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1. Introduction 

Finite state and action Markov Decision Processes (MDPs, for 
short) are dynamic, stochastic, systems controlled by a con- 
troller, sometimes referred to as “decision-maker” . These models 
have been extensively studied since the 1950’s by applied proba- 
bilists, operations researchers, and engineers. Engineers typically 
refer to these models as “Markov control problems”, and in this 
paper we shall use these labels interchangibly. The early MDP 
modela were studied by Howard [13] and Blackwell [5] and, fol- 
lowing the latter, are sometimes referred to as “Discrete Dynamic 
Programming”. 
During the 1960’s and 1970’s the theory of classical MDP’s evolved 
to the extent that there is now a complete existence theory, and 
a number of good algorithms for computing optimal policies, 
with respect to criteria such as maximization of limiting aver- 
age expected output, or the discounted expected output. These 
models were applied in a variety of contexts, ranging from water- 
resource models, through communication networks, to inventory 
and maintenance models. 
One class of problems that began to be addressed in recent years 
focussed around the following question: 

0 How is the analysis of an MDP model affected by pertur- 
bations (typically small) of the problem data? 

From the practical point of view the above question is of obvi- 
ous importance; however, it leads to challenging mathematical 
problem arising from the following natural phenomenon: 

0 If the perturbation of a Markov Chain alters the er- 
godic s t ructure  of that chain, then the stationary dis- 
tribution of the perturbed process has a discontinuity at 
the  zero value of the  disturbance parameter. This 
phenomenon was illustrated by Schweitzer [20] with the 
following example: 

Let 

pc = ( l - € I 2  €/2 1 - €/2 1 
be the perturbed Markov Chain whose stationary distribu- 
tion matrix is 

112 112 
p: = ( 1/2 1 / 2 )  

for all e E (0,2]. Thus we have 
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where Pi is the stationary distribution matrix of the un- 
perturbed Markov chain PO. 

The above difficulty has led researchers to differentiate between 
the case that avoids the above mentioned discontinuity, and the 
cases that permit it. Somewhat imprecisely, perhaps, the former 
is often referred to as a regular perturbation, and the latter as 
a singular perturbation. Of course, it is possible to study the 
properties of perturbed MDPs without performing the asymp- 
totic analysis (as the perturbation tends to zero), and in such a 
case the distinction between the regular and singular perturb& 
tions is not essential (see, for instance, Van Dijk and Puterman 
[12], and Van Dijk [ l l ] ) .  
In Abbad, Bielecki and Filar [I] we considered a singularly per- 
turbed Markov Decision Process with the limiting average reward 
criterion. The singular perturbation arises from the assump- 
tion that the underlying process is composed of n separate irre- 
ducible processes, and that the small eperturbation is such that 
it “unites” these processes into a single irreducible process: that 
is a singular perturbation of order 1. This structure corresponds 
to the Markov chains admitting “strong and weak interactions” 
that arises in applications such as management of hydrodama, 
and control of queueing network models of computer systems. 
Intuitively, the n irreducible processes correspond to nearly in- 
dependent components of a larger system, that are united only 
by an infrequent “interference” from some central controller. Re- 
cent studies that address problems with this structure include the 
contributions of Delebecque and Quadrat (81, Phillips and Koko- 
tovic [MI, Coderch et al. [6], Kokotovic 1161, Schweitzer 1211, 
Rohlicek and Willsky (191, and Aldhaheri and Khalil 131. 

In this paper we consider a singular perturbation of order 2 for 
a Markov decision process with the limiting average reward cri- 
ter ion. 
We define a singular perturbation of order 2 in the following 
sense: we assume that the underlying process is composed of n 
separate irreducible processes, and that a small eperturbation is 
such that it ”unites” these processes into m separate irreducible 
processes. Then another small €’-perturbation is such that it 
“unites” these latter processes into a single irreducible process. 
The present paper is organized as follows: 
In Section 2, we formulate the singular perturbation of order 2. 
In Section 3, we give explicitely the limit Markov Control 
Problem (limit MCP), that is entirely different from the original 
unperturbed MDP, which forms an appropriate asymptotic ap- 
proximation to a whole family of per turbed  problems. Thus 
only the single limit MCP needs to be solved. 
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In Section 4, we construct an aggregation-disaggregation al- 
gori thm for solving the limit MCP, which is the main contribu- 
tion of this paper. 

2. Definitions and Preliminaries 

In this Section we shall formulate precisely the notion of a singu- 
lar perturbation of order 2. We consider a Markov decision 
process I? defined by: 
r = ( S, {A(s )  : s E S } ,  {r(s,a) : (s ,a)  E S x A ( s ) } ,  {p(s' 1 
s,a) : 8,s' E S ;  a E A ( s ) }  ). 

Since from Abbad and Filar [2] the limit Markov control prob- 
lem has an optimal deterministic strategy, in this paper we shall 
concern ourselves only with the class II := C(S) of all stationary 
strategies. 

We shall assume that: 
(Al)  S = U;==,S; where S; n Sj = 0 if i # j ,  n > 1, cardsi = 
nl+ ...+ n , = N ,  
and 
(A2) p(s' 1 s ,a)  = 0 whenever 8 E S; and 8' E S,, i # j. 

Consequently we can think of r as being the "union" of n smaller 
MDP's ri, defined on the state space Si, for each i = 1 , 2 , .  . . ,n ,  
respectively. 
Note that if II; is the class of stationary strategies in ri, then 
a strategy n E II in I' can be written in the natural way as 
A = (~1,n2, . . . ,T,,), where ni E II,.  
The probability transition matrix in vorresponding to ni is, of 
course, defined by: E ( n i )  := ( p , , ~ ( n ; ) ) ~ , ~ , ~ ~ ~ ,  and the generator 
G;(ri) and the Cesaro-limit P:(ri) matrices can be defined in a 
manner analogous to that in the original process r. 
In addition, we assume that: 
(A3) For every i = 1,2,. . . , n and for all A, E II; the transition 
matrix Pi(.;) is irreducible, and 
(A4) {1,2 ,..., n} = ur!,Ik where Ik n Il = 0 if k # 1,  card 

In view of (A3), the Cesaro-limit matrix P:(ni) is a matrix with 
identical rows. We shall denote any row of P:(r;) by pf(r;). 
We define: 

Ik = mi. 

Sk := UiE1,.S; , k = 1,2 , .  . . , m. 

We shall now consider the situation where the transition proba- 
bilities of I" are perturbed slightly by a perturbation of order 2. 
Towards this goal we shall define the first disturbance law as 
the set: 

D1 = {dl(s' I s,a) I (s,a,s') E S x A ( s )  x S} 

where the elements of D1 satisfy: 
(i) CE,ESdl(s' 1 s,a) = 0 for all (s ,a)  E S x A ( s ) ,  
(ii) -; 5 dl(s  I s,a) 5 0 for all (s,a) E S x A ( s ) ,  
(iii) dl(s' I s,a) 2 0 whenever s # s', 
(iv) dl(s' I s,a) = 0 whenever s' E S k ,  s E S', and k # 1. 

We can think of II as JI = II' x 112 x .. . x IIm where ITk ,  k = 
1,2 , .  . . , m is the set of stationary strategies of the MDP defined 
by the restriction of the MDP I? to the state space S k .  
Now, with every T' E II' we can associate a per turbat ion gen- 
erator matrix Dl,k(?r') = (d:,t(nk))a,a,ESk, where d:,,(nk) := 

&+)dl(s' I s ,a)rk(s ,a);  and a transition matrix Pk(r') := 

( P : ) ( r k ) ) E , s , E S k >  where dd(A') := CaEA(s)  P ( S ' I S , a ) r k ( S , a ) '  

We shall also require that there exists eo > 0 such that: 
(A5) For any e E [0, eo) and k = 1,2 , .  . . , m; the quantities 

Pb,t(S' I s,a) := p(8' I s,a) + Edl(s' I s,a), s E S k ,  a E A(s)  

define a transition law in the MDP restricted to the state space 
S', and 
(A6) for every A' E II', k = 1,2 , .  . . ,m,  the transition matrix: 

Pk,€(Tk) := Pk(Xk) f €Dl,k(nk) (2.1) 

is irreducible for any E E (0, eo).  
Assumption (A6) is called the first singular per turbat ion as- 
sumption. 
The second disturbance law is defined by the set: 

Dz = {dz(S' 1 s,a) 1 (s,a,s') E S x A ( s )  x S }  

where the elements of Dz satisfy: 
(i) CatES dz(8' I s,  a)  = 0 for all ( 8 ,  a) E S x A ( s ) ,  
(ii) - f  5 dz(s I s,a) 5 0 for all (s ,a)  E S x A ( s ) ,  
(iii) dz(s' 1 s,a) 2 0 whenever s # s'. 

We shall assume that for any e E (0, e,,): 
(A7) the quantities 

S, a E A(s)  

(AS) for every r E II, the transition matrix 

pt(s' I s,a) :=p(s' 1 s,a)+cdl(s' I s,a)+eZdz(s' I s ,a) ,  8,s' E 

define a transition law, and 

is an irreducible matrix. 

Remark 2.1 Note that as a result of (A81 the rank of P:(r) is 
1, which is strictly less than n, the rank of P * ( r ) .  Consequently 
our perturbation is indeed a singular perturbation in the sense 
of Delebecque [7]. If m = 1, we find the case of the singularly 
problem studied in Abbad, Bielecki and Filar [l]. 

Remark 2.2 Note that for all r = (r lr . .  . , n,) E II we have the 
following representation of P'(n): 

P * ( r )  = ElMi(n)  

where El is an N x n matriz with entries: 

, I ,  = { 1 if nk < s I nt 

f o r s = 1 , 2  ,..., N a n d j = 1 , 2  ,..., n , a n d M l ( n )  i s a n n x N  
matriz with entries: 

" 0 otherwise 

mi,(n) = { bPf(nj)]a if nk < 8 I n k  
otherwise 

for j = 1 , 2 , .  . . ,n and s = 1,2 , .  . . , N .  Of course we set E",=, n k  

:= 0. Note also that from the above definitions we conclude that: 

Ml(n)E1 = In,,. (2.2) 

3. The Reduction Process 

For each r E II, let us define the n x n matrices & ( A )  and &(n) 
by: 

466 
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The matrix H ( r )  is called the deviation matr ix  associated to 
the stationary strategy A. 

Now, we define: 

BJr)  := &(r) + EBZ(A) (3.4) 

Remark 3.1 Note that the above procedure of construction of 
the matrices (3.1), (3.2) and (9.4) is the "reduction process" 
considered in Delebecque [7]. The matriz Bz(x) follows from the 
reduction process because Ml(r)P'(n)  = M l ( r )  and P*(a)E1 = 
El. In general &(r) is a series, but b y  assumption (AS) the 
reduction process stops at step 2, and hence the terms of order 
c',cs,. . . are not important. 

Remark 3.2 It can be verified b y  inspection using the assump- 
tions made on the diaturbance law Dl(n) and (2.2) that &(r) 
defines a generator of a Markov chain. Also, from Theorem 1 in 
Delebecque [7], it follows that the matrices &(n) and C(n) are 
generators of Markov chains. 

Let Po(.) be the Cesaro limit corresponding to the generator 
&(T) ,  and define from P*(r)  the matrices Mz(a) and Ez in the 
same way aa M l ( r )  and E1 were defined from P*(n). 

Consider the m x m matrix defined by: 

C ( r )  := Mz(r)Bz(n)Ez. (3.5) 

Then let c'(r) be the Cesaro-limit corresponding to the gener- 
ator C(r) .  

Now, we define the following N x N matrix by: 

P y r )  := E1E2C'(s)Mz(n)M1(n). (3.6) 

From Delebecque [7], we derived the following result: 

Theorem 3.1 For any itationary strategy r E II, 

limP:(n) = P*(A). 
€*O 

Recall from [l]  that the optimization problem (L) defined by: 

ia the the  limit Markov Control Problem. 

Example 3.1 Let S = {1,2,3,4}, A ( l )  = A(2) = { l } ,  
A(3) = A(4) = {1,2}. The rewards and transition 
probabilities can be represented in the following format: 

s = l  s = 2  
(0) + (l ,O,O,O) (0) + (Oll,O,O) 

The notation (r(s,a)) + (p( l )s ,a) ,  . . . ,p(4ls,a)) gives the re- 
ward and the transition probabilities resulting from the choice of 
an action a E A(s)  in state 8 E S. 
For instance, the choice of an action 2 in state 3 results in 
an immediate reward of r(3,2) = 0 and transition probabilities 
p(113,2) = 0, p(213,2) = 0, p(3(3,2) = f, p(413,2) = f. 
Let the disturbance laws DI and Dz be defined by: 

[ - 1  1 0 0 1  

1 0  0 0 0 1  

r - 1  o 1 0 1  

[dl(s'Is, 2)]f?$4 = 

According to the previous notations, we have that: 
SI = { I } ,  S2 = {2} ,  Ss = {3,4}, n = 3, 11 = {1,2}, I2 = {3,4}, 
m = 2. 

Let r denote the deterministic policy defined by: r (1)  = 1, 
4 2 )  = 1, r (3)  = 1, 4 4 )  = 2. We have: 

- 1 1 0 0  

a(.) = ;[ H -l O O 1 0 0 0 ' and 
0 1 -1 

[ - 1  0 1 0 1  

1 1  0 0 -11 

From Remark 2.2, we get: 

1 0 0  1 0 0 0  

From the expression (U), we get: 

y o 0  0 0 1  

By using (9.1) and (3.2), we get: 
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-1 1 0 
-1 0 1 ,  and & ( A )  = - 
0 0  

Bl(A) = [ 
The Cesaro limit matriz P'(A)  corresponding to the generator 
&(A) is given by: 

1 1  

P * ( A )  = [ ; ; ,"I 
0 0 1  

Hence from Po(.), we derive Mz(a) and Ez: 

M z ( R )  = [ i 1 ,  and Ez = [ i ! ] .  
By using the ezpression (9.5), we get: 

1 1  e(,) = [ 1' 1 .  
3 s  

The Cesaro limit matriz C'(A)  corresponding to the generator 
C(A)  is given by: 

C*(A) = [ 1 .  
Finally, by using the ezpression (9.6), we get: 

4. Solving The Limit Markov Control Problem 

In this Section we shall construct an "aggregation- 
disaggregation" algorithm for solving the limit MCP (L). 
Now, we shall present the "classical" policy improvement algo- 
rithm for computing an average optimal deterministic strategy 
in the case of an irreducible MDP r (e.g. Derman [lo], Denardo 
191, Howard [13], Kallenberg [14]). 

Step 1: 

Step 2: 

Step 3: 

Select an arbitrary deterministic strategy a in the MDP l'. 

Solve, for the unknowns A, yl, yz,. . . , YN-1, the linear sys- 
tem: 

x+ya = r(s,n(s)> + ep(s'\s,7i(s))y8e; s =  I , . . . , N  
d=l 

yN = 0. 

For each s = 1,. . . , N compute the improved action ~ ' ( s )  
that satisfies: 

N 

r ( ~ , ~ ' ( s ) )  + P ( Q ' I ~ , R ' ( s ) ) Y ~ '  
d=l 
N 

> r(s,+)) + P(s'ls,A(s))Yd. (4.1) 
d=l 

If this is not possible for some s E (1 , .  . . , N}, then set 
A ' ( S )  = 7r(s). 

If A' = A,  STOP. 

Otherwise, A + A' and go to Step 2. 

Remark 4.1 Note that for any state s E S, the inequality (4.1) 
will be unchanged if we replace the vector (yl,. . . , y ~ )  by any 
transformed vector obtained by adding a same constant to all 
components ya, s = 1 , .  . . , N .  Thus, different transformed vec- 
tors can be used for different states. 
The above observation will be of central importance for the con- 
struction of the aggregation-disaggregation algorithm. 

Our objective in what follows is to construct a new MDP f which 
satisfies the conditions of the MDP studied in [I]. 

We define the new MDP f as follows: 

The State Space of r : s := {1,2, .  . . , n} 
The Action Spaces of f  : A(J)  := XaEskA(8) for each B E 
4, k =  1, ..., m 

The Transition Law of f : 
k =  1, ..., m 

for all (a, B, s') E Ik x A ( s )  x Ik, 

For every J E II: and d E Ik,, 

q ( d l ~ , a )  := 0 whenever k # k'. (4-3) 
The Rewards of r: For all 3 E and H E A(B), 

F(J,Z) := [p;(H)]J(s,aa). (4.4) 
,€Si 

Where H = {a, I s E Sk} in the case where H E A(J) and J E I&. 

Note that for any 9 E Ik, each action B E A(J)  defines a deter- 
ministic strategy which maps s E Sk onto a,. Thus in (4.2) and 
(4.4), p:(H) is well defined. 
The validity of the Transition Law, namely: 

~ ~ , = l q ( ~ l J , i % )  = 1, B E s, 3 E A(J) and q ( S ' I B , I )  2 

can be checked by inspection using the assumptions made on the 
disturbance law D1. 
For every d E Ik', B E Ik , and k # k'; we define: 

0; 8, S E  s; 1 E A(a) 

d(dla,fi) := [pJ(I)],d*(s' I s,aL,). (4.5) 
s'ES,t sES. 

For every B', B E Iki we define: 

d(d18,") := [p;(a)],dz(s' I $,aa)+ 
r'ES,i sES8 

[pa(a)]adl(sl Is~'%)d1(8' I sZ,aaa)h8iai(a), 
a'ES,, asS. i E 4  a l , a a E S i  

where hals,(a) := (H(a)),l,a. 

Now we define the disturbance law D for the MDP f by the set: 

D := {d(d'la,a) I d,s  E s; I E A ( s ) } .  

Consequently we can think of f as being the "union" of m MDP's 
r k r  defined by the restriction of the MDP f to the state space 
Ik; k = 1 ,2  ,..., m. 
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Remark 4.2 It can be seen w i l y  that the constructed MDP f 
satisfies all the conditions of the MDP studied in 1-11. Hence we 
can apply all the results in [l] to the new MDP f .  

Let denote the claas of all stationary strategies in the MDP f .  

For every ii E ft, we denote by Q'(ii) the Cesaro-limit matrix 
of the transition matrix Q ( R )  which'results from the use of the 
strategy R in the MDP f'. 

ProPosition 4.1 Let ii* be an optimal deterministic strategy for 
the Problem ( E ) ,  then its corresponding deterministic strategy A' 

is optimal for the problem (L) .  

proof: Let ii and be any deterministic strategy in the MDP f' 
and its corresponding strategy in the MDP I' respectively. f iom 
the definition (4.2) of the transition law Q, it can be verified by 
inspection that 

Q(%) = 1, + Mi(r )Di ( r )E i  (4.9) 

where E is an n x m matrix with entries: B(R) = Mi(n){ Dz(r)  + Di(r )H(r )Di ( r ) }EI  (4.10) 

From (4.9) and (4.10), it follows that: 1 if E:=;' mt < I C:=1 mi 
0 otherwise erk  = { 

P * ( r )  = 8 * ( F ) ,  Mz(r )  = M(i i ) ,  and C ( r )  = B(R).  

From the definition (4.4) of the rewards f, it follows that f(5) = 

Now for m y  B E s and s E S,, we have that: 

for 8 = 1,2,. . . , n  and k = 1,2,. . . ,m, and M(*)  is an m X n 
matrix with entries: 

mkl (A)  = { pp)]. if E:=;' mi < I C:=i mi 
MI (+ (r)  . 

otherwise 
& *  

for k = 1,2,. . . , m and B = 1,2,. . . , n. Of coursewe set Cy=, ml := IQ (')'(')11 = [ E ~ * ( i i ) ~ ( ~ ) ~ ( ~ ) ] a  
0. Note also that from the above definitions we conclude that: 

M ( R ) E  = 1". 

= [QzC*(r)M~(r)M1(r)r(r)ll 
= IQiQ~C*(n)Mz(n)~l(r)r(r)], = [B*(n)r(n)l,. 

Finally, since from [I] or [2] both problems (L) and (E) possess 

Remark 4.3 The importance of the previous Proposition stems 
from the fact that it converts the problem (L)  which is the limit 
Markov control problem for a perturbation of order 8 into the 

(4'6) problem ( E )  which is the limit Markov control problem for a per- 
turbation of order 1 (€-additive). 
However, the dificulties of the problem ( E )  reside in the fact that 
its action spaces A(B), B E s are large, and its transition law Q 
and disturbance law D involve Cesaro-limit and deviation matri- 

The perturbed transition probabilities for the MDP f are defined optimal deterministic strategies then the Proposition results. 

by: 
For every (8 ,8 ,# )  E s X A ( g )  X s, 

QJS' 13,s) := q(d I B,H) + €@ I %&). 

For each A E ft, let us define the m X m matrix B(*) by: 

B(ii) := M(ii)D(*)E, 

ces. 
But in what follows we shall show how we can avoid those d i 5 -  - 

Now let Q * ( F )  denote the Cesaro-limit matrix corresponding to 
the generator B(ii), for each ii E R. 
For each t E fi, we define the n x n matrix: 

culties- 

Now, we shall apply the aggregation-disaggregation algorithm 
developped in [l] to the problem (E). 

Step 1: Select an arbitrary deterministic strategy r in f ,  and set: 
Q*(ii) := EG*(ii)M(ii) .  (4.7) 

Now from Abbad, Bielecki and Filar [l], it follows that for any 
t E n, 

where, g:(R) is the Cesaro limit matrix of the transition matrix Step 2: For 
Q,(fl) resulting from the use of the strategy 5 in the perturbed 

k, kt l,. * - 9 m; compute 

MCP. 
Hence the limit Markov control problem for the perturbed MDP Qkk' (r(k)) := { 
r is the optimization problem ( E )  defined by: 

1 + ~lf'E~kCgEI*[q;(X(k))Ird(d I v(4) k = k' 
Cn'EIkf x,eIk[qi(r(k))18d(' I B ' r ( B ) )  # k' 

and 

c(k ,n(k) )  := [qi(r(k))],r(a,x(3)), (4.11) 

where, (n(k)) is the stationary distribution vector cor- 
responding to the k-th block of the transition matrix a(,). 

Let f l  be a deterministic strategy in f ,  the corresponding deter- 
ministic strategy n in r is defined by: 

n(8) := [Fp)].; E Sg; B E 4; and k = 1,. . . , m. 
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Step 3: 

Step 4: 

Step 5: 

Solve, for the unknowns X,yl, y2,. . . ,Y,,,-~, the linear sys- 
tem: k = l ,  ..., m 

m 

+ Y k  = c(k ,a(k) )  + qkk'(r(k))!/k' (4-12) 
k'=l 

Ym = 0 

For each k = 1,. . . , m compute the deterministic strategy 
r ' (k )  obtained after one iteration of the policy improvement 
algorithm (the starting strategy is x ( k ) )  for the MDP r k  

with reward Ek defined by: for any B E Ik and a E j ( B ) ,  

m 

E k ( 8 , H )  := i ( s , & )  + d($ IB,a)Yk'. (4.13) 
k'=l f l € I k t  

I f  r ' (k )  = s ( k )  for all k = 1,. . . , m 
Otherwise r ( k )  t s ' (k ) ;  k = 1,2,. . . ,m and go to Step 2. 

STOP. 

Note that Step 4 says the following: let k = 1,2,. . . ,m  be fixed; 

Step 4.1: The starting strategy is s ( k ) .  

Step 4.2: Solve the following linear system for the unknowns E ;  z j ,  B E 

[+zi = Ek(s,s(k)(B)) + q ( b l s , s ( k ) ( s ) ) z p  (4.14) 

Ik 

8'EIk 

where zio := 0 for some BO E I k .  

* Step 4.3: For each 21 E I k ,  find an action Li E A ( B )  that satisfies: 

Set d ( k ) ( a )  := H if H exits. 
If g does not exit for some S E Ik, set r ' (k)(g)  := s (k) (S) .  

Step 4.4: If d ( k )  = n(k) ,  STOP. 

Otherwise a ( k )  + d ( k )  and go to Step 4.2. 

Note that Step 4.3 seems to be complicated since A(s) is large 
for each 3 E 4.  However, in what follows we shall prove that for 
each 21 E Ik the problem of finding an action Li E A ( S )  in Step 
4.3 can be converted to one iteration of the policy improvement 
algorithm for an MDP defined by r, except for the rewards which 
will be defined appropriately. 
Now, it follows that if y k  = 0 then in Step 4.3 the problem of 
finding an action a E A(21) for each 21 E Ik can be done by using 
one iteration of the policy improvement algorithm to the MDP 
I', in which the rewards are defined by: 
For any s E 4 and a E A(s) ,  ri(s,a) := r(s,a) + C 8 t E l k  EstES,, 
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