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Abstract- This paper highlights the theory of com- 
monsense knowledge in terms of representation and 
reasoning. A connectionist model is proposed for 
commonsense knowledge representation and reason- 
ing. A generic fuzzy neuron is employed as a basic 
element for the connectionist model. The represen- 
tation and reasoning ability of the model is described 
through examples. 

I. INTRODUCTION 

The knowledge which is possessed by humans about 
the world is called commonsense knowledge and the 
method for making inferences from this knowledge 
is called commonsense reasoning [5]. The com- 
putational framework which is provided by fuzzy 
logic has been employed by Zadeh [11]-[15] to estab- 
lish the preliminary basis for commonsense knowl- 
edge representation and reasoning. Zadeh defines 
commonsense knowledge as a collection of dispo- 
sitions - propositions with implied fuzzy quanti- 
fiers [12]. He introduces a fuzzy-set-based meaning- 
representation system named test-score semantics 
[14] that provides a base for representing the mean- 
ing of complex propositions. Propositions contain- 
ing fuzzy predicates, fuzzy quantifiers, modifiers, 
and qualifiers, can be represented by the test-score 
semantics. Syllogistic reasoning in fuzzy logic is 
proposed as a systematic basis for inference from 
commonsense knowledge [12], [13], [15]. A set of 
rules is derived for combining evidence through con- 
junction, disjunction, and chaining. 
There are several methods for implementing 
knowledge-based systems [2]; a key factor that must 
be considered, is computational constraints. Con- 
nectionist models have a good potential in areas 
where many hypotheses are pursued in parallel and 
high computation rates are required. There are a 
number of connectionist models of knowledge base 
representation and reasoning [l], [3], [6]-[lo]. How- 
ever, they are unable to model the commonsense 
knowledge defined by Zadeh. 
In this paper, a connectionist model of common- 
sense knowledge representation and reasoning is 
proposed. Fuzzy neurons are used to form the 
structure of a fuzzy neural network. Section I1 re- 
views the theory of commonsense knowledge. A 
fuzzy neural network implementation of common- 
sense knowledge is introduced in Section 111. 

11. COMMONSENSE KNOWLEDGE REPRESENTATION AND 

Zadeh's approach to the semantics of natural lan- 

REASONING 

guages has two principal components. The first 
component, which is called test-score semantics, is 
a translation system for representing the meaning 
of propositions [14]. The second component, known 
as syllogistic reasoning [13], is an inferential system 

for arriving at an answer to a question which relates 
to the information resident in a knowledge base. 
A .  Representation 
In Zadeh's approach, a disposition is converted into 
a proposition with explicit fuzzy quantifiers. For 
instance, Frenchmen are not very tall is viewed as 
Most Frenchmen are not very tall .  A proposition 
p is regarded as a collection of elastic constraints, 
CI, C2,. . . , Ck, which restrict the values of a vec- 
tor X .  Canonical form [14] is used to represent the 
meaning of p .  When p represents a fact, its canon- 
ical form is expressed as 

p -+ X i s A  

and when p is a conditional proposition, its canon- 
ical form is expressed as 

p --+ i f  X is A then Y is B 

where X and Y are constrained variables defined in 
U and V ,  respectively. A and B are fuzzy subsets 
of U and V .  
Four rules are defined to facilitate the representa- 
tion of the meaning of a proposition: 
1. Modification rule 
A proposition of the form p = N is F ,  is represented A 

by 
A 

p = N i s F  + n,= F 

where l-JX = F is a possibility assignment equation 
[ll]. The modified proposition p+=NismF, where 
m is a modifier given by 

A 

N i s m F  -+ n,= F+ 

where F+ is the modification of F induced by m. 
In particular: 

A A 

A A 

P P 

(a) If m = n o t  then F+ = c o m p l e m e n t  F. 
(b) If m = very then F+ = F2. 
(c) If m = more OT less then F+ = F112. 

2. Composition rule 
Consider the propositions p 5 M is F --+ JJ, = F 
and q = N is G --f ny = G. Then 

A 

A 

(a) M i s F  and N i s G  -+ n(x,y) = F x G. 
(b) M i s F o r N i s G  4 n(x,y) = F + G .  
(c) If Mis F then N is G + n(x,y) = F' @ c. 
(d) If M is F then N is GelseN is H + = (E' @ 

G)  n ( F e  a). 
In the above definitions, if F and G are fuzzy sub- 
sets of U and V ,  respectively, then F' = com- 
plement F,  P F x V = cylindrical extension of 
F,  F x G = Cartesian product of F and G, + = 

union, and @ = bounded-sum. 

A 

A 

A A 

A 
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3 .  Quantification rule 
The meaning of the proposition p = Q N are  F ,  
containing the fuzzy quantifier Q, is represented by 

A 

' are nc C o u n t ( F / N )  = ' 
in which the relative sagma-count that denotes the 
proportion of F in N is defined as 

4. Qualification rule 
A qualified proposition is written in the form of 
q = p i s  y,  where y may be a truth value, a proba- 
bility value, or a possibility value. 

Let q be a truth-qualified proposition of the form 
q = N is F is T ,  in which r is a linguistic truth-value 
such as very true. Then, 

a 

(a) Truth qualification 

A 

N i s F i s r  i N i s G  

where F ,  G, and T are related by 

7 = P F ( G ) >  i.e., PG(U) = Pr(PLF(u)). 

(b) Probability qualification 
Let q be a probability-qualified proposition given by 
q = N is F is A, where X is a linguistic probability- 
value such as very likely. Then, 

A 

(c) Possibility qualification 
Let q be a possibility-qualified proposition of the 
form q = N is F i s  w ,  in which w is a linguistic 
possibility-value such as quite possible. A fuzzy sub- 
set G is required such that 

a 

N i s F i s w  i N i s G .  

A 
Then, if w =a-poss ib le  (i.e. p W ( v )  = CY for v = 1 
and p u ( v )  = 0 for V E [ O ,  l)), G, which is a fuzzy set 
of type 2 [ll], is given by 

PG(U) = [a A PG(u)>OL @ (I- P F ( u ) ) l >  

B. Reasoning 
Syllogistic reasoning in fuzzy logic can be employed 
in reasoning with dispositions. A fuzzy syllogism is 
expressed in the general form 

P ( Q I )  

- a(Q2) 

T ( Q )  

in which the major premise, p ( Q l ) ,  is a proposition 
containing a fuzzy quantifier &I; the minor premise, 
q ( Q 2 ) ,  is a proposition containing a fuzzy quantifier 
Q 2 ;  and conclusion, r (Q),  is a proposition contain- 
ing a fuzzy quantifier Q. Several syllogisms have 
been developed for reasoning with dispositions. 
Intersection/product, consequent/conjunction, and 
antecedent/conjunction are the basic syllogisms. 

111. CONNECTIONIST MODEL OF COMMONSENSE 

The theory described in Section 11, represents the 
compatibility of a disposition with the data resident 
in an already existing explanatory database. This 
theory is now employed for the construction of a 
knowledge base as well as for reasoning. In this 
section, a connectionist model, which is composed 
of generic fuzzy neurons [4], is proposed for com- 
monsense knowledge representation and reasoning. 
In the generic fuzzy neuron, the inputs and output 
are fuzzy sets over different universes of discourse. 
The connection, aggregation, and activation func- 
tions, which determine the operation of the neuron, 
are fuzzy relations. A number of fuzzy neurons can 
be defined by changing the neuron functions. 
The proposed approach is explained through the 
following examples. Consider the propositions and 
their canonical forms 

KNOWLEDGE 

1. Ed is 30 y e a r s  old i s  t r u e .  i ( A g e ( E d )  i s  30) i s  true. 
2.  Tan is y o u n g .  -+ A g e ( T a n )  i s  young .  
3. S a l l y  is old is  not  possible. i (Age (Sa l1y )  i s  old)  is not  
possible. 
4. David i s  young  is VCTY l i ke l y .  -+ ( A g e ( D a u i d )  is young)  
is v e r y  l i ke l y .  

I h I I I I 

Fig. 1. Connectionist implementation of the Age attribute. 

The constrained variables are Age(,%), A g e ( T a n ) ,  
Age (Sa l l y ) ,  and Age(Dawid) .  The constraints, 
which are fuzzy subsets of the Age  domain U = 
[0,100], are 30, young, and old. The modifiers- 
quantifiers-qualifiers are true, not, possible, ve ry ,  
l ikely.  The constraint 30 is considered a fuzzy sin- 
gleton which has the value 1 for ui = 30 and 0 
for uia[O, 1001, ui # 30. The information given in 
terms of the four propositions, is represented by a 
fuzzy neural network as illustrated in Figure 1. The 
network represents the A g e  attribute and consists 
of two parts: forward reasoner ( A g e F )  and back- 
ward reasoner (Ageg). The inputs to the forward 
reasoner are the values of the constrained variables. 
Each input is represented by a neuron. The outputs 
of the forward reasoner is a fuzzy subset of U. 
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The Age neurons represent the constraints and are 
shared between the two parts of the network. The 
output of each neuron is a fuzzy subset of U and 
indicates a constraint. They have null inputs and 
are always active. Modifiers-Quantifiers-Qualifiers 
( M Q Q )  neurons implement the rules defined for the 
representation of meaning of propositions, and op- 
erate differently in each part of the network. The 
network inputs are distributed among the connec- 
tion functions of MO& neurons as weights. When 
a MQQ neuron becomes active in the forward rea- 
soner, it maps a fuzzy subset of U into another 
fuzzy subset of U .  The M A X  neuron in the for- 
ward reasoner performs the fuzzy max operation. 

In the backward reasoner, the compatibility 
(COMP)  neurons compare the input with the con- 
straints. The output of a COMP neuron indicates 
the degree of compatibility between two fuzzy sets. 
The calculated compatibility degree passes through 
a MQQ neuron in which it is translated to a single 
value varying in the interval [0,1], using the mem- 
bership degree of the function represented by the 
node. 
Once a query is posed to the system, its state of 
activation evolves automatically and produces an 
answer to the query. The fuzzy neural network 
can respond to the queries of the form Age(Ed, 30), 
Age(Tan, old), Age(Sally, z), and Age(x,talJ). In 
a query, if two arguments are specified, e.g. 
Age(Tun, old), the inference process is carried out 
in both forward and backward reasoners. The for- 
ward reasoner produces a fuzzy set, whose mem- 
bership degree is close to that of YOUNG, at its 
output (AGEOUT) indicating that Tan is young. 
The backward reasoner, however, produces a value 
at its output (TANOUT) representing the possibil- 
ity degree that Tan is old. This value would be 
close to 0 as the system has been told that Tan is 
a young person. When a constraint is not spec- 
ified in a query, e.g. AGE(Tan,x) ,  the forward 
reasoner produces the answer. However, if the par- 
ticular value of the constrained variable is not speci- 
fied, e.g. Age(z, young), all backward reasoner out- 
put nodes become active indicating in this exam- 
ple the possibility degree that the related person is 
YOUNG.  
Representation and reasoning with conditional 
propositions is explained in this part. Let p be 

if T a n  is young then Tom is tall 

in which the constrained variables are Age(Tan) 
and Height(Tom). The constraints are fuzzy sets 
Y O U N G  and TALL.  Figure 2 illustrates the con- 
nectionist implementation of p .  Three blocks are 
displayed in the figure, A g e ,  Height,  and If. The 
Age block represents the attribute Age which was 
described earlier. The Height block stands for the 
attribute Height and is constructed in the same 
way as the Age block. It is assumed that the system 
has no knowledge about Tom's height in the Height 

block. The If block implements conditional propo- 
sitions. It communicates with the attribute blocks 
involved in the premise and conclusion parts of the 
ifclause. Similar to the Age block, an I f  block has 
two reasoners and contains MQQ neurons. 

Fig. 2. Connectionist implementation of a conditional 
proposition. 

In the forward reasoner, a M A P  neuron, which con- 
tains the relation YOUNG' @ T A L L ,  maps the in- 
put fuzzy set AGEOUT into another fuzzy set on the 
the Height domain. In the backward reasoner, the 
COMP neuron, which contains the relation TALL,  
calculates the degree of compatibility of the input 
fuzzy set HEIGHTIN with the fuzzy set TALL.  
The M A P  neuron in this part, maps a fuzzy set 
from Height domain into Age domain using the 
relation YOUNG @ TALL. If the neuron's in- 
put is the fuzzy set TALL,  the output becomes 
the fuzzy set YOUNG. The inference process is 
demonstrated with the following examples. Given 
the query Height(Tom, x), the input TOMIN ac- 
tivates SALLYIN as a result. In the Age block 
the inference process is carried out, producing the 
fuzzy set Y O U N G  at its output AGEOUT neuron. 
Next, the MQQ neuron in the I f  block receives 
Y O U N G  at its input, and since the weight provided 
by TOMIN in its connection function is 1, the neu- 
ron provides the fuzzy set T A L L  at its output. The 
fuzzy set TALL passes through the MQQ neuron. 
The result has a membership degree very close to 
that of fuzzy set T A L L  because of the modified- 
truth-value V E R Y  TRUE.  Consequently, the re- 
sult appears at the output neuron, HEIGHTOUT. 
If there is no information on Tan's age, AGEOUT 

- 
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remains inactive and so does HEIGHTOUT. Cor- 
respondingly, if the query Height(e,taZZ), is posed 
to  the system, the backward reasoner in the If 
block, produces a possibility degree that Tom is tall. 
There would be a very small value at AGEOUT if 
the system has no knowledge of Tan’s age. 
Often the input information possesses a hierarchi- 
cal structure so that the representation and rea- 
soning scheme must deal with it accordingly The 
approach which is presented in this paper can rep- 
resent this information and reason from it. To il- 
lustrate this ability, consider the following proposi- 
tions 
1. Pigeon is a bird. 
2. Canary i s  a bird is true. 
3. Catl is a cat is likely. 
4. Cat2 i s  a cat. 
5. Most birds  are not mammal. 
6. Cats are mammal. 

in which bird and cat are subsets of mammal. Fig- 
ure 3 shows a connectionist realization of these 
propositions. The left part of the figure represents 
the forward reasoner and the right part displays 
the backward reasoner. M Q Q  and M A X  neurons 
are employed for construction of the network. As 
stated earlier, MQQ neurons operate differently 
in the forward and backward reasoners. Once a 
query is posed to the system, the state of activation 
evolves automatically and the system produces an 
answer to  the query at the output nodes. Consider 
the query Is Catl a mammal? which is posed by 
providing the input to  the CATlIN neuron. The 
nodes L I K E L Y ,  M A X ,  and CAT neurons in CF 
block become active. The output of CAT neuron 
will be a number in the interval [0,1] that repre- 
sents the possibility degree of CAT1 being a CAT. 
A similar inference process is done in the MF part, 
so that its output node MAMMALOUT denotes 
the degree that Catl  is a mammal. The connection 
functions of the M Q Q  nodes in M F ,  BB,  and CB 
perform the max operation on the weight and neu- 
ron input. As a result, the system will also be able 
to respond to  queries such as I s  Cat a mammal?. 

The proposed architecture performs syllogistic rea- 
soning as a basis for inference from commonsense 
knowledge. Different parts of the system can be 
linked together to provide multiple inheritance. 

IV. CONCLUSION 

Zadeh’s theory of commonsense knowledge is re- 
viewed briefly in this paper, to establish a basis for 
representation of dispositions and reasoning from 
them. A connectionist approach is proposed for 
implementing commonsense knowledge and reason- 
ing based on Zadeh’s theory. The model is imple- 
mented using a fuzzy neural network, the structure 
of which is formed using generic fuzzy neurons. The 
proposed architecture performs syllogistic reason- 
ing as a basis for inference. The examples illustrate 
the method of the system operation. 
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