Prolog
unlike the intelligent backtracking schemes
improve
redos,

identifies
history of the program execution

backtracking scheme for a further speed-up of
programs.

Most intelligent

A HISTORY-BASED SCHEME FOR ACCELERATING PROLOG INTERPRETATION

Vishv Mohan Malhotra

Discipline of Computer Science
The Flinders University of South Australia
Bedford Park 5042

AUSTRALIA.
ABSTRACT
An algorithm to improve the performance of a

interpreter is introduced. The algorithm,
®hich
avoiding redundant
calls. The algorithm

calls by maintaining a
The algorithm
conjunction with an intelligent

the

the
avoids
the

performance by
redundant
redundant

be wused 1in

1. INTRODUCTION

backtracking (IB) schemes for

Tang Van To

Division of Computer Science
Asian Institute of Technology
G.P. 0. Box 2754, Bangkok 10501

THAILAND.

scheme, on the other hand, controls the thrashing
by selecting the appropriate goals for redo. The
two schemes affect the programs differently; there
may be redundant calls that an IB scheme fails to
eliminate. On the other hand, the scheme described
in this paper may not skip some unproductive
redos. Thus, the two methods can be viewed as
complimenting each other. Indeed, many data-
structures and procedures are common in the two
schemes and can be shared.

In the next section, we 1llustrate, with an
example, the calls that can be avoided to reduce
the search space. Section 2 also introduces

additional terminology that supplements the common
Prolog terminology (3, 7]. The algorithm 1is
introduced in Section 3. Section 4 presents the
statistics obtained by running certain

Prolog, reported in literature ({1, 4, 6, 8, 10,
12J, consist of two parts: (a) an algorithm to
compute the set of suspects; and (b) an algorithm
to choose the backtrack-points using a data-base
of these sets. Much of the work has centered on
the former algorithm (see also (2, 5, 91). The
emphasis has been to design algorithms to
construct smaller sets of suspects at lower
costs. It is the algorithm to compute the set of
suspects that distinguishes one backtracking
scheme from the other

He believe that the IB schemes for choosing the
backtrack-points do not make a full use of the
available information. Specifically, after a
backtrack, the interpreter resumes the search
without avoiding the failed calls that have not
yet been attended to. As a consequence, the
interpreter repeats several failures in the
resumed search. The algorithm reported in (8] is
expected to reduce the search space for 6-queens
problem (clever solution) [1] by about 10%. It is
shown later in this paper that the reduction
can exceed 35% through a better use of the
information.

In this paper, we introduce an algorithm to
improve the performance of a Prolog interpreter by
reducing thrashing. The algorithm achieves this
improvement by avoiding calls which begin searches
that are destined to eventually fail. An IB

482

benchmark
section,

s using
the paper is concluded with some
about the possible extensions of the scheme

the

algorithm.

In the final
remarks

2. PRELIMINARIES: EXAMPLE AND TERMINOLOGY

Consider the following Prolog program and its
execution trace under an IB scheme
? <-- r(4), r(B), s(h), t(B).
Rt: r(1)
R2: r(2).
S1: s(C) <-- t(C).
S2: s(1).
T1: t(2).
Execution trace under an IB
1. goal r(A) calls clause R1. A unifies with 1.
2: goal r(B) calls clause R1. B unifies with 1.
3: goal s(4A) calls clause S1. C unifies ®ith 1.
4: goal t(C) fails. Redo s(4).
5: goal s(A) calls clause S2
6: goal t(B) fails. Redo r(B).
7: goal r(B) calls clause R2. B unifies with 2.
8: goal s(A) calls clause S1. C unifies with 1.
9: goal t(C) fails. Redo s(4).
10: goal s(A) calls clause S2
11: goal t(B) calls clause T1.
1984/89/0000/0482$01.00 © 1989 IEEE

Steps (8) and (9), in the above trace, are

redundant as they repeat steps (3) and (4)
under the same bindings. He «call a search
redundant if it is known, from the past behavior
of the interpreter, that the search will end
unsuccessfully. The scheme that we describe, in
this paper, aims at maintaining the execution
history of the interpreter in a form that can be
used readily to identify and avoid repeated
execution of the redundant calls.

To detect the redundant calls, the execution

history of a program is maintained as an AND-OR
tree. Indeed, we abstract the actions of a Prolog
interpreter as a traversal (and construction) over

this tree. In a history tree a goal is
represented by an OR node. The children of a
goal-node represent the clauses in the goal
procedure. A clause 1is represented by an AND node
Rith its children representing the goals
(literals) 1in the body of the clause. A special
goal-node -- we call it GO -- constitutes the root

of the tree. A clause-node, CO, is attached as the
only child of GO. The wuser query defines the
child goal-nodes of 0. The children of the
goal-nodes are ordered by the sequencing of the
clauses in the program. Similarly, the children of
a clause-node are ordered by the literal ordering
in the body of the clause

For a goal-node, G, we use the term parent clause
to refer to its parent node in the tree; the
parent goal refers to the parent of the parent
clause; the sibling of a goal is its right sibling
-- a sibling shares the parent clause w®ith the
goal and is defined by the literal in the defining

clause that immediately follows the literal
defining node G. An analogous terminology is used
for the clause-nodes. For a clause-node, its

sibling is the node sharing the parent goal and is
defined by the next clause in the goal procedure

2.1 A PROLOG INTERPRETER

Initially, a tree consists of nodes GO
goal-nodes representing the user query. The
interpreter starts the execution by visiting the
leftmost child goal-node of CO and invoking a call
for the goal.

CO0 and the

CALL

During a call, the interpreter executes the goal
that it is currently visiting by unifying the goal
With the head of a clause. As a clause is
selected, an AND node representing the clause is
inserted as a child of the goal-node if it is not
already there. (It simplifies the presentation of
algorithms, in the later sections, if the
interpreter also inserts a dummy node representing
the sibling of the clause. No dummy sibling is

needed for the last clause in the goal procedure.)
The goals (literals) in the body of the clause are
attached to the clause-node as its child goal-
nodes. After a successful call -- a call is
successful if a unifying clause is found -- the
interpreter traverses to the leftmost child
(goal-node) of the unifying clause. A call is
then invoked for the new goal

EXIT

The interpreter exits a goal-node if no descendent
of the goal remains to invoke a call. After an
exit from a goal-node the interpreter traverses to
its sibling and invokes a call.

REDO

If the interpreter fails to execute a goal, it
traverses back, in the reverse order of call
invocations, to a previously executed goal and
invokes a redo. An attempt is made to execute the
goal using a different clause. After a successful
redo the interpreter traverses to the leftmost

clause and invokes a
A goal that has unified
call or redo, is
set of executed
clause-nodes 1is

goal-node in the unifying
call for the new goal.
with a head, either during a
called an executed goal. The
goal-nodes and their unifying
called a search.

FAIL

A goal is said to have failed if it can not wunify
%ith the head of any clause during a call or a
redo step. The interpreter traverses (backtracks)
to an executed goal-node, as described earlier,
and performs a redo. As the interpreter
backtracks it wundoes the effects of the executed
calls and redos

THE MOST RECENT SUSPECT

Fhen a goal G fails to unify with the head, H, of
a clause an IB interpreter computes a set, S(G,H),
of the executed goals that are suspected to be
contributing bindings impeding the unification

Some IB schemes (e.g., [6]) may do so only when G
fails. For a set S(G,H), let L(G, H) denote the
most recently executed goal in the set. Clearly

it is unnecessary to try to execute goal G using H
until the interpreter has backtracked to L(G,H)

It is only after the interpreter has backtracked
to goal L(G, H) that the bindings in G may change
to let G unify with H.

In next section, we introduce an algorithm to
control the execution of an interpreter to avoid
the redundant calls

483

3. AN ALGORITHM TO AVOID REDUNDANT CALLS

The algorithm for identifying the redundant calls
has two main components. One component remembers
for each clause-node that has been removed from a
search, the most recently executed goal among the
goals suspected to have caused the removal. 4
clause-node that was tried but failed to be a part
of a successful search is not used again as a

candidate clause for executing the parent goal
until the interpreter has backtracked to this
suspect since the clause was removed from the

search. The extent of the backtracking done by
the interpreter between tro consecutive visits of
a node is determined by the other component of the
algorithm. The algorithms for these components
are introduced in the following subsections

3.1 REMEMBERING THE MOST RECENT SUSPECT

The algorithm remembers the most recently executed
suspect for a clause-node by assigning tag, called
L tag, to the node. An L tag of a node specifies
the most recent goal to mshich the interpreter must
backtrack before executing a call by including the
node in the search. An algorithm to determine L
tags for the nodes in the history tree, as the
interpreter traverses over it, is described in the
following paragraph. The algorithm also assigns L
tags to the goal-nodes in the tree. The tags on
the goal-nodes enable the interpreter to compute L
tags for the clause-nodes as it traverses over the
tree.

A clause-node may be removed from a
three reasons:

search for

(1) The clause fails to wunify with the goal
invoking the call or redo. In this case
L(G,H), where G is the goal and H the head of
the clause, is assigned as L tag wRith the
clause-node

(11} The child goals of the clause-node fail. In
this case L tag of the clause-node is computed
from the L tags of the its child goal-nodes.
For the clause-node its L tag is the earliest
executed goal that appears as L tag on a child
goal-node. The clause can not be in a
successful search unless all its child goals
can execute successfully. For a goal-node, L
tag is determined by the L tags of its child
clause-nodes. A goal can be executed using any
one of the clauses in its procedure. Thus, L
tag of a goal-node 1is the most recently
executed goal appearing as a L tag on its child
clause-nodes. Or,

(iii) A redo step is executed for the parent goal
of the clause-node. The clause-node remains a
potential candidate for inclusion in a search
and 1is wused as a candidate clause if the
parent goal invokes a new call.

The L tags for the nodes are computed and assigned
to the nodes as the interpreter backtracks from a
goal to another goal to invoke a redo. The tag for
a clause-node 1is computed when the interpreter
backtracks from the leftmost goal in the clause to
the parent goal.

3.2 DETERMINING THE EFFECTIVE BACKTRACKING

The other major component of the
algorithm
the goal-nodes and

goal to which the

scheme is an
to determine, as the interpreter visits
invokes calls, the earliest

interpreter has backtracked
since the previous visit of the node. This
information 1is compared w®ith the L tag on a
clause-node to determine if the interpreter should
try to execute the goal using the clause or not
The search involving a clause-node will end
unsuccessfully if the interpreter has not
backtracked to the goal specified by the L tag of
the clause-node. The idea behind the algorithm is
described below:

Imagine that each goal has a characteristic color

A goal executed earlier has a darker hue than the
one executed later -- a darker hue can be painted
over a lighter hue but not the visa versa. The
interpreter picks the color of the goal =®hen it
performs a redo. It spreads this color by painting
the sibling and the child nodes as it visits the
nodes in its traversal over the tree. As the
interpreter backtracks and invokes more redos,
several balloons of these colors accumulate. It
is essential that these colors be spread ahead of
the interpreter over the history-tree. If a darker
hue overtakes a lighter hue the interpreter may
economize its efforts and discard the lighter hue.
The color of a goal-node, when the interpreter
invokes a call for the goal, is determined by the
darkest hue that is painted on the node. Thus, if
a goal-node 1is set colorless when it fails, the

color of the node will determine the earliest
goal to which the interpreter has backtracked
since it failed. For certain other

considerations, the goal-nodes are set colorless
after the interpreter has invoked a call for the

goal. The color is, however, remembered by
assigning the same to one of 1its child clause-
nodes.

3.3 THE ALGORITHM
Let G be a goal that has just failed. Let L be

its L tag. As every goal in a search must execute
successfully, no search that involves G can be
successful unless the interpreter backtracks to L.
The interpreter may, therefore, directly invoke a
redo for L without exploring the intervening goals
for a solution. There, however, may be an
alternate search that does not involve goal G. The
interpreter may begin this search by performing a
redo for the parent goal of G. To systematically
explore all searches the algorithm directs the

INITIALIZATION:

Initialize the history tree by creating a
goal-node GO with child clause CO. Insert
goals in the user query as children of C0.
Let G1 be the leftmost child. Set CO0.C = GO.
For each child Gi of CO set Gi.C = no_color
and Gi.L = nil

2. Set GOAL = Gf. Set COLOR = @GO.
3. Goto CALL
CALL:

1. Set GOAL.C = no_color; set GOAL.L = nil.

2. (Paint the sibling) If GOAL has a sibling
and the call for COLOR was invoked before
the call for SIBLING.C then set SIBLING.C =
COLOR. This assignment is also done if
SIBLING. C Was no_color

3. Goto GET_UNIFYING_CLAUSE

REDO:
(If this algorithm is used with an IB
scheme, the goal chosen for redo by the IB
scheme might have invoked the call before
the call by GOAL. In this case set GOAL =
the goal chosen by the IB scheme.)

1. Set COLOR = GOAL.

2. (Paint the sibling) If GOAL has a sibling
and the call for COLOR was invoked before
the call for SIBLING.C then set SIBLING.C =
COLOR.

3. Goto GET_UNIFYING_CLAUSE

GET_UNIFYING_CLAUSE:

1.

2.

Choose the next clause in the procedure for

GOAL. If no clause remains then goto FAIL
Otherwise, let CLAUSE be the chosen clause
Let HEAD be its head

(Insert in the tree) If CLAUSE is not a

child of GOAL, insert CLAUSE as a child of
GOAL. A dummy clause-node representing the

sibling of CLAUSE is also inserted as a
child of GOAL if CLAUSE is not the last
clause in the goal procedure. Insert child

goal-nodes of CLAUSE. A newly inserted node
in the tree has its C tag set to no_color
and L tag set to nil

If the call for CLAUSE.C was invoked before

the call for COLOR then set COLOR =
CLAUSE. C

Set CLAUSE.C = no_color. (Paint the
sibling) If CLAUSE has a sibling and the

call for COLOR was invoked before the call
for SIBLING.C then set SIBLING.C = COLOR.

(Does CLAUSE begin a redundant search?) If
the call for CLAUSE.L was invoked before the
call for COLOR then goback to step 1.

If GOAL does not unify with HEAD then set
CLAUSE.L = L(GOAL, HEAD) and goback to step
1.

(CLAUSE has unified with GOAL)
= nil. If
goto EXIT.

Set CLAUSE.L
CLAUSE has no child goal then

(Traverse to the the leftmost goal in the
unifying clause) Select leftmost goal in
CLAUSE as the next GOAL and goto CALL

EXIT:

If GOAL has a sibling then set COLOR =
SIBLING.C, select SIBLING as the next GOAL
and goto CALL.

Otherwise, set parent goal of GOAL as the
new GOAL and goto EXIT

FAIL:

Compute and assign L tag to GOAL. This tag
is chosen from the L tags of the child
clause-nodes of GOAL by selecting the one
that has invoked its call most recently. If
only nil and GOAL appear as L tags on the
child clause-nodes of GOAL then L tag
assigned to GOAL is the goal that was
executed just before GOAL

If L, computed in step 1, is a goal that had
its call invoked after the call by the
parent goal of GOAL then set L as the new
GOAL and goto REDO

Otherwise, compute and assign L tag to the
parent clause of GOAL. This tag is the goal
that invoked its call earliest among those
that appear as a L tag on the children of
the clause-node. After assigning the L tag
to the clause-node, clear the L tags (set
them to nil value) of all children of the
clause-node.

Set GOAL = the parent goal of GOAL and goto
REDO.

Algorithm 1: An augmenting algorithm to control a Prolog interpreter.

485

interpreter, when G fails, to goal-node L, if the

unifying-clause, Exit and Fail. The control is
call for L was invoked after the call for the passed between these procedures through goto
parent of G. Otherwise, the interpreter is statements. Tag C on a node specifies the color
directed to invoke a redo for the parent of G. (goal) of the node. The algorithm wuses a global
variable, COLOR, to spread colors from the goals
to their child goal-nodes. Execution trace of the
A complete description of the algorithm is given algorithm when executing the example program is
in Algorithm 1. The algorithm consists of six shown in Fig. 1 and Fig. 2.
procedures: Initialization, Call, Redo, Get-
Assume that initially tree (Fig. 2) has nodes 8. REDO G3: (1) COLOR := G3.
GO, CO0, and G1 thru' G4. Let GET_UNIFYING_CLAUSE: (1) CLAUSE := C6.
COLOR = G0; GOAL = G1; C0.C = GO; (3) COLOR := GO;
Gi.C = no_color, for i := 1 thru' 4; and (4) C6.C := no_color.
Gi.L = nil, for i := 1 thru' 4.
9. EXIT G3: (1) GOAL : = G4.
CALL G1: (1) G1.C := no_color; Gt.L := nil;
(2) G2.C := GO. 10. CALL G4: (1) G4.C := no_color; G4.L := nil.
GET_UNIFYING_CLAUSE: (1) CLAUSE := C1. GET_UNIFYING_CLAUSE: (1) CLAUSE := C7.
(2) Insert Ct and (dummy) C2 as children (2) Insert C7 as a child of G4.
of Gt. (4) C7.C := no_color.
(4) c2.C := GO. (%) C7.L := G2.
EXIT G1: (1) GOAL := G2. 11, FAIL G4: (1) G4.L := G2.
(2} GOAL := @G2.
CALL G2: (1) G2.C := no_color; G2.L := nil.
(2) G3.C := GO. 12. REDO G2: (1) COLOR := G2.
GET_UNIFYING_CLAUSE: (1) CLAUSE := C3. (2) G3.¢C := G2.
(2) Insert C3 and (dummy) C4 as children GET_UNIFYING_CLAUSE: (1) CLAUSE := C4.
of G2. (3) COLOR := GO;
(4) C4.C := GO, (4) C4.C := no_color.
EXIT G2: (1) GOAL := G3. 13. EXIT G2: (1) COLOR := G2; GOAL := G3.
CALL G3: (1) G3.C := no_color; G3.L := nil. 14. CALL G3: (1) G3.C := no_color; G3.L := nil.
(2) G4.C : = GO. (2) 64.C := G2.
GET_UNIFYING_CLAUSE: (1) CLAUSE := C5. GET_UNIFYING_CLAUSE: (1) CLAUSE := C5.
(2) Insert C5 and (dummy) C6 as children (4) C6.C := G2.
of G3. Insert G5 as a child of CS5. (5) goback to step 1.
(4) C6.C := GO. (1) CLAUSE := C6,
(8) GOAL := @5. (4) C6.C : = no_color.
CALL G5: (1) €5.C := no_color; GS.L := nil. 15. EXIT @3. (1) COLOR := G2; GOAL := G4.
GET_UNIFYING_CLAUSE: (1) CLAUSE := C8.
(2) Insert C8 as a child of G5. 16, CALL G4: (1) G4.C := no_color; G4.L := nil,
(6) C8.L := G1. GET_UNIFYING_CLAUSE: (1) CLAUSE :=c7.
(4) C7.C := no_color.
FAIL GS: (1) G5.L := Gi.
(3) C5.L := Gt; GS.L := nil. 17. EXIT G4: (1) GOAL := GO.
(4) GOAL := G3.
18, EXIT GO: DONE.
Fig. 1: Execution trace of Algorithm 1 for the example Prolog program The
numbers in the parenthesis refer to step numbers in Algorithm 1. For brevity
sake, the steps that do not change values or affect the <control-flow are not

shown in the trace.

486

4. PERFORMANCE
We have implemented the scheme on a naive
interpreter. An algorithm based on the scheme
introduced in {81, is used to compute L(G,H). The
algorithm returns a goal, contributing some
binding to G, to whieh the interpreter must
necessarily backtrack to remove a cause of the
non-unifiability of goal G and head H. The
algorithm (see Algorithm 2), though less selective
than the one described in (8], is closer to the

algorithm implicit in [6] to construct the suspect

sets. Thus,
conclusions
by comparing the

algorithms wused 1in
the sets of suspects are

it will allow

us to draw meaningful

about the effectiveness of the scheme
execution

(1) and (4]
howrever,

statisties. The
for constructing
more selective

than the one implicit in our choice

The statistics collected during the experiments
are summarized in Table 1. The columns in the
table show the data about the search space, the
execution time and the size of the history tree

The search space is defined as the total number of
attempted wunifications, successful or otherwise,
between the goals and the heads of the clauses

Table 2 compares the speed-ups and the reductions
in the search space with some IB schemes. The
speed-ups mentioned under scheme KL are based on
the number of Rarren Abstract Machine (RAM [11})
cycles (6].

TABLE 1: A comparison between an interpreter using the proposed
scheme and a naive interpreter.
PROBLEM & FEARCH SPACE EXECUTION TIME HISTORY
—————————————————————— e e e TREE
REFERENCE aive Proposed Gain Naive Proposed Speed- SIZE
Naive sort [3]
7 elements 40006 2242 94 44.5 3.6 12. 4 153
8 elements 472845 9996 98 527 16. 0 33 192
Circuit design [6)
First solution 7003 2287 67 10. 6 5.8 1.8 1676
Four solutions 7408 2427 67 11.1 6.0 1.9 1699
Map colour -- good order (1] ~
First solution 320 260 18 0.3 0.3 " 240
Seven solutions 1198 768 36 0.7 0.7 1 768
Map colour -- bad order {11
First solution 1139248 423 99 684.5 0.4 >1500 268
Seven solutions 1377691 7337 99 826.0 8.7 95 365
6-queens -- simple solution [11]
First solution 10450 7081 32 13.7 13. 1.0 357
All solutions 42491 29563 37 55.9 57.1 1.0 375
6-queens -- clever solution [1)
First solution 1868 1157 38 3.2 3.6 0.9 240
All solutions 10345 6244 40 17.7 19.9 0.9 258
6-queens -- clever solution [1)] with calls in Noattack rearranged
First solution 1084 765 29 2.2 2.7 0.8 240
All solutions 5821 3982 32 11.7 14. 3 0.8 258
Database query (1) .
First solution 519 277 46 0.3 0.3 1 55
Four solutions 759 472 37 0.3 0.3 "1 58
Quick sort
10 elements 95 95 0 0.16 0.19 0.9 192
15 elements 151 151 0 0. 30 0.32 0.9 315
Binary tree [1]
187 187 0 0. 38 0. 41 6.9 425

487

Q

a

(4

cé (¢

Fig. 2: The history tree for the example Prolog program.

5. CONCLUSIONS

Comparisons show that the scheme results
considerable reduction in the search space
improvement in execution time, though moderate,
significant. Indeed, most of the overheads
e.g., maintenance of the tags and construction
the set of suspects --
schemes. As a result, We expect a good reduction
in the execution time if the algorithm is used
along With an IB interpreter. The more selective
is an IB scheme in choosing the backtrack points,
the better is the expected improvement from the
combined scheme. A better IB scheme is expected to
create a larger number of paths over ®hich the
interpreter may make redundant searches. Indeed,
the algorithm benefits the IB scheme too. Smaller
number of paths over which the interpreter makes
searches implies that the smaller w®ill be the
database of sets of suspects. This, in turn, will
reduce the number of spurious backtrack-points --
the Dbacktrack-points that do not result
successful search

in
The
is
of
are common with the IB

in a

The scheme can be tailored to trade search space
for storage. A goal that has completed an exit
step can be deleted, along with its descendents,
to recover storage. The price, we pay, is the
redundant search that may result when the
interpreter returns to a goal that has been
removed from the history tree. Perhaps, the
compromise lies 1in the wuse of a heuristic to
choose the goal-node for reclaiming the storage

Re experimented with a heuristic that reclaims

storage by removing the nodes with no descendent
goal-nodes. Even this simple heuristic promises a
graceful tradeoff between the search space and the
storage for the history tree

ACKNOWLEDGEMENTS
This work was done when the first author was at
AIT. The work was also supported by AIT Project
Initiation Grant, 1988-89. The Master's program
of the second author was supported by an
Australian government scholarship. Graeme Port
and Kanchana FKanchanasut helped the authors in

improving the clarity and focus of the paper

REFERENCES

1. M. Bruynooghe and L.M. Pereira, Deduction
Revision by Intelligent Backtracking, In: J.A.
Campbell (ed.), Implementation of Prolog, Ellis
Horwood, 1984, pp. 194-215.

2. T.Y. Chen, J.L. Lassez and @G. Port, Maximal
Unifiable Subsets and Minimal Non-unifiable
Subsets, New Generation Computing, Vol. 4,
1986, pp. 133-152.

3. H.F. Clocksin and C.S. Mellish, Programming 1in

Prolog, 2nd

1984.

edition, Springer-Verlag, Berlin

488

TABLE 2: A comparison with some ib schemes

=z=s=z===s===s====z=====sf==s=======s====ssgScSsSsSs==s=SSsss=ssSsSsSssssIssspsssssssss
PROGRAM (SEARCH SPACE EXECUTION TIME
(% reduction) (Speed-up)

r
Map color (bad order) 99 99 340 1250 >1500
Map color (good order){ 06 18 0.6 0.9 1.1
function unify(g, h: term; p: goal): goal; 4. C. Codognet, P. Codognet and Q. File, Yet
begin Another Intelligent Backtracking Method, In:
if g is an unbound variable R. A. Kowalski and K.A. Bowen (eds.), Logic
then begin Programming: Proc. of 5th Intl. Conf. and
bind g with h; Symp., MIT Press, Cambridge, Aug. 1988, pp.
remember G as the goal that binds g; 247-265
SPECIAL CASE: if g and h are both variables
and g is in a variable in head H 5. P.T. Cox, Finding Backtracking Points for
then instead of binding g wWith h Intelligent Backtracking, In: J.A. Campbell
we make g an alias of h; (ed.), Implementation of Prolog, Ellis Horwood
return null; 1984, pp. 216-233
end;
if h is an unbound variable 6. V. Kumar and Y-J. Lin, & Data-Dependency-Based
then return unify(h, g, p); Intelligent Backtracking Scheme for Prolog, J.
if g is a bound variable of Logic Programming, Vol. 5, Nr. 2, June 1988,
then begin pp. 165-181.
let gprime be the term bound to g and
let q be the goal that bound g to gprime; 7. J.H. Lloyd, Foundations of Logic Programming,
if q invoked its call after p 2nd edition, Springer-Verlag, 1987
then return unify (gprime, h, q)
else return unify (gprime, h, p); 8. V.M. Malhotra, T.V. To and K. Kanchanasut, An
end; Improved Data-Dependency-Based Backtracking
if h is a bound variable Scheme for Prolog, Information Processing
then return unify (h,q,p); Letters, Vol. 31, No. 4, May 1989, pp. 185-189
if functor(g) # functor(h)

/* g and h can not unify */ 9. @ Port, A Simple Approach to Finding the
then return p; Cause of Non-Unifiability, 1In: R.A. Kowralski
for each pair gi, hi of corresponding and K. A. Bowen (eds.), Logic Programming: Proc

arguments in g, h do of 5th 1Intl. Conf. and Symp., MIT Press,
begin Cambridge, Aug. 1988, pp. 651-665
X := unify (gi, hi, p);
if X # null 10. T.V. To, A History-based Backtracking Scheme
then return X; for Prolog, M. Engg. thesis, No. cS-88-6,
end; Division of Computer Science, Asian Institute
return null of Technology, Bangkok, December 1988
end.
11. D.H.D. Harren, An Abstract Prolog Instruction
Set, Tech. Note 309, SRI International, 333
Algorithm 2: An algorithm to compute L(G,H) -- the Ravenswood Ave., Menlo Park, CA 94025 (Oct.
suspect that executed the most recent call. The 1983).
algorithm is a simplified version of the
algorithm given in (8). For a goal G and head H 12. D.A. HWolfram, Reducing Thrashing by Adaptive
(both G and H are treated as terms), L(G H) = Backtracking, J. of Automated Reasoning, to
unify(G, H, GO) . appear, 1989

489

