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Abstract

Itemsets, which are treated as intermediate results
in association mining, have attracted significant re-
search due to the inherent complexity of their gen-
eration. However, there is currently little literature
focusing upon the interactions between itemsets, the
nature of which may potentially contain valuable in-
formation. This paper presents a novel tree-based
approach to discovering itemset interactions, a task
which cannot be undertaken by current association
mining techniques.

Keywords: Itemset interaction, relative support, FP-
tree.

1 Introduction

Since the seminal work of Agrawal, Srikant et al.
(Agrawal et al. 1993, Agrawal & Srikant 1994) as-
sociation mining has become a mature field of re-
search applied in a variety of domains including com-
merce, defence, health, manufacturing and engineer-
ing. Within the classic support-confidence frame-
work, association mining first finds all itemsets sat-
isfying a predefined minimum frequency (support),
and then extracts strong association rules from them.
In this process, itemsets are treated as intermedi-
aries, the generation of which has attracted signifi-
cant research due to its inherent complexity (Ceglar
& Roddick 2006). However, the nature of the inferred
relationship between a rule’s participant itemsets is
rarely considered during association mining due to
two factors:

• The need to constrain itemset generation
through the specification of a pruning heuristic,
such as support. As support is reduced, the num-
ber of itemsets generated typically increases sig-
nificantly.
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• The setting of a minimum support threshold
eliminates infrequent itemsets, making it difficult
to discover those relationships involving an item-
set of low frequency.

This paper presents Finding ITemset INteractions
(FITIN), a method for finding itemset interactions,
a novel technique in the field of association min-
ing. FITIN adopts a tree-based approach to represent
itemset interaction patterns, such as Competitors,
Catalysts or Clusters (see Section 3) and searches
for matched instances within an FP-tree (see Sec-
tion 4). Experimental results on both synthetic and
real datasets demonstrate the effectiveness of this ap-
proach (see Section 6).

The paper is organized as follows. In the next sec-
tion, a review of related work is provided. Section 3
contains definitions of the terminology used and Sec-
tion 4 provides a theoretical discussion of the FITIN
approach. Section 5 discusses algorithm development
and Section 6 presents a proof-of-concept implemen-
tation and experimental evaluation. Section 7 con-
cludes the paper with a discussion of future work.

2 Related Work

Association mining was initially proposed by Agrawal
et al. (1993) and aims to find interesting relationships
between items (Han & Kamber 2000). The major-
ity of research to date has focused upon the efficient
discovery of itemsets as its level of complexity is sig-
nificantly greater than that of inference generation
(Agrawal & Srikant 1994, Bayardo 1998, Brin, Mot-
wani, Ullman & Tsur 1997, Gunopulos et al. 1997,
Han et al. 1997, 2000, Liu et al. 2002, Park et al.
1995, Toivonen 1996, Zaki & Hsiao 2002).

Association rules do not capture interesting depen-
dencies between items (Aggarwal & Yu 1998, Brin,
Motwani & Silverstein 1997). For example, customers
who buy coffee might not often buy tea in the same
transaction. The behaviour of buying coffee and buy-
ing tea is not associated but (negatively) correlated.
Correlation rules, which aim to discover the correla-
tions in the association rules, were proposed by Brin,
Motwani & Silverstein (1997) and have attracted sub-
stantial attention (Lee et al. 2003, Liu et al. 1999,
Piatetsky-Shapiro 1991). Our work differs from cor-
relation mining in two ways. First, correlation relates
to the dependency between items while interaction is
a class of relationship focused on the effects, with an
unknown cause, between different itemsets. Second,
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Transaction ID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Items a,b,c,d,e,f e,f a,b,c,d,g a,b,m,n c,d,e,f a,b,c,d a,b,c,d e,f,g c,e,f a,b,c,d,g

Table 1: Transaction dataset D

Itemset Itemsets Trans eA Trans eB Trans eA Pattern
Interaction ID eA eB without eB without eA with eB Revealed

1 {a,b} {c,d} T4 T5 T1T3T6T7T10 Facilitator
2 {a,b} {e,f} T3T4T6T7T10 T2T5T8T9 T1 Competitor

Table 2: Sample two itemset interaction patterns

the participants in an interaction are itemsets rather
than items.

Recently, the absence of itemsets has attracted a
lot of research. For instance, a store manager may
like to be informed that customers who do not buy
product X are likely to buy product Y. The prob-
lem of identifying negative associations, in the form
A ⇒ ¬B, ¬A ⇒ B and ¬A ⇒ ¬B, has been widely
explored (Antonie & Zaiane 2004, Daly & Taniar
2004, Savasere et al. 1998, Wei & Chen 2000, Xu et al.
2004, Yan et al. 2004, Yuan et al. 2002). However, the
relationships between itemsets are not considered. In
our work, we do not generate negative itemsets, but
rather search for the effect one itemset has on another.

Teng (2002) denotes the dissociation rule as AB 6⇒
C, which indicates the presence of A and B is a good
predicator of the absence of C. This approach is able
to discover competitors in an itemset which in some
ways is similar to our work. However, itemset inter-
actions can be generalised to reveal various patterns
rather than the simply Competitor patterns, such as
Catalysts and Clusters, which cannot be handled by
approaches such as Teng’s.

3 Itemset Interaction

The nature of the relationship between interacting
itemsets is potentially useful. Given the sales trans-
action data D shown in Table 1 (which is necessarily
a small sample for illustration), Table 2 presents two
itemset interactions of potential interest. The first in-
teraction of interest occurs between the itemsets {a,b}
and {c,d}, each occurring without the other only once
in T4 and T5 respectively. However, they occur to-
gether in 5 transactions (T1, T3, T6, T7, T10), revealing
that they might facilitate each other, or that, the sales
of {a,b} or {c,d}may be increased because of the pres-
ence of the other. The second interaction, between
{a,b} and {e,f}, shows individual occurrence of {a,b}
in 5 transactions (T3, T4, T6, T7, T10) and individual
occurrence of {e,f} in 4 transactions (T2, T5, T8, T9)
and co-existence in only a single transaction (T1), re-
vealing that they compete with each other. In other
words, the sales of {a,b} or {e,f} are decreased in the
presence of the other.

Table 3 represents a descriptive list of some po-
tential types of interaction relationships in market
basket data (qv. Roddick et al. (2008)). However,
such patterns may be exhibited within many domains.
For example, different medicines can interact result-
ing in distinct treatment outcomes, while in human
resources, the productivity of a team can be affected
by the interaction between its members.

In addition, the itemset interaction patterns shown
in Table 3 may combine to form more complex pat-
terns, i.e., one Cluster may be a Catalyst to another
Cluster and one itemset may compete with more than
two itemsets. The conjunction of itemset interaction
patterns is beyond the scope of this paper.

3.1 Definition of Itemset Interaction

Let I = {i1, i2, ..., in} be a set of items, and D be a
dataset containing a set of transactions, where each
transaction ti is a set of items such that ti ⊆ I
(Agrawal & Srikant 1994). Each transaction set may
have subsets which are called itemsets. For exam-
ple, given ti = {i1, i2, i3}, the resultant itemsets are
{i1}, {i2}, {i3}, {i1, i2}, {i1, i3}, {i2, i3} and {i1, i2, i3}
excluding φ. An important property of an itemset, x,
is support σ, which is the ratio of the number of trans-
actions containing x to the number of transactions in
D, defined as σ (x) = P (x)

|D| , where P (x) denotes the
number of transactions containing x.

An itemset interaction (Π) is a relationship be-
tween multiple itemsets, which results in a change in
behaviour in at least one of the participating item-
sets, and is denoted as Π = {E,u}, where E is the
set of all participating itemsets and u is a union set,
or u-set, i.e., u =

⋃
ei∈E

ei. For each ei ∈ E, ei is called

an e-set. Given E, we define Π = {E,u} and the
following conditions hold:

• Multiple e-sets: |E| > 1. An Π contains at least
two distinct e-sets since an e-set cannot interact
with itself.

• Atomic: For every ei, ej ∈ E, neither ei ⊂ ej
nor ej ⊂ ei since a set cannot interact with its
own subset or superset. For example, given ei =
{a, b}, ej = {a, b, c, d}, we have ei ⊂ ej and hence
no interaction can occur between ei and ej .

• Existing Interaction. The u-set (u) exists in at
least one transaction. Otherwise, no interaction
is possible. For example, given E = {ei, ej}, ei =
{a, b}, ej = {c, d}, if there is no transaction con-
taining u = ei ∪ ej = {a, b, c, d}, there is no pos-
sible interaction between ei and ej .

Given an Π = {E,u}, we define a relative support1
σR for an e-set ei ∈ E as follows:

σR (ei) =
P (ei)−Q(ei)

|D|
(1)

where Q(ei) denotes the number of transactions con-
taining other e-sets in E in all transactions containing
ei.

Relative support represents the occurrence of an
e-set independent of other e-sets in D. For ex-
ample, using the data from Table 1, one item-
set interaction from Table 2 is Π = {E,u},
where E = {{a, b}, {c, d}},u = {a, b} ∪ {c, d} =
{a, b, c, d}. Since e-set {a, b} exists in 6 transac-
tions (T1, T3, T4, T6, T7, T10), we have P ({a, b}) =
6. Among those transactions, e-set {c, d} exists in
T1, T3, T6, T7, T10 and we have Q({a, b}) = 5. Thus
the relative support of {a, b} is:

1This concept builds on the work by Shillabeer & Pfitzner
(2007).
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Pattern Description Example

Competitor An itemset competes with an-
other itemset.

Itemset {Chips, Cola} competes with itemset
{Chips, Lemonade}
Desc: Customers tend to buy Chips and Cola or
Chips and Lemonade individually, but they sel-
dom buy Chips, Cola and Lemonade together.

Catalyst An itemset facilitates another
itemset.

Itemset {milk, butter} faciliates itemset {bread,
jam}.
Desc: There are fewer customers who buy milk
and butter or bread and jam individually. More
customers buy them together.

Cluster Three or more itemsests fre-
quently occur together but sel-
dom occur individually.

Itemsets {milk},{bread} and {eggs} form a clus-
ter.
Desc: These three itemsets are seldom purchased
by customer individually but always together.

Table 3: Sample types of itemset interaction patterns in market basket data

Π e-sets u-set ea eb u-set Behavioural Behavioural
ea σ(ea) eb σ(eb) u σ σR status σR status status change of ea change of eb

Π1 {a,b} 0.6 {c,d} 0.6 {a,b,c,d} 0.5 0.1 Low 0.1 Low High Low→ High Low→High
Π2 {a,b} 0.6 {e,f} 0.5 {a,b,e,f} 0.1 0.5 High 0.4 High Low High→Low High→Low

Table 4: Sample itemsets behavioural changes (minHF = 0.4, minLF = 0.1)

σR ({a, b}) =
P ({a, b})−Q({a, b})

|D|
=

(6− 5)
10

= 0.1.

This means that {a, b} occurs independently of {c,d}
in 10% of transactions.

Given two user specified thresholds for sup-
port minHF (Minimum High Frequency) and
maxLF (Maximum Low Frequency), where 0 <
maxLF ≤ minHF , let an itemset x represent a u-
set or an e-set. x has a High status when σ(x) ≥
minHF or σR(x) ≥ minHF , and a Low status when
σ(x) ≤ maxLF or σR(x) ≤ maxLF . x has a Normal
status when maxLF < σ(x) < minHF or maxLF <
σR(x) < minHF . For brevity, the status of High, Low
and Normal is denoted as H, L and N respectively,
e.g., ({a,b},H) indicates that itemset {a,b} has a High
status.

The behavioural changes of an e-set can be de-
scribed by using this concept of itemset status. For
example, using the data from Table 1 and given that
minHF = 0.4 and maxLF = 0.1, the behavioural
changes of the itemsets in the two itemset interactions
from Table 2 are shown in Table 4. Taking Π1 as an
example, itemsets {ab} and {cd} both have Low sta-
tus when they occur individually since σR({a, b}) =
0.1 ≤ maxLF and σR({c, d}) = 0.1 ≤ maxLF . When
they interact, the u-set {a,b,c,d} has a High status
since σ({a, b, c, d}) = 0.5 ≥ minHF , thus revealing
that both itemsets change their status from Low to
High through the interaction.

Given minHF and maxLF , a valid itemset inter-
action pattern (PΠ) relates to an itemset interaction
(Π) where the status of all e-sets and u-set are known.
Given a database D and a PΠ, we will use Finding
ITemset INteractions (FITIN) to find all matches of
PΠ in D.

4 The FITIN Approach

Our initial approach to finding itemset interactions
was naive, generating all itemsets and then merging
them together to find all matches of a given PΠ. This
was a good solution while the number of itemsets was
small. However, it became inefficient as the number
of itemsets increased. Given n frequent items in a
database, the possible itemsets generated are 2n − 1
and the number of combinations of itemset interac-
tions is significantly larger, |I| >> 2n−1. It therefore

becomes intractable to generate all itemset interac-
tions when n is large.

4.1 Overview

To overcome the scalability issue, FITIN adopts an al-
ternative tree-based approach which extends the con-
cepts discussed in the presentation of FP-trees (Han
et al. 2000). As an FP-tree stores the pertinent items
in a structured way that facilitates the discovery of in-
teractions between itemsets, it becomes more efficient
to find matches of a given PΠ within the FP-tree than
to search for them in individual itemsets. Firstly,
there is no need to generate all itemsets as a prelim-
inary step, which significantly reduces the computa-
tional complexity and temporal overhead. Secondly,
once an FP-tree has been built, there is no pruning
process to remove infrequent itemsets. Information
held in the FP-tree is complete.

Source Data

Itemset Interaction 
Instances

FP-tree

Itemset Interaction 
Pattern Library

(PII  Library)

Pattern 
Language

FP-growth 

   FITIN Algorithm

Figure 1: FITIN framework

There are three key parts to the FITIN framework:
an FP-tree, an PΠ library with an associated pattern
language and a pattern search algorithm, as presented
in Figure 1. The FP-tree is generated to concisely
represent the pertinent dataset information. The PΠ
library contains a set of IIP-trees (as discussed in Sec-
tion 4.3), each of which represents a PΠ. The inte-
gration of a pattern library and its associated pattern
language allows users to retrieve, modify and create
new patterns in FITIN based on their requirements
and their datasets. At the core of FITIN, there is a
search algorithm to find all matches of a given PΠ
held in an FP-tree.
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4.2 FP-trees

FP-trees, first proposed by Han et al. (2000), are a
compact data structure that contains the complete
set of information held in a database relevant to fre-
quent pattern mining. The FP-tree stores a single
item at each node, and includes a support count and
additional links to facilitate processing. These links
start from a header table and link together all nodes
in the FP-tree which store the same item. Readers
may refer to (Han et al. 2000) for more details.

4.3 The IIP-tree

FITIN represents itemset interaction patterns using
a novel IIP-tree (Itemset Interaction Pattern tree),
which makes one assumption.

Assumption: All items of a PΠ must themselves
be frequent, although the participating itemsets may
not be.

Rationale: The FP-tree target contains only
frequent items (Han et al. 2000). Therefore, if a PΠ
instance contains infrequent items, it is impossible
to find matches in FP-trees. Thus infrequent items
have no significance in the search of the FP-tree and
would be ignored.

An IIP-tree has a set of prefix subtrees as the chil-
dren of the root. Each node consists of three fields:
the item, a node link and status, where the node link
points to the next node containing the same item in
the IIP-tree.

Algorithm 4.1 IIP-tree Construction
1: Input: An itemset interaction pattern PΠ
2: Output: An IIP-tree
3: T = Root(PΠ)
4: sort all items in PΠ.u in support descending order
5: insert-tree(PΠ.u, PΠ.T, 0)
6: for each e-set ei do
7: sort all items in ei according to their order in

PΠ.u
8: insert-tree(ei, PΠ.T , 0)
9: end for

10: insert-tree(itemset e, treeNode node, int in-
dex)

11: if index < e.length then
12: if node.hasChild() then
13: if node.child.item-name 6= e[index].item-

name then
14: node.addChild(e[index]),

linkset.add(e[index])
15: else
16: node.child.addStatus(e.status)
17: end if
18: else
19: node.addChild(e[index]),

linkset.add(e[index])
20: end if
21: insert-tree(e,node.child,index++)
22: end if

The algorithm to construct an IIP-tree is outlined
in Algorithm 4.1, which firstly sorts all items in the
u-set in support descending order. The u-set is then
inserted into the tree. During the remaining insertion
process, items in each e-set are inserted according to
their order in the u-set. If a node on the insertion
path already exists, the item stored in the node ap-
pears in multiple itemsets and will have multiple sta-
tus. Multiple status is denoted as mHnLpN, where
n > 0,m > 0, p > 0. For example, notation ‘2L2H’
represents two Low status and two High status. If

n = 1 or m = 1 or p = 1, the number ‘1 ’ is omitted
in the notation for brevity, e.g., ‘2LH’ represents two
Low status and one High status.

After construction, a language is required to de-
scribe the IIP-tree. An IIP-tree is defined as a collec-
tion of tuples <node, parent, [Nchildren], [Nstatus]>,
where Nchildren is the collection of the node’s chil-
dren from left to right and Nstatus is the collection
of status of its children from left to right. In addi-
tion, a label, which is an instantiated description of
the pattern, can be imposed over the definition.

Given an PΠ containing two e-sets: ({a,b},H),
({a,c},H) and the u-set ({a,b,c},L), the IIP-tree con-
struction process and its description are shown in
Fig. 2. Fig. 2(a) creates the root and inserts the
u-set {a,b,c} and (b) shows the effect of inserting
({a,b}, H). Fig. 2(c) illustrates the effect of insert-
ing ({a,c},H) with a link created between the two
‘c’ nodes. Fig. 2(d) shows the tuples which are con-
structed for all non-leaf IIP-tree nodes. For brevity,
leaf nodes are not listed as they do not have children.

5 Itemset Interaction Search

Given the structure of the two trees, IIP-tree and FP-
tree, the FITIN algorithm searches the FP-tree for all
matches of the IIP-tree (shown in Algorithm 5.1).

Algorithm 5.1 FITIN Algorithm
1: Input: FP-tree fp, IIP-tree ip
2: Output: Matched instances of ip
3: mineITIN(ip.root.next)
4: mineITIN(IIPtreeNode node)
5: if node 6= null then
6: P = arrayOfPath(node)
7: S = set of status of P
8: for each item in fp.header do
9: C = getCountList(item,P )

10: for each C[i] do
11: if !C[i].fitStatus(S[i]) then
12: return
13: end if
14: end for
15: runMiner(node.child)
16: end for
17: end if
18: getCountList(FPtreeNode node, Array P)
19: countList = new int[P.size]
20: while node 6= null do
21: if node.prefix.hasPath(P [i]) then
22: countList[i] = countList[i] + node.count
23: end if
24: node = node.link
25: end while
26: return countList
27: arrayOfPath(IIPtreeNode node)
28: path = new Array()
29: while node 6= null do
30: path.add(node.prefix)
31: node = node.link
32: end while
33: return path

FITIN provides a mechanism for tree searching,
which substitutes IIP-tree nodes with the items from
the FP-tree header table. The complexity of the pro-
cess is O( n!

(n−k)!k! ), where n is the number of frequent
items in an FP-tree and k is the number of distinct
items in an IIP-tree.

As the IIP-tree’s leftmost branch contains all items
in an PΠ (u-set), FITIN requires a single pass over this
branch for search purposes. For each node in this u-
set branch, all other nodes representing the same item
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(a) Insert {a,b,c} (b) Insert {a,b} (c) Insert {a,c}                  (e) Pattern Label

      
  b:LH

       
 a:L2H

       
    b:L

       
   c:H

       
    c:L

      
 
        b:LH

<T,null,[a], [L2H],>
<a, T, [b, c], [ LH, H]>
<b, a, [c], [L]>

“Competitor Pattern:  Itemset {a,b} 
competes with itemset {a,c}”. 

(d) IIP-tree Tuples

       
T

       
    T

       
    T

     
    

    c:L

     
    

    c:L

       
     
      
       a:LH

       
     
      
   a:L

Figure 2: Sample IIP-tree construction and description

are accessible through the node links. The collection
of itemsets that terminate with a specific item is ef-
ficiently obtained through this structure. During the
process to calculate support, FITIN visits the relevant
FP-tree branches by following the link of the specific
item in the header table. If a visited branch con-
tains the u-set, the support of the u-set increases by
adding the support count of the visited node in the
branch. If there is no u-set in the branch and it con-
tains a single itemset (e-set), the relative support of
the itemset (e-set) increases by adding the support
count of the visited node too. If there is no u-set in
the branch and the branch contains more than one
e-sets, those e-sets are not independent of each other
in that branch and the support count of the visited
node will not be counted according to the definition
of relative support.

Once a support is calculated from the FP-tree
branches, it will be checked against the stored sta-
tus in the associated IIP-tree node. Given minHF
and maxLF , let σ(cnode) represent calculated sup-
port of an IIP-tree node, cnode, and mHnL be its
stored status, where m ≥ 0, n ≥ 0. A rule to vali-
date σ(cnode) is as follows. If m 6= 0, which means
cnode has at least one high status, it is valid when
σ(cnode) ≥ m×minHF . If m = 0 and n 6= 0, which
means cnode has no high status but has at least one
low status, it is valid when σ(cnode) ≤ n×maxLF .

If cnode has a parent node, pnode, with status
pHqL, where p ≥ m, q ≥ n. The difference in the sta-
tus of the two nodes is defined as Stdiff = pHqL−
mHnL = (p − m)H(q − n)L, while the difference
in their support is definded as σdiff = σ(pnode) −
σ(cnode). If p − m 6= 0 or q − n 6= 0, σdiff will
be checked against Stdiff based on the same rule as
above.

To illustrate, consider the example shown in Fig. 3,
which contains an IIP-tree and an FP-tree. Given
that minHF = 0.4 and maxLF = 0.2, the algorithm
starts with node ‘x’ in the IIP-tree. Each node in the
IIP-tree will be replaced by its corresponding value
from the FP-tree header table.

Starting with item ‘a’, only one branch ends with
‘a’, and a support of 1.0 is obtained from the header
table, σ({a}) = 1.0, which is checked against the
stored status 2HL. Since 2 ×minHF = 0.8 < σ({a}),
σ({a}) is valid and the process continues, moving to
the next node in the traversal, ‘y’. The node ‘y’ is
replaced by all items in the header table, except ‘a’.

Starting with item ‘b’, a branch is generated from
the IIP-tree that ends with ‘b’ and also contains ‘a’,
which is {a,b}. Following the FP-tree link from ‘b’, all
branches that contain {a,b} are found and σ({a, b}) =
0.6, which is checked against the stored status HL.
Since σ({a, b}) > 1 × minHF , it is valid. The al-
gorithm continues to check its parent node, which is
node ‘a’ with status 2HL. The differences in the status

and support of the two nodes are calculated respec-
tively, i.e., Stdiff = 2HL − HL = (2 − 1)H(1 − 1)L
= H, σdiff = σ(a) − σ(b) = 1.0 − 0.6 = 0.4. The
value of σdiff is then checked against Stdiff . Since
σdiff ≥ 1×minHF , it is valid. The process advances
to ‘z’, which is replaced with each item in the FP-tree
header table except ‘a’ and ‘b’.

Starting with ‘c’, generate a list of branches in the
IIP-tree that contains ‘c’ and have ‘a’ or ‘b’ in their
parental path, specifically {a,b,c} and {a,c}. The
support of {a,b,c} and relative support of {a,c} is
calculated, σ({a, b, c}) = 0.2 and σR({a, c}) = 0.4.
The algorithm firstly checks the IIP-tree node ‘c’
in the u-set branch, which has a L status. Since
σ({a, b, c}) = 0.2 < maxLF , it is valid. The differ-
ences in the status and support of the node and its
parent node (node ‘b ’ with status HL) are calcu-
lated, i.e., Stdiff = HL − L = (1 − 0)H(1 − 1)L =
H , σdiff = σ(b) − σ(c) = 0.6 − 0.2 = 0.4. Since
σdiff ≥ 1 ×minHF , it is valid. Similarly, the differ-
ence in the status and support of the other ‘c’ node
with its parent node (node ‘a’ with status 2HL) are
generated and checked. Since Stdiff = 2HL − H
= (2 − 1)H(1 − 0)L = HL, σdiff = σ(a) − σ(c) =
1.0 − 0.4 = 0.6, σdiff ≥ 1 × minHF , it is also valid.
As they are all valid, a matched instance of the IIP-
tree has been found.

The algorithm then progresses to ‘d’. Branches
containing ‘d’ that have ‘a’ or ‘b’ in their parental
path are {a,b,d} and {a,d} which have σ({a, b, d}) =
0.2 and σR({a, d}) = 0.1. Since σR({a, d}) = 0.1 ≤
minHF , it is invalid and thus is pruned. The process
continues until all nodes in the leftmost branch of the
pattern tree have been substituted.

6 Evaluation of Proof-of-Concept System

To demonstrate the concept, a prototype of FITIN was
implemented in Java and several experiments were
conducted on both synthetic and real datasets. All
tests are done on a 2.6 GHz PC with 1.00 GB of
main memory running Windows XP (2002). This im-
plementation is shown to be tractable and able to
reveal itemset interactions of potential interest that
would otherwise not be reported.

6.1 Synthetic Data

A synthetic data generator was built based on the
work reported by Agrawal & Srikant (1994) to pro-
duce large quantities of transactional data. Table 5
shows the parameters for data generation, along with
their default values and the range of values on which
experiments were conducted. Table 6 presents the
details of the generated synthetic data.
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Figure 3: Illustatration of FITIN algorithm

Name Description Default Range
Value of Values

|I| Number of Items 10 10-100
|T | Number of Transactions 5K 5K-200K
|P | Number of Patterns 50 50-500
TS Average Size of Transaction 5 5-10
PS Average Size of Pattern 5 5-10

Table 5: Synthetic data parameters

Data |I| |T | |P | TS PS

Syn1 100 10,000 20 5 5
Syn2 200 50,000 150 10 10
Syn2 300 100,000 250 10 15

Table 6: Synthetic data

6.2 Real Data

Three datasets were used to test FITIN, details of
which are given in Table 7. The Retail Data is
supplied by an anonymous Belgian retail supermar-
ket store (Brijs et al. 1999). The data are collected
over three non-consecutive periods between 1999 and
2000. The two datasets BMS-WebView-1 and BMS-
WebView-2 are taken from KDDCUP 2000 (Kohavi
et al. 2000). They contain several months’ worth of
click stream data from two e-commerce web sites.

6.3 Tested Pattern

Fig. 4 shows the patterns tested. Fig. 4(a) and
Fig. 4(d) represent two Competitor patterns involving
two pairs of e-sets: {x,y} and {x,z} in (a) and {x,y}
and {m,n} in (d). Fig. 4(b) represents a Catalyst pat-
tern, where two e-sets {x,y} and {x,z} facilitates each
other resulting in status changes from Low to High for
both of them. Fig. 4(c) represents a Cluster pattern
showing that three e-sets {x},{y} and {z} have Low
status individually but High status together.

Data Retail BMS BMS
-Data -WebView-1 -WebView-2

NumberOfTrans 88,163 59,602 77,512
Distinction Items 16,470 497 3,340

MaxTransSize 67 267 161
AverageTransSize 15 2.5 5.0

Table 7: Real datasets

6.4 Results and Evaluation

The experimental results demonstrate that FITIN pro-
vides a sound and useful means of finding complex
and random IIP-tree patterns within an FP-tree.

Test results, as shown in Table 8, demonstrate that
FITIN is able to reveal itemset interactions of poten-
tial interest. Pattern (a), (b) and (d) exist in both the
real and synthetic datasets, while pattern (c) exists
in two synthetic datasets. Presented below are some
itemset interaction examples discovered from Retail-
Data (each item is denoted as a character c plus a
number):

• {c39, c2925} [σR = 1.1%], {c39, c1146} [σR = 1.1%], {c39,
c2925, c1146} [σ = 0.009%]

Description: Itemset {c39, c2925} competes with {c39,
c1146}.

• {c14945, c101} [σR = 0.5%], {c271, c270} [σR = 0.8%],
{c14945, c101, c271, c270} [σ = 0.005%]

Description: Itemset {c14945, c101} competes with {c271,
c270}.

• ({c39} [σR = 24.4%], {c48}[σR = 14.7%], {c39, c48}[σ =
33.1%]

Description: Itemset {c39} facilitates itemset {c48}.

As shown in Fig. 5, the number of matched in-
stances is affected by the setting of minHF and
maxLF . The higher minHF is, the more itemsets
with lower support are pruned out, and therefore, the
fewer matched instances found. Similarly, the higher
maxLF is, the fewer significant status changes in an
itemset interaction will occur, and therefore, more
matches can be identified.

7 Conclusions and Future Work

This paper outlines an approach to finding itemset
interactions in large databases. It represents an item-
set interaction pattern (PΠ) as a tree structure and
searches an FP-tree for its matched instances. The
experimental results demonstrate the capacity of this
approach to find itemset interactions of potential in-
terest that cannot be identified by other data mining
techniques.

The focus of the proof-of-concept implementation
was not on performance but on proving that the de-
sign decision was sound. A more efficient algorithm
is planned to cope with more complex itemset inter-
action patterns.
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Figure 4: Patterns in tests

Test Min FP-tree Info Pattern (a) Pattern (b) Pattern (c) Pattern (d)
Datasets -sup Max NumOf NumOf min max # min max # min max # min max #

Depth Branch Nodes −HF −LF −HF −LF −HF −LF −HF −LF

RetailData 0.01 12 12,142 31,037 1.0 0.01 6 1.0 1.0 1 1.0 0.5 0 0.5 0.5 48
BMS-WebView1 0.01 31 5,584 16,909 0.5 0.5 11 0.1 0.8 52 0.5 0.5 0 0.8 0.2 10
BMS-WebView2 0.005 28 14,044 48,571 0.5 0.5 5 0.5 0.5 0 0.5 0.5 0 0.8 0.2 8

Syn1 0.2 46 5,842 96,159 1.0 0.5 54 2.0 0.5 32 1.0 0.5 44 1.0 0.5 10
Syn2 0.05 23 17,426 124,763 0.1 1.0 144 0.2 0.2 132 0.0 1.0 3 0.8 0.2 2
Syn3 0.1 20 11,699 52,897 0.5 0.5 97 0.5 0.5 2 0.5 0.5 0 0.5 0.5 270

Table 8: Test results

The evaluation of interestingness of a matched
itemset interaction pattern instance is currently based
on status changes, which are also enhancing. For ex-
ample, it would potentially be useful to detect itemset
interactions with the most significant status changes.
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