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1. Introduction and Definitions 

Infinite horizon Markov Control Problems, or Markov Decision 
I'rocessca (MUP's, for short), have been extensively studied since 
the 1950's. One of the most commonly considered versions is 
the so-called 'limiting average reward" model. In this model 
the controller aims to maximize the expected value of the limit- 
average ("long-run average") of an infiiiite stream of single-stage 
rewards or outputs. There are now a number of good algorithms 
for computing optimal deterministic policies in the limiting av- 
erage MDP's (e.g., see Blackwell 121, Derman 131, and Kallenberg 

It should be noted, however, that an optimal policy in the 
above 'classical" sense is insensitive to the probability distribu- 
tion function of the long-run average reward. That is, it is pos- 
sible that an optimal policy, while yielding an acceptably high 
expected long-run average reward, carries with it unacceptably 
high probability of low values of that same random variable. This 
"risk insensitivity" is inherent in the formulation of the classical 
objective criterion as that of maximizing the expected value of a 
random variable, and it is not necessarily undesirable. Nonethe- 
less, in this paper we adopt the point of view that there are 
many natural situations where the controller is interested in Rnd- 
ing a policy that will achieve a sufficiently high long-run average 
reward, that is, a target level with a sufficiently high probabil- 
ity, that is, a percentile. The key conceptual difference between 
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this paper and the classical problem is that our controller is not 
searching for an optimal policy but rather for a policy that is 
'good enough", knowing that such a policy will typically fail 
to exist if the target level and the percentile are set too high. 
Conceptually, our approach is somewhat analogous to that of- 
ten adopted by statisticians in testing of hypotheses where it is 
desirable (but usually not possible!) to simultaneously minimize 
both the "type 1" and the %type 2" errors. 

It will be seen that for our target level-percentile problem it 
is possible to present a complete (and discrete) classification of 
both the maximal achievable target levels, and of their corre- 
sponding percentiles (see Theorem 5 and its Corollaries). The 
case of a communicating MDP is particularly interesting as here 
every target level can be achieved with only two possible values: 0 
or 1 (see Theorem 3 and its Corollary). In all cases our approach 
is constructive in the sense that we can supply an algorithm for 
computing a deterministic policy for any feasible target level and 
percentile pair. Our analysis is made possible by the recently de- 
veloped decomposition theory due to Ross and Varadarajan (7). 
and the logical development of the results is along the lines of 
Filar 141. The latter paper, to the best our knowledge, introduced 
the percentile objective criterion in the context of a limiting av- 
erage Markov Control Problem, but substituted the long-run ex- 
pected frequencies in place of actual percentile probabilities since 
the decomposition theory of 17) was not known at that time. In 
the remainder of this section we shall introduce the notation of 
the limiting average Markov Decision Process. 

A finite Markov Decision Process, r, is observed at discrete 
time points n = 1,2,. . . . The state space is denoted by S = 
{ 1.2,. . . , IS[}. With each state s E S we associate a finite action 
set A ( s ) .  At any time point n, the system is in one of the states 
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and an action has to be chosen by the controller. If the system is 
in state s and the action a E A ( s )  is chosen, then an immediate 
reward r(s,a) is earned and the process moves to a state t E S 
with transition probability p lo t ,  where P , . ~  2 0 and = 1. 

A decision rule U" at time n is a function which assigns a 
probability to the event that action a is taken at time n. In 
general U" may depend on all realized states up to and including 
time n .  A policy (or a control) U is a sequence of decision rules: 
U = (ul, uz,. . . ,U", . . .). A policy is stationary if  each U" depends 
only on the current state at time n ,  and u1 = uz = . . . = U" = . . . 
. A pure (or deterministic) policy is a stationary policy with 
nonrandomized decision rules. Let X, and A,, be the random 
variables that denote the state at time n and the action chosen 
at time n ,  and define the actual limiting average reward as the 
random variable 

I N  
R := lim inf - r(Xn,An).  

N-.- N , = ,  

It should now be clear that once a policy U and an initial state 
Xl = s1 are fixed, the expectation cj(u,s1) := E,,(RIX1 = si) of 
R is well defined and will, from now on, be referred to as the 
ezpected average reward due to a policy U. The classical limiting 
average reward problem is to find an optimal policy U* such that 
for all policies U 

+(u*,sl) 2 +(u,sl)  for all s1 E S. (1.1) 
It is well-known (e.g., see 121) that there always exists a pure 
optimal policy U'. 

2. Problems Relating To Percentile Objective 
Criteria 

We shall say that any pair ( k , a )  such that k E IR and a E [ O , l ]  
constitutes a target level-percentile pair. We shall address the 
following problems. 

Problem 1. Given (k, a) 6 IR x [0,11 does there exist a policy 
U such that 

Pu{R 2 klXl  = SI}  2 a. (2.1) 
If (2.1) holds for some policy U, then we shall say that U achieves 
the target level k at percentile a, and k will be called a-achievable. 

Problem 3. Given a E (0,lI find 

k, := sup {klk is a-achievable}. (2.2) 

Problem 3. Given k E R find 

a k  := sup {a E (0,1113 a policy U s.t. (2.1) holds}. (2.3) 

Remark 1 It should be clear that in many situations the natural 
.goal of maximizing the target level will be in direct conflict with 
the goal of maximizing the percentile value. This is because k, 
is a non-increasing function of a, while ak is a non-increasing 
function of k. 

3. Preliminaries 

We shall develop out results within the framework of the decom- 
position theory due to Ross and Varadarajan 171. (For a related 
decomposition, see Bather 111). In this section we collect some re- 
sults frorri 171 that will be needcd for tlic proofs in  the subsequent 

~ w t i o i i ~ .  

CI,CI,.  . . ,C,,,3', whose properties are surrirriarized below. 

Theorem 1 (Thm Q.7 oj 171). For any policy U, we have 

In 171, it is shown that the state space S has a unique partition 

2 pu(Qilxl= SI) = 1, 
i= l  

where 

Qi := { X ,  E Ci almost always }. 

The sets CI,. . . , C, are referred to as strongly communicating 
classes. For a given strongly communicating class C1, denote r ( i )  
for the MDP restricted to Ci. Thus, the state space of r(i) is Ci 
and the action space A , ( s ) , s  6 Ci, is given by 

From 171 we know that A,(s) is nonempty for all s E C, and that 
i is a communicating MDP. (Recall that a communicating MDP 
is such that for any pair of states s , t  E 9, there is a pure policy 
under which t is accessible from u.) Now consider the following 
linear program LP(i): 

z I a  2 0 ,  E Ci, U E Ai(.). 

Let vi denote the optimal objective function value of LP( i ) .  We 
can now state the following result. 
Theorem 3 (Thm 9.5 171) For all policies U, all initial states 
81 E S ,  and all a = 1,. . . , p ,  we have 

Pu(R 5 u i p i , x 1  = SI) = 1, 

whencuer Pu(@i, X1 = sl) > 0. 

4. Basic Results 

We shall first solve Problems 1-3 for the case of 1' being a commu- 
nicating MDP. In this case, there is one strongly communicating 
class, CI, and T empty; thus, S = Cl. 

Consider then LP(1) and denote v := v1 in order to simplify 
notation. Also let {z;,,} be an optimal solution of LP(1) and g' 
be a stationary optimal policy constructed from {&} (e.g., see 
IS], or 151). Clearly, g' satisfies 

4(g', s) = U ,  s E s. (4.1) 
Moreover, the Markov chain associated with the policy g' has at 
most one recurrent class plus (a perhaps empty) set of transient 
states. 

Theorem 3 In a communicating MDP r there ezists a policy 
that achieves the target level k with percentile a if and only if 
k 5 U. If k 5 U ,  then the pure policy g' achieves the target level 
k with percentile a, for any a E [0,1]. 

Proof: Since g' gives rise to a Markov chain with one recurrent 
clrss, we huve 
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(e.g., see [a], Proposition 1 (iii)). Combining this with (4.1) 
gives From Theorem 2 we have 

Pu(R 5 ~1x1 = Si) = 1. (4.3) 
The result then follows from (4.3) combined with (2.1). 

0 

As a direct consequence of Theorem 3 we have 
Corollary 1 In a communicating MDP I', k,  = v for all a E 
[0,11, and 

Problems 1-3 have now been solved for communicating MDPs. 
We return to the general case, where we have strongly communi- 
cation classes CI,. . . , C, and the set T of transient states. Denote 
by gf the pure policy of Thm 4.1 associated with r ( i ) ,  the MDP 
restricted to C ; .  

Corollary 2 For a f i n d  i E {I,. . . , p }  let g be a pure policy 
that coincides with gf on Ci and is defined arbitrarily elsewhere. 
Then 

P, (R = t l i l@i,Xi = S I )  I 

if P , ( @ , , X 1  = si)  > 0. 

Proof: This follows easily from the proof of Theorem 3. 
U 

Next we shall consider a fixed target level k ,  and associate 
with it an index set = {i : 1 5 i 5 p , v ,  2 k } ,  and an auxiliary 
0-1 MDP, rk, whose states, actions and transition law are the 
same as r, but with rewards defined by 

1 if s E C, and i E I k  

0 otherwise. rk(s,a) := 

It is easy to see that for an arbitrary policy U ,  the expected 
average reward in I 'k  is given by 

. N  

(4.4) 

where the last equality follows from Theorem 1. 
Theorem 4 Let g *  be an optimal stationary policy in rk which 
coincides with gf on  c, for i E 1 k . l  There ezists a policy U 

sat isfying 

Pu(R L klX1 = 81) 1 a,  (4.5) 
where a is the percentile, if and only if q5(g*,sl) 2 a. Further, 
if the target k can be achieved at percentrle a,  then it can be 
achieved by the pure policy g'. 

Proof: From Theorem 1 we have that for any policy U 

P (4.6) 

pu(R L klX1 = 91) = PU(R 2 kI@,,  X i  = si)Pu(@tlX1 = 91) 
1=1 - 

lNote that there is no ]OM of generality here, because 9: yields the iiiaxiiiial 
reward (1 or 0) for every atate s E C,, t E I,. 

1 = P,,.(R 2 k l @ , , X I  = sl) 2 Pu(R 1 k l @ i , X l  = S I )  i E Ik, 

where the inequality follows from the optimality of g i  for r(i). 
Combining (4.6)-(4.8) gives 

(4.8) 

from which the result follows. 
0 

It is important to note that Theorem 4 provides a construc- 
tive answer to Problem 1 of Section 2 concerning a-achievability 

of the target level k .  We shall now address the problems of deter- 
mining k,  the maximal achievable percentile for the fixed level 
k. Towards this goal we assume without loss of generality that 
the strong communicating classes C1,. . , , Cp are ordered so that 

U ,  2 U2 2 * .  . up.  (4.9) 

Now define I, = { 1,. . . , j} for each j = 1,2,. . . , p .  In analogy 
with (4.4) define 

I 

4'(u,s1) = cPu(@tIxl = S I ) ,  (4.10) 
I-1 

with corresponding MDP I?l defined over the state space S. 

Theorem 5 Let g;  be an optimal pure policy for MDP r, which 
coincide with g: (optimal in  r ( i ) )  on each C,,i = 1,. . . , j .  We 
have for  a E (0,1] that 

k, = k' := max(vjl4j(gf,sl) 2 a, j = 1,. . . , p }  (4.11) 

Proof: Let be the largest index that achieves the maximum in 
(4.11), which is well-defined since @'(g',sl) = 1. Since k' = ut ,  
we have Zk. = { 1,2,. . . , e } .  Thus, from Theorem 4, we know that 

P,;(R 2 k'JX1 = SI) 2 a. (4.12) 

Hence, k' is a-achievable, implying that k,  2 k'. If strict in- 
equality were possible in the preceding statement, then there 
would exist a k' > k' and a policy U such that 

PU(R 2 k'lX1 = 91) 2 a. (4.13) 

Now let 

m := max{i : vi 2 k ' } ,  

noting that if vi < k' for all i = 1,. . , , p ,  then the left side 
of (4.13) equals 0 contradicting the hypothesis a > 0. By the 
definition of m we have 

U, 2 k' > k'. (4.14) 
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Applying Theorem 1 to (4.14) yields 

Corollary 3 The mazimal a-achievable target level, k,, is a 
monotone nonincreasing step-junction oj a ,  defined on the in- 
t erval (04.  

Proo!: Let ai := +j(gj,sl)  for j = 1 ,... , p ,  so that o 5 a1 5 
a2 I . . . I ap = 1. If we define ko := max{u,li = 1,. . . , p } ,  then 
by Theorem 5 k,  = ko for all a E (O,al].  Similarly, k, = k,, 
a constant for all a E (a,,aj + 11, where k j  2 kjt l  for each 
j =  I ,  . . . , p -  1. 

U 

Corollary 4 The mazimum percentile /or a given target level, 
ab, is a monotone nonincreasing step junction oj k defined in the 
interval (up,uI]. In particular /or k E [v,+l,v,] we have 

ak = 4’(g;tsl) 

/or e a c h j = I ,  . . . , p -  1. 

Proof: This follows easily from the monotonicity of +’(gi,sl) in 
the index j .  

Remark 2 Corollaries 3 and 4 demonstrate the strength of the 
percentile objective criteria. Namely, the decomposition of states 
in Cl,. . . , C, and T, and the subsequent computation of policies 
gi  together with “break-points” ki and vi for k,  and (Yk respec- 
tively, allows for a flexible and practical evaluation of gain-risk 
trade-offs in an average reward MDP. 

0 
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