
Proceedings of the 9th International Conference on
Neural Information Processing (ICONIP'OZ) , Vol. 2
Lip0 Wan& Jagath C. Rajapakse, KuIllhiko Fukuhma,
Soo-Young Lee, and Xm Yao (Editors)

NEURAL NETWORKS IN FPGAS
INVITED

Amos R. Omondi

School of Informatics and Engineering
Flinders University

Bedford Park, SA 5042
AUSTRALIA

ABSTRACT

As FPGAs have increasingly become denser and faster,
they are being utilized for many applications, including the
implementation of neural networks. Ideally, FPGA imple-
mentations, being directly in hardware and having paral-
lelism, will have performance advantages over software on
conventional machines. But there is a great deal to be done
to make the most of FPGAs and to prove their worth in im-
plementing neural networks, especially in view of past fail-
ures in the implementation of neurocomputers. This paper
looks at some of the relevant issues.

1. INTRODUCTION

FPGAs have steadily improved in capacity and performance,
to their extent where they are now being used for large ap-
plications. In this paper we consider some of the issues in-
volved in using FPGAs to implement neural networks. A
major motivation in the use of FPGAs is that being hard-
ware, such implementations will have significant performance
advantages over software implementations on conventional
machines. This, however, is not necessarily so: it is not the
case that any hardware implementation will be better than
a software one, especially given the high performances that
current microprocessors have to offer. Section 2 of the paper
looks at the hardware versus software issue and, in particu-
lar, highlights the need for proper benchmarking. In Section
3, we consider the issue of parallelism, which seems to be a
major motivation in many proposed or implemented F'PGA-
neural networks. The key point made in that section is that
the exploitation of parallelism, by itself, should not be a pri-
mary goal. Section 4 is a discussion of arithmetic; this is
especially important, given that much of the computation in
neural networks is arithmetic. However, the general area re-
mains one in which relatively little work has been done. In
Section 5 we present a case study of an implementation that
we carried out and discuss some of the lessons learned. The
last section is a summary.

Jagath C. Rajapakse

School of Computer Engineering
Nanyang Technological University

N4 Nanyang Avenue
SINGAPORE 639798

2. HARDWARE OR SOFTWARE?

Several proposals have been made to implement neural net-
works on FPGAs on the grounds that neural computation
requires high processing rates and that the hardware of FP-
GAS is better than the software (of a simulation) on a con-
ventional processor. On this basis alone, FPGA implemen-
tations would fail for the same reasons that past ASIC im-
plementations of neurocomputers failed. We have discussed
this point elsewhere and will not emphasize it here. Never-
theless, a few remarks are in order: Although it is reason-
able to claim, in general, that hardware implementations of
a given algorithm will be faster that software implementa-
tions of of the same algorithm, the validity of such a claim
depend on many factors, e.g. exactly what platforms are be-
ing compared. Current high-end, conventional off-the-shelf
microprocessors have clock rates in excess of lGHz and
employ pipelining and parallelism (limited, though it may
be) to execute several instructions in a single cycle. This
gives an enormous processing rate. Furthermore, small-
scale parallel configurations of such processors are readily
available or can be constructed to given even higher per-
formance. Therefore, carefully tuned software implemen-
tations of neural networks on such processors are perfectly
capable of very high performance. This is even more true
for DSPs, which are specialized for the types of arithmetic
required for neural networks and are capable of higher per-
formance than conventional processors on their target appli-
cations.

FPGAs generally cannot compete with ASICs as far as
performance goes, and P G A neural-networks implemen-
tations realized on the basis of performance claims need to
be justified with the results of careful comparisons against
implementations on processors such as those above. So far
there are hardly any such results - at least, not substantial
ones that convincingly argue the case - and much work
remains to be done in this regard. Of course, one can read-
ily find many results of the type "this neural-network im-
plementation [FPGA or otherwise] performed X times bet-

954

ter than an implementation on this PC or that workstation”.
Such results have some limited value, e.g. when narrowly
restricted to some particular application and are on hard-
ware platforms of about the same generation, but their gen-
eral worth is dubious. A close examination of such results
will quickly reveal several problems: typically, the basis on
which the benchmark applications were selected i!j never
given; the choice of the platform against which the compari-
son is being made and the parameters of the platform are un-
specified; comparisons are made between a neural-network
implementation that is essentially running on bare haIdware
against a processor with many added layers of software; and
so forth. What is urgently needed here is a thorough and
systematic approach to benchmarking - of the standards
that the primary computer-architecture community hlas now
established. We believe that when adequate studies of that
type are carried out, it will be hard to justify the use: of FP-
GAS purely on the grounds of performance (“hardware is
faster than software”). However, keeping in mind the ra-
tionale for FPGAs, it should be possible to justify them on
performance relative to other factors, such as cost, design
time, and flexibility. Designers should therefore paly more
attention to these factors, in particular the the last, through
reconfiguration of FPGAs for different types of neural net-
work.

glossed over: the first is that algorithm-to-hardware map-
ping is not always easy, and, therefore, sequential computa-
tion is to be preferred, provided the choice does not affect
performance; the second is that algorithms inevitably have
sequential parts, which means that Amdahl’s Law applies
and there are, therefore, limits to the usefulness of paral-
lelism; and the third (for implementation in FPGAs) the per-
formance gap between ASIC and FPGA technologies. The
obvious implication of Amdahl’s Law, it is more critical to
expend effort on the those aspects of computations that have
low parallelism, rather than emphasize, as currently tends
to be the case, the highly parallel parts that can readily be
mapped onto the parallel structures of FPGAs. In this re-
gard the the latest FPGA chips offer an unexplored oppor-
tunities: several such chips contain both a typical reconfig-
urable component (which can be used for high parallelism)
and an embedded core processor (which can be used for
control and sequential computations). On such a platform,
one cannot merely argue for the exploitation of parallelism,
since the sequential processor may well be capable of doing
a better job (on a given task) than the reconfigurable part.
The challenge therefore is to carefully consider the trade-
offs and to find useful ways of exploiting both aspects of
the hardware; most likely, the winning aspect of the FPGA
will be its reconfigurability (for different tasks), rather than
the parallelism that ot offers.

3. PARALLELISM
4. ARITHMETIC

In the past, a great deal of work in the hardware implemen-
tation of neural networks (including neurocomputers) has
centered around the exploitation of parallelism. The argu-
ment in such work is usually that neural networks are in-
herently parallel, and, therefore, there are advantages in ex-
ploiting this. Since FPGAs are also inherently parallel, in so
far as a typical FPGA consists of identical cell-blocks that
can operate in parallel, there appears to be a ready match be-
tween FPGAs and neural networks. Not surprisingl,y, there-
fore, many proposals have been made in this direction, in-
cluding a few for neural supercomputers based on ETGAs.
This may not necessarily be the best way to go: many of the
arguments given for the exploitation of parallelism in neural
networks in FPGAs are exactly the same ones given about
a decade ago for doing the same thing in ASICs, and they
will not yield fruitful results for much the same reasons that
earlier efforts failed 123. Parallelism is not an end to itself;
performance is the main issue.

Whether or not a neurocomputer is realized through soft-
ware simulations or in hardware does not matter, as; long as
the performance goals are satisfied. Similarly, whether or
not an implementation or simulation is sequential or par-
allel does not matter as long as performance is adequate.
There are three main points that need to be taken into ac-
count as far as the parallelism goes, but which teind to be

Much of the computation that has to be carried out for neu-
ral networks consists, essentially, of arithmetic operations,
such as matrix arithmetic (addition, subtraction, multipli-
cation, and transposition), which are essentially just data
movement and multiply-accumulate type of vector opera-
tions, operations for squares, absolute values, search min/max,
rounding, normalization of weights, weight saturation, and
some elementary functions (e.g. exponential, tanh, and sig-
moid) . In contrast with other aspects of neural-network
hardware implementations, whether in ASIC or FPGA, arith-
metic is one area where much more work is required.

There are roughly three main ways in which arithmetic
facilities may be provided for neural-network processing.
One is to use combinations of basic neural networks (i.e.
those with just weighted sums, threshold activations, and
weight assignments) to realize the arithmetic operations. The
second approach is to replicate a simple, special-purpose
processor that can carry out all of the desired operations;
this is the basis of many hardware neurocomputers. And
the third is to use conventional (i.e. off-the-shelf) hardware.
We have argued elsewhere that only the last approach is cur-
rently reasonable [2] ; and in what follows it will be the main
concern, particularly with respect to FPGAs.

For many of the arithmetic functions that need to be im-

955

plemented for neural networks, it is hard to find good com-
parative results for ASIC implementations. For example, it
is doubtful that one can readily identify the best implemen-
tation of the sigmoid function for a given ASIC technology,
even though this is an important function whose implemen-
tation has been studied for some time. One can find (or
derive) some comparative results, but almost all of these
are relatively crude, in so far as they are estimates based
on numbers of gates (for cost) and gate delays (for perfor-
mance), and so forth; the results might provide some rough
guidance, but that is about all. In the case of FPGAs, even
such results are practically non-existent and are urgently re-
quired. In the case of the sigmoid function, for example,
there are there are no results readily available that compare
(or on which one can compare) the possible implementa-
tions in FPGA. An additional problem that needs to be ad-
dressed is that many of the designs that have been developed
over the years for implementing arithmetic functions have
been optimized for FTGAs but have mostly been carried
over unchanged into FTGAs. Moreover, most researchers in
the area do not appear to keep track of continuing develop-
ments in computer arithmetic. Consequently, many imple-
mentations of arithmetic function in PGA-neural networks
are far from ideal.

Another critical area that needs much work is in the
choice of various functions of neural networks. In many
cases, functions have been chosen mainly for their value
from a neural-network point of view and not with hardware
implementation in mind: this is especially so for the more
complex functions. Given that FPGAs offer many opportu-
nities to consider functions that previously one would not
have considered for hardware implementation, the imbal-
ance now needs to be addressed.

5. A CASE STUDY

As a demonstration vehicle for discussion some issues that
we think neural-network need to consider, with respect to
hardware implementations, we will take an application, in-
dependent component analysis, whose PGA-implementation
we have studied [6]. Independent component analysis (ICA)
transforms a multivariate random signal into a signal with
components that are mutually independent, and in doing so
eliminates higher-order statistical dependencies of the sig-
nal and provides components that are not correlated in the
sense of higher-order statistics [13. A common use of ICA
is in blind signal separation, in which the input is taken to
be a set of linear mixtures of independent sources, and the
aim is to extract the independent sources with minimal as-
sumptions about the original sources. Because it is used
extensively, there is growing interest in implementing it ef-
ficiently. In the study, we looked at the implementation of
independent component neural networks (ICNNs) for car-

rying out ICA.

5.1. The computation

The input signal x = (z1,22, . . . , z,)~ to the neural net-
work is assumed to be a set of mixtures of independent
sources or components (ICs) c = (cl, c2, . . . , c,)~ where
n and m are the numbers of input signals and of indepen-
dent components, respectively. For simplicity, we consider
the case of complete ICA in which m = n. We then have

X = A C (1)

where A = {aij}nxn denotes the linear mixing matrix. The
ICNN learns to produce the demixing matrix W such that
W = A-' with with a minimal knowledge of A.

Consider a single-layer ICNN with n nodes at the in-
put and n neurons at the output layer. Let the .weight ma-
trix of the network be W = { ~ i j } ~ ~ , , and the activation
function of neuron i be fi(.). Then the network output
Y = (Yl, Y21.. . , Y d T is given by

u = w x (3)

After learning, the output components of the ICNNs will be
independent. That is

n

(4)

where pyi (pi) indicates the marginal density of the compo-
nent yi.

We consider three ICNNs optimizing three different con-
trast functions: maximizing mutual information (MI) be-
tween input and output signals of the network, minimizing
divergence of the output (DO) of the network, and maximiz-
ing likelihood of the inputs (LI). It has been shown that the
learning equation of networks can be reduced to

AW = P [W - ~ + Q (u)x~] (5)

where * (U) = (@l(u~), @2(u2), . . . , @ n (~ n)) T and ai(-)
is a nonlinear function. p is the learning factor [3].

Bell and Sejnowski [4] proposed an ICNN that adapts to
maximize information transfer between the input and output
of the network (infomax criteria). In this case the learning
equation is given by Eq. (5) with

956

where fi(.) is the i th neuron’s activation function and f,!(.)
is the first derivative of fi (.) .

Amari et al. proposed an ICNN that uses the Kullback-
Leibler (K-L) divergence as the contrast function [5] . Here,
the learning equation is given by Eq. (5) with

3 25 14 47 29
4 2 d 2 3 4 4

+Z(UZ) = --U11 - -U? + -U; + -U5 - --?,a (7)

where U , is the synaptic input to the i th neuron.
Lastly, Lee et al. have proposed an IC” that uses the

likelihood of inputs as the contrast function. If the synaptic
inputs to the neurons are mutually independent, the like-
lihood of inputs is maximized [8]. The gradient-learning
equation n this case is given by Eq. (5) with

where pu,(ui) is the probability density function (pdf) of
total synaptic input to the i th neuron.

5.2. Implementation

The particular device on we used in the study is is .the Xil-
inx XCV812E, which consists of over 0.25 million logic
gates (in about 20K slices) and around lMbits of RAM. We
looked at two types of implementation: one based on com-
binational logic and one based on lookup tables.

Lookup-table

In the LUT approach, the implementations of the non-
linear functions 4%(u2), given the synaptic inputs U,S, are
done by using a lookup table. The size of the lookup table
depends on the number of bits in the synaptic input U,. The
synaptic input value is used as the reference in selecting the
output of the nonlinear function, and the corresponding val-
ues of the nonlinear functions given by Eqs. (6) and (7) are
stored in the RAMS in the design of two neural networks.

The storage does not map all possible input patterns to
individual entries; if that were done, the table-size would be
extremely large. Instead, advantage is taken of the fact that
in many cases several input patterns will lead to the same
output pattern and that many of the subsequent operations
greatly truncate the results, in such a way that some: distinct
patterns end up producing the same results. Taking all the
various numerical factors into account, a highly compressed
table can be used.

Combinational logic (CL)

If the activation function of neurons is given by the sig-
moidal fi(u) = a(1- e -bu) / (l + e-bu), then the nonlinear

function 4~ (U) is given by

U

-t3 tl‘ l - i I = l Multiplier

Radix-4
Normalikmtion

for Exponential

Newton-Raphson
Reciprocal

Multiplier

t l 4

For the implementation of the nonlinear function cor-
responding to the IC” maximizing MI, the exponentials
are computed using the radix-4 normalization (R4N) tech-
nique [7]. The division in Eq. (9) was carried out by using
Newton-Raphson Reciprocation (NRR) and multiplication
[7]. A block diagram of the implementation of the above
function with a = b = 1.0 is given in Figure 1, in which

957

the synaptic input is normalized to lie between -1 and +1
before computation of the exponential and the final value is
obtained by appropriate shifting of bits.

u u U 6 Multiplier

I.+T Multiplier

I

I 7 F? Multiplier

rf Register

I

u5, u7,u9, U”

I

12

Constants

-2914

1413
-2514
-314

MUX

t t

Multiplier

Register t 1
t

Small prototypes of the ICNNs, each consisting of sev-
eral neurons, In order to implement the ICNN minimizing
the DO, as seen in Eq. (7), a number of odd-order powers of
ui need to be evaluated. Since computation up to the 1 Ith
power is involved, the input values uis were restricted be-
tween -2 and +2. As a number of powers of U is evaluated,
the function value, given a synaptic value, was computed in
5 iterations using the design shown in Figure 2.

were implemented and compared in terms of cost and

performance. Figure 4 is a block diagram of the implemen-
tation of a single neuron. As shown, each neuron is imple-
mented in a pipeline of four processing stages: a RAM stage
for the weight values, a stage that computes the synaptic in-
puts, a stage that computes (by table-lookup or arithmetic
units) the nonlinear function q!~ in the learning equation, and
a stage for the computation of the change of weights. Input
signals stored in the RAM cycle through the loops until the
weight-updating converges. Once the weights stabilize, the
system produces the separated sources.

lnpu

t
Weight-RAM

Synaptic-Input
Calculation

I

Learning

Weight

Figure 3: Implementation of one ICNN-neuron

The results (cost and performance figures) for a single
neuron are given in Tables 1 and 2. Table 2 shows that the
LUT approach is both faster and cheaper to implement than
the other two approaches: however, in P G A devices with
limited memory, there may still be a case for not using a
total-LUT approach. Table 2 also shows that the DO learn-
ing function is cheaper to implement than the MI function,
which indicates the importance of the choice of the learn-
ing function: whereas at a theoretical level several learning
functions may be taken to be equal, in so far as they yield
similar results, for hardware implementation a further level
of differentiation is required.

With combinational logic, it should be noted that it is
possible to obtain faster and smaller implementations than
those indicated by Tables 1 and 2. For example, in the DO

958

I Implementation) I Cost I Time 1

Weight-RAM
L (1 (slices) 1 (cycles) I
1 Lookup-table 1 1 93 (DO) I 1 I

(slices) (cycles)
23 1 1 1 1

Comb. logic (MI) 1044

I Unit 11 Cost 1 Time 1

Input derivation 334 8 1 Aw-computation 11 352 I 5 1
Table 2: Implementation of other units of neuron.

Table 1 : Implementations of learning functions.

implementation, all the multipliers were pre-synthesized mul-
tipliers, each consisting of carry-save adders (CSA,) and a
carry-propagate adder (CPA). But given the structure of the
implementation, it is possible to remove all but one of the
CPAs, thus greatly speeding up the operation. Recoding
would also further improve the speed of the multipliers, by
trading off latency for throughput.

Perhaps just as important as the purely-hardware tech-
niques, careful consideration ought to be paid to the choice
of the learning function: for example, it would be help-
ful to a learning function with fewer terms in the polyno-
mial but without a loss of accuracy. Techniques such as
economization-of-power-series are useful in this regard, but
once again, the indication is that a more hardware-directed
approach to devising the learning function should be exer-
cised. Overall, further investigation should be carried out
on the implementation of such functions.

Techniques similar to those just described could also be
used to realize a more effective implementation of the MI
function. Furthermore, since division can be carried out nor-
malization, the cost could be greatly reduced by using the
same hardware for both exponentiation and division. What
is more significant, however, is again the indication that
careful decisions at the theoretical level can greai:ly assist
in the hardware implementation. In the MI implementation,
a great deal of the hardware is used just for range reduction
(to pre-process the input and correspondingly posit-process
the output). Obviously it would be much better if it arranged
for the input was in the proper.

6. SUMMARY

We have discussed several issues that we think are impor-
tant for future implementations of neural networks in FP-
GAS. Four main points have been made. The first point
is that careful benchmarking is required to determine the
worth of hardware implementations of neural networks and,
therefore, when best to use them. The second point is that
implementation should look beyond just the exploitation of
parallelism, in particular they address situations where high
parallelism is not always available, and also tak:e advan-
tage of developments in technology. With both of these
points, the key areas are, perhaps, to emphasize lother pri-

mary aspects of FPGAs, such as reconfigurability (which
implies evaluation with suites of applications, rather than
one or a few applications), development time, and rapid-
prototyping. The third point made is that the entire field
of computer arithmetic, in the context of neural networks,
needs to be thoroughly explored, especially for FPGA im-
plementations. And the last point is that neural-network
functions ought to be selected with hardware implementa-
tion in mind.

7. REFERENCES

[l] P. Comon, ”Independent component analysis - a new
concept?”, Signal Processing, vol. 36, no. 3, pp. 287-
314,1994.

[2] A. R. Omondi, ”Neurocomputers: a dead end?,” Inter-
national Journal of Neural Systems, vol. 10, no. 6, pp.

[3] J. C . Rajapakse and W. Lu, ”Unified approach to inde-
pendent component neural networks”, Neural Compu-
tation, 2000.

475-481,2000.

[4] A. J. Bell and T. J. Sejnowski, ”An information-
maximization approach to blind separation and blind
deconvolution,” Proceedings of I995 International
Symposium on Nonlinear Theory and Application

[5] S. Amari, A. Cichocki and H. Yang, ”A new learn-
ing algorithm for blind signal separation,” Advances
in Neural Information Processing Systems 8, 1996.

[6] A. B. Lim, R. C. Rajapakse, and A. R. Omondi, ”Com-
parative study of implementing ICNNs on FPGAs,”,
Proceedings, International Joint Conference on Neu-
ral Networks, pp. 177-182,2001.

[7] A. R. Omondi, Computer Arithmetic Systems,

[8] T-W. Lee, M. Girolami, and T. J. Sejnowski. ”Indepen-
dent component analysis using an extended Informax
algorithm for mixed sub-gaussian and super-gaussian
sources,” Neural Computation, vol. 11, no. 2, pp. 409-
433,1999.

(NOLTA-9S), pp. 43-47,1995.

Prentice-Hall, UK, 1994

959

