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Abstract-We consider a model of dynamic inspection/surveillance of 
a number of facilities in different geographical locations. The inspector in 
this process travels from one facility to another and  performs  an 
inspection at each facility he visits. His aim is to devise an inspection/ 
travel schedule which minimizes the losses to society (or to his employer) 
resulting both from undetected violations of the regulations and from the 
costs of the policing operation. This model is formulated as a noncooper- 
ative, single-controller, stochastic game. The existence of stationary Nash 
equilibria is established as a consequence of aggregating all the inspectees 
into a single “aggregated inspectee.” It is shown that such player 
aggregation causes no loss of generality under  very  mild assumptions. A 
notion of an “optimal Nash equilibriam” for the inspector is introduced 
and  proveu to be well-defined in this context. The issue of the inspector’s 
power to “enforce” such an equilibrinm is also discussed. 

I .  INTRODUCTION 

T HE traveling inspector model (TIM) is a mathematical model 
of dynamic inspectiodsurveillance of a number of facilities 

(these will sometimes be called sites, plants, or inspectees) in 
different geographical locations. The present author originally 
proposed this model and a number of alternative methods  of 
analysis in [14], and in [12]  an implementation of one of these 
methods is discussed. Conceptually, TIM is  an inspection process 
with the following structure. * 

1) There are S inspectees (or facilities or sites) in different 
locations. 

2) There is one inspector who can perform only one inspection 
during the current inspection period (e.g., day, week, etc.). 

3) The inspector travels from site to site and performs an 
inspection at the new site at which he “just arrived.” 

4) The inspectees know the last inspection site but not the next. 
5) The inspector wishes to minimize the overall cost to society 

(or to his employer): this may include costs due to violation of 
regulationsicheating, travel costs, and inspection costs. 

6) The duration of the process (i.e., number  of inspection 
periods, or stages) can be either finite and known, or infinite. 

In this paper we formulate the above process as a noncoopera- 
tive, single-controller, stochastic game with either infinite or 
finite horizon. We show that the game possesses stationary Nash 
equilibria which can be found by recently developed techniques. 
In stochastic games, stationary strategies are the easiest strategies 
to implement, and hence it is important that the existence of 
solutions in this class of strategies enables us to restrict consider- 
ation to this class only (there are examples: Blackwell and 
Ferguson’s [4] “big match” is one, where this simplification is 
impossible). The above results are obtained by showing that under 
weak assumptions (in the inspector/inspectee context), there is no 
loss of generality in assuming that the inspectees have “amalga- 
mated” (i.e., are jointly coordinating their behaviorlactions), so 
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that some known results for two-person, single controller stochas- 
tic games can be applied to our problem. The key part of this 
argument lies in the interesting general conditions for “player 
aggregation” developed recently by Goldman and Shier [ 161 and 
Goldman [17]. Further, we introduce the notion of the inspector’s 
“optimal Nash equilibrium,” show that it exists, and that it can, 
in principle at least, be computed by a finite algorithm (see 
Theorem 3.5). However, the critical issue of the inspector’s 
power to “enforce” such an equilibrium point (or any other) is 
only partially resolved (see Lemmas 3.7 and 3.9). 

The paper has two objectives. First, we believe that the class of 
motivating situations is important enough and the structure of the 
model rich enough to provide stimulation for other researchers. 
This view seems conflrmed by the fact that the model easily lends 
itself to many modifications and generalizations (for instance, see 
Section V), some of which lead naturally to unanswered theoreti- 
cal questions. Of course, at present, TIM is only a “prototype” 
model which would have to be specialized and adapted appropri- 
ately to yield an accurate representation of a specific actual 
inspector/inspectee conflict situation. 

Second, we wish to draw attention to the fact that due to recent 
algorithmic developments in the theory of stochastic games, it has 
become feasible to attack a relatively complex problem such as the 
TIM by modeling and solving it as a stochastic game with an 
appropriate special structure. 
In the past 15 years or so, there has been a marked increase in 

research activity aimed at identifying particular classes of 
stochastic games which admit “simple” solutions and at develop- 
ing algorithms for constructing these solutions (see, for instance, 
[201,  [371,  [81-[101, [ I l l ,  1131,  1381. t391, 1211,  1221, W I ,  t61, 
and [2], just to name a few). At the same time applications of 
stochastic games are also beginning to emerge (see, for instance, 

To conclude this Introduction we mention that  most  of the 
earlier game-theoretic models of the inspector-inspectee conflict 
has been static (i.e., single-stage) games, and thus essentially 
different from the model proposed here. See for instance, [28] and 
[ 181. However, one consequence of the existence of stationary 
equilibria established here, is  that despite its underlying dynamic 
nature the traveling inspector model can also be solved as a static 
game. The latter observation may  be particularly important in 
these potential applications in which the inspector is a mechanical/ 
electronic device programmed to follow a particular strategy, in 
an environment that does not readily permit the use of an adaptive 
strategy. 

V I ,  W I ,  [I], and [401). 

II. THE TIM AS A STOCHASTIC GAME 

We shall consider a game with (S + 1) players. Players 1 ,  2, 
* * * , S will be the inspectees and player ( S  + 1) = II  will be the 
inspector. The sth inspectee can be thought of as the manager of 
the sth plantlsite. The symbol S will have dual meaning, denoting 
both the Sth inspectee and the set (1, 2,  . . * ,  S) of sites to be 
inspected. Now, during a typical inspection period2 [ t ,  t + 1) the 

The precise timing of events during an “inspection period” is left open as 
it would almost certainly depend on the context of the model. For instance, a 
violation could be continuous or instantaneous in such a period. Similarly, the 
inspection in some contexts could be an “audit” of a preceding period. 
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pth inspectee (p E S )  is implementing an action up E V(p), 
where V(p) is a finite set of actions which can be thought of as 
violation levels that p can commit and includes an action which 
corresponds to no violation at all. The inspector, on the other 
hand, chooses an action i = (il, i2) at time t ,  where il E S is the 
site which will be inspected during the period [t ,  t + 1) and i2 is 
the level of inspection to be performed at i l  . We assume that 9 is 
the finite set of inspection levels, and hence that the number of 
actions i open to the inspector is w, the cardinality of S X 9. The 
state of the game at time t is the  site at which the inspector has just 
completed an inspection. The consequences of inspectees’ choices 
of up E V(p);  p = 1, - - - , S and of the inspector’s choice of i E 
S x 9 are the following. 

i) A transition from the current state, say s, to the state il 
(determined by i )  at the time t + 1. 
ii) Rewards rp(upr i ,  s); p = 1, * * * , S earned by each of the 

inspectees for the period [t ,  t + 1). Note that these depend only 
on the actions of the particular inspectee and the inspector, and 
could easily be negative if the inspectee is caught committing a 
violation. 

iii) Reward rII(ul, a ,  us, i ,  s), earned by  the inspector for the 
period [t, t + 1) (again interpreted as a loss whenever it is 
negative). 

Remark 2.1: Since travel costs (or costs of  moving an 
“inspection team”)  are likely to be of importance to the inspector, 
it is natural that his reward function depends on the argument s, 
the site of the last inspection. The situations where s affects the 
rewards of the inspectees are less obvious but certainly conceiv- 
able: for instance, if the inspector is obliged to make a long trip 
from s to i l ,  the time “wasted” on travel may enable the 
inspectees to accomplish a “complete” violation of a certain type. 

The game we have just described belongs to a special class of 
games which are sometimes called “single-controller stochastic 
games.” This class was first studied by Stem [36] and has 
received some attention in recent years (see, for instance, [30], 
[38], [21], [22], [13], and [IO]). Of course, in the TIM, the 
inspector is the “single” controller since it is only  his actions 
which determine the transitions from state to state (i.e., from site 
to site). In general, the law governing the possible transitions is 
stochastic (not deterministic as in TIM), and is often called “the 
law of motion” of the stochastic game. 

A stationary strategy fp  of the pth inspectee is a probability 
vector on the actions in V(p) ,  whose hth component isf,(s, h) = 
Pr {p chooses action h whenever the inspection just completed 
occurred at site s) . 

Similarly, we can define a set of probability vectors g(s) whose 
ith component g(s, i )  denotes the probability that the inspector 
chooses the action i = (il, i2) whenever he completes an 
inspection at s. Thus, a stationary strategy for the inspector can be 
regarded as the composite vector g = ( g ( l ) ,  g(2), . . , g(S) ) .  By 
contrast, general (i.e., not necessarily stationary) strategies in a 
stochastic game can depend not  only on the current state but also 
on the complete history of the game up to the current state. The 
class of Markov strategies lies in between stationary and general 
strategies, in that the pIayers’ randomized strategies at  time t ,  can 
depend on t as well as on the current state s. Let F,, FM,, and 
FS, denote the sets of all general, Markov, and stationary 
strategies, respectively, of the pth inspectee. Clearly, Fp 3 FM, 
3 FS,. Similarly, define G, GM, and GS as the corresponding 
sets of strategies for the inspector. Once an ( S  + 1)-tuple of 
strategies VI, -, fS, g )  is given, the expected gainlloss II;(fl, 
* - -, fs, g ,  s) to the vth player for the tth stage (i.e.. [ t ,  t + l)), 
given that the initial state was s, is well defined. The two types of 
stochastic games which we shall consider here,  are distinguished 
by the manner in which the players evaluate a stream of expected 
gains ai, II;, -). They are the following. a) The T-stage or 
finite stochastic games, if the payoff to the vth player resulting 
from the use of strategies c f l ,  * * * ,  fs, g )  is given by 

T 
@.’(fI, * . * ,  fs. g, .)=X n:df1, - . - ,  fs, g, 4 

r = 1  

w h e r e v =   1 , 2 ; * - , S +  1,andsESistheinitialstate.HereT 
is, of course, the number of stages after which the process stops. 

b) The undiscounted or limiting average reward stochastic 
games, if the payoff to the vth player is given by 

where v = 1, - - . ,  S + 1 ands  E S. 
In the sequel it  will be convenient to use the following more 

compact notation. Let F =  X:,I Fp and r = F x G, so that y E 
I? represents an (S + 1)-tuple of general strategies. The symbols 
FM, FS, rM, and I’S will be given analogous meanings in terms 
of Markov and stationary strategies, respectively. For any y E I’ 
we shall denote by (y, p , f , )  the member of r obtained from y by 
changing the coordinate corresponding to the pth inspectee to f p ,  

with (y, S + 1 , g )  defined similarly. 
We shall say that y o  E r is a (Nash) equilibrium point for the 

TIM game if for everyf, E F,; p = 1, * * ,  Sand g E G ,  the 
relations 

@’P(yO, p ,  f,, s)>@P(yO, s); p = l ,  . - e ,  s, s E s 
@ + I ( y O ,  s+ 1 ,  g, s ) > @ + I ( y O ,  s); s E s 

are allfake.3 That is, if  we think of yo as the players’ “present” 
choice of strategies, then by the above definition no player has an 
incentive to deviate unilaterally from his present choice. 

We conclude this section by remarking that the issue of 
existence of  Nash equilibria in noncooperative stochastic games 
has now been studied quite extensively (see, for instance, [15], 
[32], [33], and [7]). Nonetheless. for the class of undiscounted 
stochastic games there is still no general existence theorem even 
when the state and action spaces are finite. However, under some 
additional assumptions (see,  for instance, [I91 or [7]) Nash 
equilibria are known to exist. We do not discuss these conditions 
here since TIM does not satisfy them. Instead, we shall show that 
under mild conditions there is  no loss of generality in replacing the 
set of S inspectees by a single “aggregated” inspectee, thus 
creating a hvo-person, noncooperative, undiscounted game which 
is  known to possess stationary Nash equilibria (see [30]) which 
are also equilibria for the original game. Of course. the existence 
of Markov Nash equilibria in the T-stage stochastic games is 
well  known (see, for instance, [19, ch. 91). 

IU. INSPECTEE AGGREGATION AND ITS CONSEQUENCES 

In this section we shall consider the results of assuming that the 
S inspectees in the TIM form an aggregated player I in a two- 
person game, with the inspector acting as player II .  We shall 
assume that the strategy space of this aggregated player I is F = 
X : = ]  Fp (as in Section II), and that G is the strategy space for 
player ZZ. Let r = F x G and R,(S) = {W(y, s)\y E r); that 
is, Rp(s) denotes the set of possible rewards to the pth inspectee if 
the initial state is s. Further, let R,(s) = X;=l R,(S) and  let the 
triple (rl ,  p ,  r;) denote the “outcome” of the aggregated 
inspectee I ,  when thepth component of rI (i .e. ,  the reward of the 
pth inspectee) is changed from rp to ri (note that the arguments is 
suppressed here to simplify the notation. that is, rl = rl(s) E 
RI(s), etc.). 

Now, for any y = (f, g )  E r and initial state s, the payoff 
function of the inspector will still be 

Cpyy, s) = @+ I(-),, s) (3.1) 

while the payoff  of the aggregated inspectee will  be taken to be 

W Y ,  s)= $[{Wr, s) : P E SI1 (3 4 

This definition  applies to both types of games defined  in a) and b). 
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where $:as -+ R1 and is stricly monotone in each of its @(yo, s) [see (3.5)], together with monotonicity of $ imply that 
arguments; that is, for any p E S and s E S @‘(yo, p ,  f,, s) > @‘(yo, s), thus, contradicting the hypothesis 

that yo is an equilibrium point of ATIM. If (3.7) held, then (3.1) 
r; (4 > rAs) implies W I ,  P, r; 1 > $(rd (3.3) immediatelv vields the same contradiction. 

for all rl E R,(s), where r p ) ,  rp(s) E Rp(s). 
The last condition reflects the simple notion that if outcome 

r;(s) is preferred to rp(s) individually, then the unilateral 
deviation from rp(s) to r&s) in the “aggregated outcome” rr will 
be advantageous for the aggregated inspectee as well. It should be 
noted that in TIM  “natural” aggregation functions such as 

S 

$ ( r ~  = X, rp (SI (3.4) 
p= I 

(with hP’s positive), satisfy (3.3). 
Once the inspectees are aggregated as above to form player Z, 

we have the “aggregated traveling inspector model” or ATIM. 
Note that it is only the inspectees and their payoffs which are 
aggregated and not their strategy spaces. Thus, F, FM, and FS 
are still the sets of general,  Markov, and stationary strategies for 
player I in ATIM. 

The above method of aggregating payoffs is “global” in the 
sense that it is the payoffs for the whole game which are 
aggregated via the function $, however, it says nothing about the 
manner in which the payoffs at each stage are combined. Hence, 
from now on, we shall impose the consistency assumption of 
A TIM. There exists a stage-by-stage aggregation of the rewards 
of the inspectees which induces a two-person game whose set of 
Nash equilibria in the smallest class of strategies (general, 
Markov, or stationary) for which it is nonempty coincides with the 
corresponding set of  Nash equilibria of ATIM. 

Note that in most likely applications we would  want the above 
“local” aggregation to be performed by the same aggregation 
function as that in (3.2) which  was used to aggregate at the 
“global” level. For instance, for the T-stage payoff criterion a), 
local aggregation via a function of the form (3.4) is equivalent to 
global aggregation via the same function. For the undiscounted 
payoff criterion b), the same is true as long as all the players use 
stationary strategies. 

Theorem 3.  I :  
i)  The sets of Nash equilibria of TIM and ATIM coincide. 
ii) If the undiscounted payoff criterion b)  is used, then  both 

TIM and ATIM possess Nash equilibria in stationary strategies. 
iii) If the T-stage payofff criterion a) is used, then both TIM and 

ATIM possess Nash equilibria in Markov strategies. 
Proof: i) The proof of this will closely follow the line of 

argument used to prove [16, Theorems 1 and 21 (the even more 
general results on player aggregation due to Goldman [17] could 
also be invoked). The essential observation is this: due to our 
definition of the rewards rp(up, i, s); p = 1, * - ., S, of  the 
inspectees, and due to the fact that only the inspector determines 
the transitions from state to state, the expected rewards for the tth 
stage simplify to II: (f,, . . . , fs, g ,  s) = II: ( fp ,  g ,  s); p = 1 ,  
. . . , S ,  for every initial state s. Consequently, each inspectee’s 
payoff function also depends only on his own strategy, the 
inspector’s strategy, and the initial state; that is, for p = 1,  - . * , S 

@%, s)= W f p ,  g, SI. (3.5) 

Now, let yo = (f,, * *,A, g o )  be an equilibrium point of ATIM 
and suppose that it is not an equilibrium point  of TIM. Then either 
for some s E S, p E S and fp E Fp 

apCfpr go, aP(yo, P, fp, ~ ) > @ ~ ( y ’ ,  ~)=@~c, go ,  s) (3.6) 

or  for some s E S and g E G 

@S+’(yO, s+ 1, g, s)>aJS+’(yO, s). (3.7) 

If (3.6) held, then the fact that (for all k # p )  ak(yO, p ,  fp, s) 

Convers&, suppose that yo is an equilbrium of TIM but  not  of 
ATIM. Again (3.1) immediately shows that the inequality @“(yo, 
ZZ, g ,  s) > @“(yo, s) is impossible for any g E G and s E S .  
Suppose then that for some s E S and f = cfi, . * * , fs) E F the 
inequality 

*‘(YO. 1, f, S ) > W Y O ,  s) (3.8) 

holds, where in the above we regard yo as the pair (fo, g o ) .  Now, 
let us define the set Z+(s) = { k  E SJV(y0, k ,  fk, s) > @&(yo, 
SI}. The sets and P(s) are defined similarly by replacing > 
with < and = , respectively. We shall show that Z+(s) is 
nonempty, thus contradicting the hypothesis that yo is an 
equilibrium point of TIM. Suppose then that I +  (s) = { }. If I-(s) 
also empty, then by (3.5) for every k E S,  ak(f, go,  s) = ak(fk, 
go, s) = ak(y0,  k ,  fk, s) = ak(y0 ,  s) which contradicts (3.8) [see 
(3.2)]. If I-(s) is nonempty, then repeated application of (3.3) to 
change { a l k  E I - ( @ )  “one by one” to {fklk E I - @ ) ) ,  
together with (3.5) imply that @‘(yo, s) > @‘(yo, Z, f, s) 
contradicting (3.8). 

ii) Of course, part i) is useful  only  if the sets of  Nash equilibria 
of these games are nonempty. However, we  know from [30, 
Section 51 that in every two-person, single-controller undis- 
counted stochastic game there exists yo = cf“, g o )  E FS x GS 
which is a Nash equilibrium in ATIM, and hence also in TIM by 
i), and the consistency assumption. 

iii) This follows in an analogous way from [19, Theorem 
9.51. 0 

Corollary 3.2: Let yo = ( p ,  g o )  E r be any  Nash equilibrium 
of the undiscounted TIM game, and let P(s) = @“(yo, s) for s = 
1,  - a ,  S .  Then P(s) = /3 for every s; that is, the equilibrium 
rewards of the inspector are independent of the initial state. 

Proof: Suppose to the contrary that P(s) > P(s‘) for some 
pair of initial states s and s f .  Then define a strategy g E G for the 
inspector as follows. If the initial state is s’ go to s next and 
perform any inspection there, and thereafter use g o .  If, on the 
other hand, the initial state is not s’ then use go throughout the 
game. Since we are using limiting average rewards it should be 
clear that 

@“(p, g. s’)=”’(p, g o ,  s)=P(s) .  

But since yo is an equilibrium point 

P(s’ )  = V c r ” ,  g o ,  s’) 2 @“(f”, g, s’) = p(s) 

which yields the desired contradiction. 0 
Since in TIM the duration of the process would typically be 

large but unknown, we shall concentrate on the undiscounted 
version defined by b) of Section II. Further, we shall be 
particularly interested in the set of stationary Nash equilibria in 
TIM (or equivalently in ATIM). However, by the consistency 
assumption of ATIM it is sufficient to consider the set of 
stationary Nash equilibria of a two-person, single-controller 
stochastic game whose “local” rewards of player Z are the 
appropriate aggregations of the “local” rewards of the S 
inspectees (again, aggregations of the form (3.4) can be used). 
Hence, from now on, we shall not differentiate between ATIM 
and its “locally” aggregated counterpart. 

More precisely, if  we define EPS to be the set of all stationary 
(Nash) equilibria of ATIM (which is nonempty by Theorem 3. l ) ,  
then it is possible to give a finite characterization of this set as 
follows. There exists a finite set 2 = {f’ E FS) of extreme 
equilibrium strategies for player Z such that  with every subset x 
of 2 we can associate (a possibly empty) set E&)  = { g  E GSlCf, 
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where Ck) is the convex hull of x. This result is proved in [lo, 
Section 31 and is an analog of a classical result for bimatrix games 
due to Kuhn [24]. Furthermore, it is shown in [ 101 that the 
members of 2 form a subset of the set of extreme points of a 
polyhedral set defined by a system of linear constraints whose 
coefficients are given by the data of the game. Hence, if these data 
are rational the set 2 can be constructed by one of a number of 
well-known finite algorithms (for a review of some of these, see 
[29]). Further, each of the sets E ( x )  in (3.9) is itself the image of 
a certain polyhedral set under a finitely executable transformation 
(see [lo, Section 41). 

These results show that the set of all stationary equilibria of 
ATIM (and, hence, of TIM) can be fully characterized by finite 
algorithms provided only that the data are rational. However, 
these algorithms depend on algorithms for enumerating all 
vertices of polyhedral sets (e.g., see [29]), and hence could prove 
impractical in many applications. If we are interested in comput- 
ing just one equilibrium point of ATIM, the method  which 
promises to be most efficient is that  of solving a certain quadratic 
program and then converting the solution to a member of EPS. 
This approach, which was proposed by Filar [ 111, generalizes a 
classical result about bimatrix games which is due to Mangasarian 
and Stone [27]. 

Remark 3.3: One major factor affecting the potential solvabil- 
ity  of ATIM is the exponential growth of the action space of the 
aggregated inspectee. Note that a typical action of such player I is 
an S-tuple u = (uI ,  * * , us); up E V(p). Hence, Ipossesses n& I 
1 V(p)l = ut such actions! However, this growth of uI with S 
exhibits what might be called a “natural” increase of the 
difficulty of the problem: a single inspector could not  be expected 
to be very effective against many inspectees. There are various 
approaches which might prove useful in alleviating this “curse of 
dimensionality”; however, these lead to open theoretical prob- 
lems, some of which deserve deeper investigation (see also 
Section V). 

One problem which arises whenever Nash equilibria are used as 
a solution concept is that of choosing between alternative 
equilibrium points, since they typically result in different payoffs. 
In an inspectodinspectee context it is not unreasonable to consider 
what we shall call the inspector’s  optimal  equilibria, namely, 
those equilibria which maximize his payoff function. More 
precisely, with each y = (f, g) E EPS we can associate P(y) = 
eP”(y, s) (recall that P(y) is independent of s by Corollary 3.2). 
Then  the inspector’s optimal  equilibria are the solutions of the 
maximization problem 

SUP P(y) 

subject  to: y E EPS. (3.10) 

The next result shows that optimal equilibria of undiscounted 
ATIM do exist. 

Theorem 3.4,: Let E? = {T E EPS(p($) = rnaxJ(7) over 
EPS}. Then EP is nonempty, and a member of EP can be 
computed by a finite method provided only that the data of the 
process are rational. 

Remark 3.5: The proof of the above theorem is outlined  in the 
Appendix. It  must be emphasized, however, that the finite method 
for finding the inspector’s optimal equilibrium, is again based on 
enumerating all vertices of polyhedral sets. 

Of course, Theorem 3.4 merely establishes an upper bound  in 
the inspector’s reward resulting from the use  of any-stationag 
equilibrium point. However, if we choose some $ = (f, g) E E? 
and consider the set E@) = {3 E FSl(f, 2) E EPS) [note that f 
E E@)], then we can only assert that +If@, 2, s) 5 P ( + ) .  Since  it 
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is natural to expect that the use of strategy 2 by the inspector will 
induce a truly noncooperative aggregated inspectee to plsy somef 
E E@)),  the fact that in general the strict inequality @Ir(fY 2, s) < 
P(f is possible shows that our optimal Nash equilibrium point 
may  not be “enforceable” by the inspector. 

We  are thus led to the following definition. An equilibrium 
point yo = cf“, go) E EPS is enforceable for the inspector if 
W1V, go, s) = D, a constant, for all f E E(g”), and s E S. 

Remark 3.6: It might be worth mentioning that the assumption 
that the game is noncooperative (i.e., that each player tries to 
maximize his own reward function independently) may  not hold  in 
many situations, for instance, if the possibility of a “corrupt” 
inspector is allowed. Nonetheless, it  is a rather natural assumption 
to make initially at least and, if accepted, it leads us to the (Nash) 
equilibrium point solutions with their inherent difficulties. Since 
in the ATIM  model above it is not unreasonable to assume that the 
inspector’s equilibrium strategy go (as above) would  be either 
known, or could be estimated by the aggregated inspectee, the set 
E(g0) constitutes his “rational” choices of stationary strategies. 
The fact that different members of this set can, in general, result 
in different payoffs to the inspector (who is using g o )  suggests the 
need for determining whether a given equilibrium point is 
“enforceable” in the sense defined above. 

Lemma 3.7: Let yo = (f”, go) E EPS, then there exists a 
finite method for checking whether yo is enforceable for the 
inspector, provided only that the data of the process are rational. 

Remark 3.8: One consequence of the above result (the proof  of 
which  is outlined in the Append@) is that if, in particular, an 
optimal equilibrium point T = (f, 2) is found to be enforceable 
for the inspector, then this provides strong argument for the 
inspector to actually adopt the strategy g because now he can 
guarantee himself the reward of  max P(y) over EPS, against “a 
rationally behaving” noncooperative aggregated inspectee. 

We now mention a result which shows that in an important 
special case all stationary equilibria are enforceable for the 
inspector, and with an identical payoff. 

Lemma 3.9: Assume that the reward functions of the inspector 
and the aggregated inspectee are such that for every g E GS 

= { f g l W ( f g ,  g, s) = min V(f, g, s) for all s E S ) .  
FS 

Then for any (f, g) E EPS, the corresponding payoff to the 
inspector is the constant 

ao = maxmin $ r l ( f ,  g, s), 
GS Fs 

for all s E S .  
Remark 3. IO: The above lemma is proved in the Appendix. It 

should be noted that the conditions of this lemma are satisfied in 
the case  where V ( f ,  g, s) = - @ I d f ,  g, s) - C(g ,  s); that is, 
when the inspector’s reward is the inspectee’s loss (e.g., fines) 
except for the term that depends only on the inspector’s strategy 
(e.g., travellinspection costs). 

Remark 3.11: For the T-stage payoffs defied by a) in Section 
II, TIM  can still be solved by aggregating the inspectees and 
solving ATIM, which is now a T-stage, two-person stochastic 
game. Thus, at each stage the two players play one of S possible 
bimatrix games. In particular, if at time t the state of the game is s, 
and the inspectees and the inspector choose actions: u = (uI  . * 
us)  and i = ( i l ,  i2), respectively, then their corresponding current 
rewards are rf(u, i, s) and rm(u, i ,  s), where rI(u, i ,  s) is some 
aggregation of rp(up, i ,  s)’s for p E S consistent with (3.2). The 
set of all such pars of rewards as u and i range over all possible 
actions of players I and 11 constitute the sth bimatrix game. Of 
course, the next bimatrix game to be played is determined by the 
first component of i. Since an equilibrium point of a bimatrix 
game can be found either by the method  of Lemke and Howson 
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[25], or by that of Mangasarian and Stone [27], an equilibrium 
point of ATIM can now be computed using the usual backward 
recursion of dynamic programming. Of course, the equilibrium 
strategies will now depend on the stage of the game as well as on 
the  current state; that is, they will  belong to the class of Markov 
strategies. The details of this method can be easily reconstructed 
by following the proof of Theorem 9.5 in [19]. 

727 

IV. ATIM AS A ZERO-SUM GAME 

When the aggregated traveling inspector model is considered 
from the point of view of the inspector, one method of analysis 
which ought not to be overlooked is the minimax approach. That 
is, for a h  potential outcome (u,  i, s) the inspector will now 
assume that his own loss (negative reward): /(u, i, s) = - Trr(u, i, 
s) rI(u, i, s), also represents the reward to the aggregated 
inspectees. This “zero-sum” assumption of directly opposing 
interests, while conservative, may be one that the inspector cannot 
afford not to make! In addition, it has the advantage of eliminating 
what is perhaps the greatest single obstacle in the modeling of 
such a process from the viewpoint of the “inspection agency”: 
the uncertainty as to what exactly the inspectee’s reward function 
is. The resulting game now becomes a two-person, zero-sum, 
single-controller stochastic game. Such a game with the undis- 
counted payoff criterion is now solvable in stationary strategies by 
efficient linear-programming algorithms (see, for instance, [38] 
and [22]).  In the context of ATIM these algorithms have been 
further simplified and implemented by Filar and Schultz [ 121. 
Practical numerical solution has been obtained in over 30 
examples with up to eight inspectees and three violation levels per 
inspectee (this corresponds to 3’ pure actions u available tQ the 
aggregated inspectee at every stage of the game). 

When the T-stage payoff criterion is used, the model is still 
easily solvable by backward recursion such as that commonly 
used in dynamic programming. A technique almost identical with 
that of Chames and Schroeder [5 ,  p. 3091 will  yield the value 
vector and optimal strategies for both players. Of course, at each 
iteration of this method a set of S matrix games has to be solved. 
As in the T-stage noncooperative case, the solution strategies will 
typically be Markov. 

We shall now illustrate the traveling inspector model by a 
simple numerical example taken from Filar and Schultz [12] 
which  we call the “gun smuggling problem.“ 

We consider the situation where the inspector’s task is the 
preventiodcapture of contraband, say guns, from entering the 
region to which he is assigned. We assume that shipments of guns 
can enter the region at only S sites (e.g., bridges, roads, ports, 
etc.). Of course, the inspector can be present at only one site at 
any given time. One stage will be a 24 h period beginning at 
midnight. We suppose that the inspectee knows at which site the 
inspector begins the stage. The inspectee then sends up to S 
shipments of guns (at  most one for each site) which were stored at 
some central cache and which  will amve at their assigned site 
(entry point) at a random time (due to local conditions) which is 
uniformly distributed between noon and the following midnight. 

If the inspector is present at a site when a shipment of k guns 
amves, they will be seized and  his gain will  be 2k. This reflects 
the notion that such a capture not only deprives “the enemy” of k 
guns but also delivers k guns to the inspector’s side. A failure to 
capture this shipment will amount to a loss of k to the inspector. 
The inspector’s travel costs from site s to site s’ are given as 
fractions of the interval from noon to midnight during which all 
sites are left unguarded, and will  be denoted by y(s, s’); s, s” E 

!he VAX 1 1  1780 to  yield optimal  strategies for both  the  inspector  and  the 
Problems  with  eight  inspectees took approximately 9 min of CPU time on 

Ins ctees. 
P“,ctually  any  distribution,  even  one  which  depends  on  the  size of the 

shipment  and  its  destined site  could be easily  incorporated  in  this  model. 
Similarly,  the  length of a stage is flexible. 

{ 1, - - , S ) .  Let g(up) denote the number of guns in a shipment 
destined to enter at site p which corresponds to a violation at level 
up being  committed at that site. The inspector’s  typical  decision (see 
Section Il) is  now i = (il, i2) = (s‘ , l), since we are assuming 
only a single level of inspection (i.e., interception of the 
shipment). Now, with each site p we can associate a (ficticious) 
inspectee whose reward function on a given day is defined by 

~ ~ ( u ~ ,  i ,  s) 

=rp(vp ,  (s‘, 11, s) 

= p u P )  if p f s ’  
Y@, p ) g ( v p )  - 2(1- y(s, p))g(up) if P = s‘ . 

The above reward represents the net expected gain to the 
“inspectee’s side” (measured in number of guns) associated with 
site p for that day. Hence, if on a particular day a vector of 
shipments u = ( u l ,  * * - , us) was dispatched to enter at sites 1, 2, 
. a ,  S ,  respectively, and if the inspector decided to travel to site 

s’ (assuming that he was at s last), then the inspector’s loss for 
that day will be defined by 

S 

/(v, (s‘, 11, s) = Tp@p, (sf, 11, s) (4.1) 
p =  1 

that is, the net expected loss (in guns) by the “inspector’s side” 
for that day. 

Next, we summarize the optimal solution to a 3-state example 
of this problem. The data are as given in Tables I and II. 

Table I indicates that  only one type of shipment (of 200 guns) 
can enter through site 1 each day, while two different types of 
shipments can enter through sites 2 and 3 (up = 0 corresponds to 
no shipment dispatched to site p ) .  The value y(1, 3) = 0.6 in 
Table II indicates that the inspector uses 60 percent of the 
available inspection time traveling from site 1 to site 3. The 
underlying, zero-sum, single-controller stochastic game now 
consists of three 18 x 3 payoff matrices L p ;  p E { 1,2 ,3}  whose 
entries are given by (4.1). 

This example was solvM using an algorithm described in [ 121. 
The minimax optimal stationary strategies are given in Figs. 1 and 
2. 

The optimal strategy given in Fig. 1 for the inspectee should be 
interpreted as follows. If the inspector was observed at, say, site 3 
at the end of the last stage, then the inspectee should choose 
composite actions (1, 0, 2), (1, 1, 0), and (1, 1, 1) with 
probabilities 0.214,  0.729, and 0.057, respectively. Of course, 
the action (1, 0, 2) means that shipments of 200 and 250 guns will 
be directed to enter through sites 1 and 3, respectively, and no 
shipment is sent to site 2 (see Table I). Similarly, the optimal 
stationary strategy for the inspector should be interpreted as 
follows. Whenever he just completed an inspection at, say, site 2, 
he should then go  to one of the sites 1, 2,  or 3 with probabilities 
0.190,0.333, and 0.476, respectively. The value of the game e = 
148.57 and it represents the long-run average net  gain of guns per 
day by the inspectee’s side when the optimal strategies are used. 
This can be contrasted with the net gain of (200 + 150 + 250) = 
600 which the inspectee could achieve if there were no inspector. 

V. POSSIBLE EXTENSIONS AND SOME OPEN PROBLEMS 

The traveling inspector model presented in the preceding 
sections easily lends itself to many modifications and generaliza- 
tions. Some of these can be handled by already existing techniques 
while for  others no adequate treatment appears to be known. 

The problem of  what to do when equilibriudoptimal strategies 
for the inspector dictate that certain plants should never be visited 
can perhaps be modeled with the help of additional constraints. In 
the infinite horizon model, for instance, these constraints could 
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TABLE I 
VIOLATION COSTS 

TABLE II 
TRAVEL COSTS 

)(S,S’) s ‘ = 1  s ’ = 2  s’=3 

s=2 

s=3 .6 .3 

ilodel: Gun  Smuggling : ?oliay:  Average  Optimal for violator 

LEVELS AT SITES PROBABILIiY 
AT  SITE 1 2 3  OF USE 

0.143 
0.232 
0.575 I 2 2  

5 I 1 2 0  
1 0 0  I 0.052 

0.233 

2 I 1 2 2  I 0.714 

I ; : ;  
1 0 2  

3 

0.214 
0.729 
0.057 

Fig. 1 .  Optimal stationary strategy for the i n s p e c t e e .  

Model: Gun Smuggling  I  Policy:  Average  Optima? for inspector. 

INSPECTOR I lELi I IRSPECTION I PROBABILITY 

3 
3 1 I / I 0.476 

0.190 

3  0.333 

Fig. 2 .  Optimal stationary strategy for the inspector. 

take the form of lower bounds on linear functions of the “long-run 
average state-action frequencies. ” Under relatively mild assump- 
tions it has been shown by Hordijk and Kallenberg [22] that the so 
constrained zero-sum undiscounted stochastic game has a value (if 
the problem is feasible, of course) and both the inspector and the 
inspectee possess optimal strategies. Further, an algorithm for 
computing these strategies is also given in [ 2 2 ] .  For the 
noncooperative constrained game no such algorithm is  yet 
available. If the losses at subsequent periods are discounted by 
some discount factor /3 E [0, l ) ,  then all of the stochastic game 
formulations of Section III remain solvable by algorithms that are 
even simpler than those for the average-reward models. If the 
duration of the period between successive inspections is  not a 
constant but a random variable, the distribution of which can 
depend on the last site visited and on the inspector’s last decision, 
the zero-sum stochastic game formulations can  be replaced by the 
corresponding zero-sum semi-Markov game formulations, which 
under some assumptions are solvable by algorithms similar to 
those mentioned previously (see [23, ch. 71). 
In Section III we briefly mentioned algorithms, based on the 

results of [IO] and [ 111, for findirig the equilibria of two-person, 
singlecontroller, stochastic games. The development of truly 
efficient implementations of these (or similar) methods is a 
problem whose solution would permit numerical experimentation 

with larger scale examples of the traveling inspector model. While 
in the problem of generating all “extreme” equilibria we are 
unlikely to avoid the need to generate all vertices of certain 
polyhedral sets, the conventional wisdom that algorithms involv- 
ing an enumeration of such vertices are bad  may  not apply in our 
case if full advantage is taken of the special structure of the 
problem. The latter statement is  based on encouraging numerical 
results reported by Mangasarian [26] in the special (simpler) case 
of bimatrix games. 

Finally, it is tempting to impose the “leader-follower” struc- 
ture on the aggregated traveling inspector model, with the 
inspector as the leader since his decisions are presumably far more 
detectable by his opponent than vice versa (otherwise the 
inspecting would be unnecessary). The “Stackelberg equilib- 
rium” solutions of such games could then be investigated. While a 
detailed analysis of such “Stackelberg TIM” models is a subject 
for future research, it follows that under the conditions of Lemma 
3.9 (proved in the Appendix) the inspector’s gain resulting from 
any stationary equilibrium point coincides with his Stackelberg 
equilibrium reward. More precisely, following the conventions of 
Basar @I Olsder 131 (see ch. 4) we see that for each g E GS 
player I’s optimal response set is precisely the set X(g) of 
Lemma 3:9. Then the inspector’s Stackelberg reward is, for each 
s E S ,  given by 

where the last equality follows from Lemma 3.9. 

APPENDIX 

In this section we shall sketch the proofs of those results of 
Section III which were not justified there. The first of these 
depends heavily on the results derived in [ 101. 

OUTLINE OF THE PROOF OF THEOREM 3.4 

Let 2 C FS be as in (3.9) (it is defined precisely in [lo, Section 
III]). By [ 10, Theorem 3. I], the elements of 2 can be enumerated 
by generating all vertices of a certain polyhedron. However, some 
members of 2 can be “dummies” in the sense that if x i  = { f } 
then E k ’ )  = 4: that is,f is not part of  any equilibrium strategy. 
These dummy members of 2 can be easily identified using 
techniques developed in [lo]. 

Suppose now that x* = {fly e ,  f”) is the set of 
“nondummy” members of X and define 

@‘=max+“(f, g, s) (6.1) 

for every i = 1, * - * m and every initial state s. Note that the 
above definition is meaningful since with f E FS fixed in (6.  I), 
the above maximization problem is equivalent to solving an 
undiscounted Markovian decision process with respect to g E G .  
It  is well known (for instance, see [23]) that this maximum  is 
achieved at a nonrandomized stationary strategy which can be 
computed by linear programming. In addition. an argument 
similar to that in Corollary 3.2 will show that the maximum in 
(6.1) is independent of the initial state s. Now define 

8 

fi*= max 0’. 
irirrn 

It is  now possible to show  with the help of [lo, Lemma 2.1 and 
Proposition 4.11 that 

P* =max (P(r)lr E EPSJ 

and in the process the maximizing stationary equilibrium point  is 
constructed by a finite algorithm. 0 

Proof of Lemma 3.7: Recall that with yo = (f”, g o )  E 
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EPS we associated the set of stationary policies E ( g o )  = { j  E 
FSl(f, go)  E EPS} for the aggregated inspectee. By an argument 
such as that  in [lo, Section 111] it can be seen that E(go)  is  a 
compact convex set. Further, by [ 10, Theorem 3.11 if f is an 
extreme point of E(go) ,  then f E 2. Thus, to check the 
enforceability of (f”, g o )  by the inspector, it is sufficient to check 
whether WI(f,  g o ,  s) is constant for those members of 2 which 
are also in E(g’) .  The latter statement follows from the fact that 
due to the single controller assumption for every s E S 

W ( j - 0 ,  g o ,  s)= x X‘*“cf, g, s) 
i 

where the summation is over the extreme points of E(go) ,  and 
Xi’s are nonnegative numbers summing to 1. 0 

Proof of Lemma 3.9: Let  y* = df”, g*) E EPS and P(y*) 
= @“(f*, g* ,  s) (independent of s by Corollary 3.2). Also 
consider a two-person, zero-sum, single-controller stochastic 
game with @“(f, g ,  s) as the payoff kernel and player ZZ as the 
maximizer. It follows from the results in [30],  [22], or [38] that 
such a game possesses an optimal stationary strategy pair yo = 
cf“, g o )  E FS X GS computable by linear programming. By an 
argument similar to that in Corollary 3.2 it can be shown that the 
value of this game is independent of the initial state, that is, 

@“(f”, go, s) =ao= maxmin @”(f”, go, s). (6.3) 

It now follows from the facts that y* E EPS and yo is an 
optimal pair in the “@‘I(y, s), @sum game” that for every s E S 

B(y*)=@’I(f*, g*,  s ) z * q p ,  g o ,  s)2aJdfD, g o ,  s)=aO.  

GS FS 

(6.4) 

In order to prove the opposite inequality note that f* E X(g*), 
and hence by the hypothesis and (6.3), we have 

a02min@”Cf, g*, s)=@”cf*, g*, s)=p(y*) (6.5) 

for every s E S. In view  of (6.4) and (6.5) B(y*) = ( y o ,  and the 
Lemma holds. 0 
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