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Abstract 
A new approach is proposed in this paper for the nonlinear control 
of a flexible cantilever beam which is excited under a principal 
parametric vibration. The approach is based on a bifurcation 
control principle that combines linear and nonlinear feedback 
control strategies. A simplified nonlinear vibration model that 
accounts for the beam’s flexibility and the control feedback, is 
first derived by using the method of multiple scales. The analysis 
of stability based on Krasovskii’s theorem is then applied to the 
above system. Simulation results show that the proposed approach 
is effective for use in the case of parametric vibration control. 
Key words: Bifurcation control, nonlinear model, parametric 
excitation, multiple scales. 

1 Introduction . 
Nonlinear motions of parametrically-excited systems are 
frequently encountered in various structures where the excitation 
frequency is close to twice that of any of the structure’s natural 
frequencies. Many researchers have investigated the non-linear 
response of parametrically-excited systems. A review of the 
literature can be found in the texts by Nayfeh and Mook[ll, and 
Schmidt and Tondl[2]. In contrast, however, there is little 
literature on the subject of bifurcation control of parametrically- 
excited systems, because of the lack of a universal technique for 
the analysis of these kinds of nonlinear systems. Recently, it has 
been shown by Oueini and Nayfeh131 that vibration amplitudes 
resulting from nonlinear resonance can be suppressed by a cubic- 
velocity and a cubic-position feedback. Based on their work, a 
new method which combines the bifurcation control and the 
nonlinear-feedback control, is proposed in this paper to suppress 
the principal resonance even when the excitation frequency is 
close to twice that of the first mode’s frequency. In this manner, 
the onset of bifurcation can be avoided. Two feedback methods 
are employed; a linear-velocity feedback method is employed to 
suppress the bifurcation, and a nonlinear-cubic-velocity feedback 
method is employed to minimise the amplitude of vibration. 
Furthermore, Krasovskii’s nonlinear system stability theorem is 
used to justify the stability of the control system. Simulation 
results show that the proposed control strategy leads to effective 
bifurcation control and vibration suppression at the principal 
resonance points. 

2 System Description 
Many structural elements can be modelled as a slender beam. 
When the support of a beam undergoes motion, the beam is 
subjected to vibration which is either extemal, or parametric, or 
both. A flexible cantilever beam mounted on a shaker and 
actuated by piezoelectric patches is chosen as the experimental 
model, because it is a convenient structure for exhibiting such 
complicated phenomena in a controlled setting. In accordance 
with the model proposed by Crespo da Silva and Glynn[4], the 
dynamics of the first mode of vibration for a long slender non- 
extendible beam can be expressed in the following non- 
dimensional form: 
i t ‘ +  v + 2 ~ p  ,ir + ~ j ~ l i r l ~  + E a  I v 3  + E a  , v 2 v  
+ E a  , v i r 2  = EVF cos( i2 t )  + E P ,  ( 1  1 
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where v is the generalised co-ordinate, F and R are the forcing 
amplitude and frequency, respectively, P is a control feedback, 
and E is a dimensionless bookkeeping parameter. Consider the 
principal parametric excitation case where i2 = 2 + EO, 

in which o is  a detuning parameter. The method of multiple scales 
is used for the solution of ( I ) ,  in which the uniform expansion of 
vis expressed as v(TO,T,,c)= V~(T~,T,)+EV~(T~,T,)+~~~, 
where To = t is a fast scale characterising the motion at the 
frequency R, and TI = E t is a slow scale characterising the time 
variations of the amplitude and phase. Substituting (3) into (1) 

yields Do2vo + vo = 0, (4) and 

(5) 
DO2v, +v, =-2DoD1v, - 2 p 1 D 0 ~ ,  - $ 2 ~ D o ~ o ~ D o ~ o  -a,vO3 
- a2vo2Do2v0 -a,vo(Dov0)’ + v,Fcos(12To). 

The solution can be expressed as v, = A(T,)e“;’ + A(T,)e-lT0 , 
where A(T3 is a complex-valued function to be determined, and 
A(T,) is its complex conjugate. According to the solvability 
condition and by substituting a = 3a1 - 3a2 +a,, f = F I4  in (5), 

2 i ( D , A + ~ A ) + ~ ~ ~ ~ D o v o ~ D o v o e 1 5 ~ ~  +d2A-Gfdd“ = O .  (6 )  

Expressing A in polar form gives A = a(T,)e”(T1) / 2 .  The selected 
feedback control law is expressed as P = -(Kc? + K , i )  , where 
K, is the gain of the cubic-velocity feedback and Kv is the gain of 
the velocity feedback; both of which are tuneable. Using the 
above expressions, yields the simplified nonlinear vibration 

model: 

(2) 

(3) 

2T 

a ’  = - a l a  - a 2 a 2  - a l a 3  + af sin y 

I; 3K, 
2 ’  8 

a y  = o a  - a a ’ +  2af  cos y 9 i 

i qf = -44 - 

where y = aT, - 2p,  ill = 2 A, = p, + K,, andil, = -. 

3 Nonlinear Stability Analysis 
For stability analysis, the Cartesian form is used 
for A = ( p  - iq)egT 1 2 , ~  = U / 2 .  Substituting it into (6)  yields: 

P ’ = - 4 P - ~ 2 P @ 7 - 4 q ( P 2  +q2) -Vq+a ,q (P2  +q’)+d 
- M P ’  + q2 ) + VP - a,P(P + q2 1 + Pi 

According to Krasovskii’s theorem[5], two symmetric positive 
definite matrices Q and Z (unit matrix) are chosen such that, b p 4  
& 4 4 ,  if the matrix F described by F = JQ + QJ’ + I, is negative 
semi-definite (where J is the Jacobian matrix), then the system is 
asymptotically stable. This leads to: 

la1 2 2,/-, (7) or f I ,/(pl + K,)’ +U’ 14. (8) 
It is evident from (7) that the bifurcation can be avoided by using 
velocity feedback with large K,. Furthermore, a large value of Kv 
will satisfy stability condition (8) even for large excitations. 

4 Simulation Results 
Figure 1 shows the frequency-response curves of the closed-loop 
system for different selections of K, and K,,, compared with the 
frequency-response curve of the open-loop system. The figure 
indicates a parametric resonance of the softening type. There are 



three distinct regions bounded by CA&O-D, C A & ~ ,  and q t q g ,  
respectively. For the first region defined bya<aA or o > q ,  only 
the trivial solution is possible and stable. For the second region 
o~<a  <OB, under open-loop conditions, there are three possible 
solutions; two non-trivial solutions - the larger of which is stable 
and the smaller unstable, and a trivial solution which is stable. The 
initial conditions of the system will determine the response for the 
second region. For the third region q<a<m, there is one stable 
non-trivial solution and one unstable trivial solution. If only the 
cubic-velocity feedback is applied, i.e., K p O ,  it can seen that the 
resonant amplitudes of the vibration are reduced (from amplitude 
E to F). When the cubic velocity and the velocity feedback are 
combined together, both the resonance range and the resonant 
amplitudes can be reduced from q to ac and E to G, 
respectively. 
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Figure 1. Frequency-responsef= 0.025, pi = 0.01. A2 = 0.01,a = -0.05. 

Figure 2 shows the force-response curves of the closed-loop 
system for different selections of Kc and K,, compared with the 
force-response curve of the open-loop system. Similar to Figure 1, 
there are also three distinct regions corresponding to the different 
amplitudes of the excitation force. The same results as shown in 
Figure 1 can be seen, i.e., the cubic-velocity feedback can 
suppress the amplitudes of vibration, and the velocity feedback 
can allow a larger range of excitation. The best result as illustrated 
in both figures is obtained when KcO.5 & K ~ 0 . 0 1 .  
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Figure 2. Force-response curves o = -0.1, p, = 0.01, k2= 0.01,a = -0.05. 

The numerical simulations of the system time response are shown 
in Figure 3 for the six cases described below: 
(a) When R = 2, the principal parametric resonance is inevitable. 

However, with cubic-velocity feedback alone, i.e., Kc=0.05 & 
K,=O, the amplitude of resonance is 0.6 even when the 
excitatory amplitude is quite small (i.e., only 0.1). 

(b) When R = 1.93, the resonance can be suppressed. However, 
with the same cubic-velocity feedback as (a), an ineffective 
vibration suppression with a large settling time is observed. 

(c) When R = 1.93, the resonance is effectively suppressed as a 
consequence of the combined control of the cubic-velocity 

and velocity feedback, i.e., Kc=0.05 & K,=O.OI. 
(d) When R = 1.96, the resonance can not be suppressed by 

cubic-velocity feedback alone, even when a large feedback 
gain is used (Kc=0.5 & K,=O). This is because the resulting 
system has a high-amplitude limit-cycle. 

(e) When R = 1.96, the resonance is fully suppressed as a 
consequence of the combined control of the cubic-velocity 
and velocity feedback, i.e., Kc=0.5 & K,=0.02. 

(9 When R = 1.99, the excitation frequency is even closer to the 
resonance point, the bifurcation is fully suppressed as a 
consequence of the combined control of the cubic-velocity 
and velocity feedback with large gains, i.e., Kc=0.5 & 
K,=0.04. 

5 Conclusion 
From Figures 1 and 2, it can be seen that: (i) by increasing the 
velocity-feedback gain, the range of bifurcation can be eliminated, 
and (ii) by increasing the cubic-velocity-feedback gain, the 
amplitude of vibration can be suppressed. From the simulation 
results, it is evident that the combination of the cubic and linear 
velocity feedback is effective for suppressing the principal 
parametric resonance. The effectiveness of the combined method 
can be explained by the fact that the velocity feedback increases 
the viscous damping; whereas the cubic-velocity feedback 
compensates for the effects of nonlinear curvature and nonlinear 
inertia. Furthermore, if the gain of the velocity feedback is large 
enough, then the bifurcation can be fully controlled. 
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Figure 3. Numerical simulations of the time response, whenf= 0.1, 
pi = 0.01. A2 =0.01,a= -0.05. 
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