(i) # j for 
all i E E.  By Theorem 2.1 part (iii),  and (2.7) we now  have 
that for all i E E 

z i j  = [ F ( f x ) ] i j  = pi(fx)fx(i , j )  = 0, (3.5) 

where [u], ,  is the  (ij)-th  entry of the  vector u. However, 
(3.5) implies that  constraints (C5) are  violated by x, con- 
tradicting  the  hypothesis: x E G(E).  Hence d + ( i )  < 1 for 
all i E E ,  which  together  with (3.4) yields 

d+(i)  E 1, i E E .  (3.6) 

There  are now  two  possibilities: 

(a)  Gfx is a  cycle,  or 

(b) Gf,  is a  union of cycles C 1 ,  CZ,. . . , C,. 
We shall  show  that  (b) is impossible,  because  otherwise 
there  exists  some i E E which  belongs to a  different  cycle 
than  the  initial  state 1. Without loss of generality  assume 
that 1 E C1. Now,  in the Markov  Chain  induced by fx in 
I?(€) (and  starting  at l ) ,  the  state i is not  accessible  from 
1. Then, by similar  argument as above CjEE x i j  = O? which 
by violating  C(4)  implies  that x $ G(E),  contradicting  the 
hypotheses. 

0 

The  above  Propositions now  lead  to  the following char- 
acterization of tours  in  the  underlying  Traveling  Salesman 
Problem. 

Theorem 3.1 (i) Let E E ( 0 , l )  and f be a deterministic 
policy of r(c). Then f is a tour  in  the TSP  if and 
only i f x ( f )  E G(E).  

(ii) Let x be an  eztreme  point of X(€) which is  also in 
G(E).  Then f x  = T ( x )  is a tour  in  the  TSP. 

Proof : 

(i) Necessity  follows immediately  from  Proposition 3.1.  To 
establish sufficiency, Proposition 3.2 shows that we 
need  only  prove that 

(ii) 

f = T(x(f))  = T(f( f ) ) .  (3.7) 
Note  that for  a  general  deterministic policy  in r(E), 
equation (3.7) could  be  false,  since f is not  a 1:1 
map of C(S)  onto X(€). However, here f is such that 
x(f)  E G ( E ) ,  and hence  (with  the  help of (2.7)) we 
have that for  all i E E 

0 < zi(.f) = zta(f) = P f ( f ) .  
a E A ( i )  

Thus for  every ( i , a )  E E x A ( i )  we have 

which  yields (3.7) as required. 

C(4) implies that z, = &a(,) zia > 0 for  all i E E .  
Since the  matrix of the  constraints (Cl)-(C2) in r(c) 
is not of full  row rank,  the  extreme  point x can  have 
at  most N positive  entries. Thus for each i E E there 
is exactly  one a E A ( i )  such  that 5,. > 0. Hence 
fx is a deterministic policy and  the  result follows by 
Proposition 3.2. 0 
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Remark 3.2 As a  consequence of the above  Theorem we 
know that all the  tours of the  TSP have  representations 
as  vertices of G ( c ) .  The  latter  statement is valid since  for 
every  deterministic f, x(f )  is a  vertex of X(€) (e.g., see 
Kallenberg [ 4 ] ,  p. 115),  and  thereby of G(t) .  

4. A New  LP-Relaxation of the Traveling 
Salesman 

In  this  section 
(LP2): 

Problem 

we demonstrate  that  the  linear  program 

max r k a x k a  
k E E   a E A ( k )  

subject  to : x E G(E):  

for E sufficiently  small  can  be  viewed as an  LP-relaxation 
of the  TSP.  Towards  this  end we shall need the following 
notation:  let f be  a  deterministic  policy which is a  tour, 
and let 

that  is, ( w ( f ) )  is the cost of this  tour  scaled by Also, let 

v t ( f )  = r k a z k a ( f ) ,  
L E E   a E A ( k )  

that  is,  the  value of the  objective  function of (LP2)  corre- 
sponding  to x ( f )  induced by f. 

Lemma 4.1 Consider E (0, l ) ,  then 

for every  deterministic p o l i c y  which is  a tour. 

Proof: Without loss of generality  assume  that f(k) k + 1 
(with N + 1 defined to  be 1 ) .  Now?  from  Lemma 3.2 we 
have 

N 

+ x f k , k + l  (" d(€j - it-) (4.1) 
€ ) k - f  

k=2 

from  which  the  Lemma follows  trivially. 
0 

We can now establish  the  main  result of this  paper. 

Theorem 4.1 There  ezists E *  E ( 0 , l )  such  that if x* is  an 
optimal  solution  to (LP2) with E < E *  for which f '  = T ( z ' )  
is  a  deterministic policy of r(E), then f' is an  optimal tour 
in  the TSP. 
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Proof:  Let v' be  the  cost of an  optimal  tour  scaled by $, 
and  choose 6 > 0 and  such  that if f is any  suboptimal  tour, 
then 

u' - v ( f )  2 6 > 0. (4.2) 

Further, let r' = {max : (k,a) E E X A ( k ) }  and 
define the  sequence Pk((t); k = 1,. . . ~ N by 

k = 2,. . . , N ,  and let 

N 

P(E) = r -  O h [ € )  
k = l  

It  should  be  clear  that O ( E )  + 0 as E - 0- .  Now sup- 
pose that f* is a  suboptimal  tour:  and let g be  a  deter- 
ministic  policy that is an  optimal  tour of the  TSP.  then by 
Theorem  2.1  and  optimality of x' 

uc(g)  = 4 1 ( g )  = L E E  C a E A ( i )   r t a x t a ( g )  

5 L E E  CoEA(t) r,,x;, = dl( f -1  = u 6 ( f ' ) .  

On the  other  hand, if c '  is chosen so that /I(€*) < iT 
then  from  (4.1)-(4.2) we have  for E < E *  that 

vc(f') 5 + P ( f )  
5 v' - 6 + P(E) 
< 21' - P(E) = 4s)  - P(E)  
5 uc(g): 

which contradicts  (4.1).  Thus f* is an  optimal  tour. 
0 

Remark 4.3 
From  the  above proof  it  should  be  clear  that if all the 

data  are integer,  it is not  hard  to  compute  an E *  for  which 
Theorem 4.2  will hold.  In  particular,  any E E (0 , l )  such 
that 

N 
P(E) = f *  a " € )  < - 1 

k - 1  2 (4.3) 

will do  the  job. 
The  preceding  results  demonstrate  that  for E sufficiently 

small  the  following  mathematical  program  (MP1)  solves  the 
Traveling  Salesman  Problem: 

max x x r k a x k a  
kEE  a€A( l )  

s.t. 

1. x E G ( E )  

2. x k o /   C a E A ( k )   x k a  E ( 0 ,  E E ,  a E A ( k ) .  

Of  course,  an  optimal  solution of (MPI)  can be  obtained 
from  an  optimal  solution  to  the  mixed  linear-integer  pro- 
gram  (MP2) below: 

kEE  aEA(k)  

s . t .  

1. x E G(6) 

2. Xk, 5 Zka;  k E E ,  a E A ( k )  

3.  C n e A ( k )   i k a  = 1; k E E 
4. ik0 E {O,l}; k E E ,  a E A ( k ) .  

Remark 4.4 
It now  follows that for E sufficiently  small,  the  linear 

program  (LP2)  can  be  regarded  as  a well-solved relaxation 
of either  (MP1)  or  (MP2). If its  optimal  solution x' yields 
a  deterministic  policy f' = T(x'), then  the  TSP is solved. 

5. Practical  Considerations 

The  previous  section  presents  some  new  formulations of the 
TSP.  It is not  known  what  computational  advantages  can 
be  gained  from  these.  It is hoped  that  some  methods used 
for standard  formulation of the  TSP  can be adapted  advan- 
tageously  for  our  formulations.  One  immediate  application 
of the  above  formulation is suggested below  for accelerating 
some  existing  TSP  algorithms. 

A lot of successful TSP  algorithms  produce  intermediate 
solutions  which  might  consist of several  disjoint  subtours 
rather  than  a  single  tour [for  example  modern  polyhedral 
algorithms).  When  such  a  solution is obtained  it  must  then 
be  determined  whether  it  represents  a  single  tour or a col- 
lection of subtours.  The  latter  can  be  computationally in- 
tensive. Below we propose  an  algorithm to do  this which 
promises  to  be  efficient. 

Let f be  a  deterministic  policy  in  the  MDP, I?(<). 
It follows from  Section 3 that  f represents a tour if and 

only if ply(!) > 0 for  all i. Moreover, if f is not a  tour  then 

( i )  if s tate 1 is contained in a cycle (in  the  subgraph 
G,) then p f ( f )  > 0 for  all i in this  cycle,  and is iden- 
tically 0 elsewhere 

( i i )  If state 1 is not in  a given  cycle, then p i  ( f )  = 0 
for  all i in this  cycle. 

The following algorithm  identifies  the  subtour  contain- 

Step 1: Form P(f)  in r(E). 
Step 2: Solve r T P ( f )  = rT, xi., = 1; denote  the 

ing state 1; 

unique  solution by p'(f). 

Step  3: Let C1 denote  the  subtour  containing  state 1. 
c1 = {Z : p , * ( f )  > O } .  If C1 = V (set of vertices of the 
TSP),   then f is a  tour. 

Remarks:  Note  that 

1. To  identify  other  subtours, pick j s.t. p ; ( f )  = 0. 
Rename  the  states so that j is now state 1 and  apply 
the  algorithm.  It will  yield  a subtour  containing j .  

2. Nearly all the  computational work is in Step 2 which 
involves  solving a very sparse n X n linear  system. 
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