
Modelling systems that integrate programming language 
and environment mechanisms 

Keith J. Ransom and Chris D. Marlin 

Department of Computer Science 
The Flinders University of South Australia 

Adelaide, South Australia 

{ keit h,marlin} @cs 

Abstract 

Once we relax the assumption that it must be possi- 
ble to specify programs solely in terms of text and enter 
them in isolation from other tools, the range of pos- 
sible program development mechanisms t s  significantly 
increased. Thus, in the light of advances in the field of 
integrated software development environments and in 
view of the wider availability of suitable workstations, 
we should reconsider the way we perceive (and, hence 
design) programming languages. This paper describes 
on-going work aimed a t  exploring the role of the pro- 
gramming language in the context of modern software 
development environments. The work is currently fo- 
cused on two fronts: the development of a formalism 
for describing both a programming language and as- 
sociated environment mechanisms, and the design of 
environment mechanisms that support software main- 
tenance and reuse, complementing those traditionally 
provided by programming languages. This paper will 
focus on work in the first of these two areas. 

1 Introduction 

Advances in hardware technology inevitably lead 
to changes in software technology. The advent of 
VLSI technology has enabled the production of low- 
cost high-powered CPUs and dedicated graphics hard- 
ware, leading to the proliferation of personal com- 
puter workstations with high-resolution displays and 
advanced graphics capabilities. In many application 
areas, this has caused a shift away from batch-oriented 
software, designed to run with a minimum of user 
interaction (often relying solely on file-based input- 
output), towards highly visual, highly interactive ap- 

flinders .edu. au 

plications which aim to allow the user to enter input 
and view output in a more appropriate manner, and 
provide valuable feedback in a timely fashion. One 
application area in which this shift has been partic- 
ularly pronounced is that of engineering calculations 
related to electrical circuits, where calculations once 
carried out in a batch-oriented way are now part of in- 
teractive CAD systems. One application area in which 
the shift has been surprisingly slow to take hold is 
that of software development itself. Despite the fact 
that the technology for program entry has progressed 
through a series of stages from paper tapes and punch- 
card systems, through to screen-based editors with 
graphical user interfaces, the precept that program 
code is merely a sequence of text characters has re- 
mained largely unchallenged. Indeed, for the majority 
of programming languages used today, even those de- 
signed during the workstation era, programs could be 
specified equally well using punch-cards (speed of en- 
try notwithstanding) as they could via an editor with 
a graphical user interface. 

The basic tenet of our work is that programs should 
always be developed under the control of an integrated 
software development environment on a modern work- 
station; in such an environment, a coherent collection 
of software tools share representations of the arte- 
facts they manipulate, and may operate in synchrony 
without explicit invocation by the user (where appro- 
priate). Such a level of integration implies that the 
representation of a section of code under construc- 
tion need not match the one used to enter it, nor 
the form in which it is displayed; this is contrary to 
traditional program development where programs are 
entered, changed and displayed in textual form. Stip- 
ulating a development environment with support for 
bitmapped graphics implies that we can abandon the 

274 
0-8186-7171-8/95 $04.00 Q 1995 IEEE 



linear sequence of characters as the canonical represen- 
tation of programs under construction. Hence, more 
appropriate visual representations of existing language 
constructs can be employed, and new constructs can 
be designed which may have been overlooked previ- 
ously for lack of a convenient textual means of specifi- 
cation. Although “two dimensional” program layouts 
with various graphical elements (lines, boxes, circles, 
etc.) can still be supported in non-itegrated, batch- 
oriented environments by employing parser technol- 
ogy, the range of notations that may be used is lim- 
ited to those for which parsing strategies exist (such 
as those described in [l]); there is no such restriction 
in an integrated environment, since the structure of 
a program is not inferred from its visual appearance, 
but rather from the operations used to construct it. 

Given that the above tenet directly impacts the 
kinds of programming language constructs that are 
feasible, a goal of our work is to re-examine the role 
of programming languages (and hence, their design) 
in the light of advances in the field of integrated soft- 
ware development environments. In addition, we seek 
to extend the benefits of certain “programming mech- 
anisms” to documents from other stages of the de- 
velopment life-cycle (such as design documents and 
software process descriptions, for example). Questions 
that arise from such considerations include: 

1. What should the definition of a programming lan- 
guage encompass? 

2. Where is the boundary between the programming 
language and environment? 

3. Which parts of a language and environment 
should be formally specified, and which of these 
parts should be regarded as “standard”? 

4. Which mechanisms are best provided by the pro- 
gramming environment, and which by the lan- 
guage? 

5. What are convenient forms for entering, and for 
displaying, common programming language con- 
structs? 

We are currently developing a formalism for de- 
scribing both a programming language and associated 
environment mechanisms. Section 2 classifies various 
aspects of the extended notion of program construc- 
tion that we desire to support, and discusses the first 
three of the questions stated above. In Section 3 we in- 
troduce the concept of a binding table which employs a 
complementary combination of language and environ- 
ment mechanisms. The formalism we have developed 

in order to specify mechanisms which embody our ex- 
tended notion of program construction is described in 
Section 4; the example developed in the Section 3 is 
used to illustrate the various aspects of the formal- 
ism. Some tentative conclusions, and on-going work 
related to the last two questions above, are discussed 
in Section 5. 

2 Extending the notion of program 
construction 

A description of a traditional text-based program- 
ming language typically involves the specification of 
the textual symbols which can be arranged to form 
a program, the valid combinations of such symbols, 
as well as a description of the meanings ascribed to 
the various combinations. In such descriptions, the 
form used to construct programs, the form used to 
display them, and the form with which the seman- 
tic rules are directly associated, are necessarily the 
same. As part of our investigation of how program- 
ming languages might differ if we assume the facili- 
ties of a workstation-based integrated software devel- 
opment environment, we wish to avoid such a restric- 
tion. Thus, we have adopted an alternative view of 
programming language descriptions which reflects our 
desire for a clear divide between the conceptual notion 
of a program and the way that one is built. We view 
the description of a programming language per se, to 
be that which describes the fundamental conceptual 
elements of which programs are comprised (such as 
statements, declarations, and expressions, for exam- 
ple), as well as rules which state which programs have 
valid interpretations (i.e., rules defining the static se- 
mantics) and rules which specify what it means to 
execute a valid program (i.e., those relating to the dy- 
namic semantics). Such a description may be useful 
for reasoning about programs, writing compilers, etc., 
but contains no information about how to build or dis- 
play a program. These activities, building and display- 
ing programs, are dependent upon the environment in 
which programs are to be developed. Hence, for those 
interested in how to construct a program in a given 
language, or how to understand a visual representa- 
tion of such a program, a programming environment 
description is also necessary. A programming environ- 
ment description should define the various construc- 
tion and display operations in terms of manipulations 
of the conceptual elements described in the language 
description, and in terms of the facilities offered by 
the environment (such as mouse, keyboard, text and 

275 



graphics, for example). 
As stated previously, we wish to support the devel- 

opment of programs in the context of a workstation- 
based integrated software development environment, 
making appropriate use of all available input and 
display technologies, not merely keyboard and text. 
Thus, we seek a formalism suitable for providing both 
programming language and environment descriptions 
of the form discussed above, descriptions to be em- 
ployed by users and designers of program development 
mechanisms. More specifically, we have used the fol- 
lowing criteria to decide upon a suitable formalism: 

The formalism must be suitable for modelling the 
static semantics of “conventional” programming 
language mechanisms. Since we are concerned 
with the impact of software development environ- 
ments upon program construction, and not pro- 
gram execution, we currently have no requirement 
that the formalism should support the specifica- 
tion of dynamic semantics. 

The formalism must be suitable for modelling in- 
teraction with the program representation (an ar- 
rangement of the constructs described in the lan- 
guage definition) via environment mechanisms. 
For a given environment mechanism, it must be 
possible to describe the actions required by the 
user to invoke the mechanism, as well as how such 
invocation affects the program. 

The formalism must also be able to specify how 
the various program constructs are displayed. In 
addition to plain text, graphical elements (such 
as lines, circles, boxes and windows) should be 
supported. 

Certain forms of “code” which would typically be 
displayed in a non-textual way, do not map well to 
hierarchical program representations; in particu- 
lar, they correspond to a graph-like arrangement 
of program constructs. The formalism should al- 
low the description of such notations, which are 
common in the pre-implementation stages of the 
software development life-cycle. 

Abandoning batch-oriented development tools in 
favour of an integrated programming environ- 
ment admits the possibility of incremental se- 
mantic analysis, providing more rapid feedback 
for the programmer and giving meaning to “in- 
complete” programs; furthermore, the ability to 
ascribe meaning to partially specified programs 
is necessary for supporting the reuse mechanisms 

that we also wish to investigate. Thus, the for- 
malism must be amenable to supporting the gen- 
eration of a semantic analyser that acts in uni- 
son with the various program construction mech- 
anisms. 

e Documents (“code”) from the various stages of 
the software life-cycle do not exist in isolation, 
rather they are often related in meaningful ways 
(“program A implements design B” , for example). 
The formalism must be able to capture the se- 
mantics of such relationships, and support the 
specification of environment mechanisms which 
span multiple “languages”. 

3 A binding table mechanism 

One way in which the creation of generic code com- 
ponents can be fostered is to supplement the text- 
based name binding mechanisms of traditional pro- 
gramming languages with a mouse-oriented binding 
interface (or one employing any other pointing device) 
and an accompanying graphical display, whilst retain- 
ing a textual specification of the algorithmic aspects 
of a component. 

A tool which illustrates this concept is shown in 
Figure 1.  The editor shown consists of two windows: 
the binding table window and the algorithm window. 
The binding window is used to display each of the 
names that have no binding defined within the section 
of code (algorithm) shown in the algorithm window. 
A binding table and associated algorithm constitute a 
particular usage of the algorithm; a single algorithm 
may be associated with many different binding tables 
depending upon the context in which it is being used 
(or reused). Each entry in the binding table indicates 
the meaning of the given name in the current usage of 
the algorithm; these name bindings may be established 
or modified by pointing to other binding tables or code 
represent at ions. 

The binding table mechanism is intended to sup- 
port the separation of the algorithmic detail from that 
which relates to the binding of names, partitioning 
code creation into two distinct activities: algorithm 
development and binding. Thus, during algorithm de- 
velopment, the programmer is able to focus not on the 
particular values of the bindings for the application 
being created, but rather on the “generic” algorithm 
being constructed. 

Providing support for name binding via a graphi- 
cal interface, within the context of an integrated soft- 
ware development environment, offers a number of ad- 

276 



Edit View Bind 

currentSym 
parsolrgumonts I proc( -> b o d )  

- proc( -> bool) A 

if CommandTable (inTable) (currentSym) then 
parseArqument s ( )  

Figure 1: A source code editor with associated binding 
table. 

vantages over text-based language mechanisms. The 
names appearing in a section of code which are in- 
tended to act as notional parameters to the code (i.e. 
those that would change across configurations) are 
clearly displayed, separate from the body of the code. 
Thus, locating and re-binding such names is simpli- 
fied. 

Adopting a “point and click” approach to name 
importation saves much laborious typing, when com- 
pared to mechanisms such as Ada generics [2], for ex- 
ample. It is unnecessary to modify sections of code 
that define entities to which identifiers are bound, sim- 
ply to ensure matching names. Hence, an algorithm 
can be coded using names relevant to its domain, 
rather than to those relevant to the implementation 
domain. 

The binding table mechanism is, to some extent, 
language independent, in that from a description of 
the binding table and the specification of a given lan- 
guage in our formalism, a tool could be produced that 
supports the use of the binding table for the given 
language. Thus, the binding table represents a useful 
complement to languages such as C and Pascal, which 
have comparatively unsophisticated data control facil- 
ities. 

Rather than exploring further the advantages of 
the binding table per se, this paper will merely use 
it as an illustrative example of how the notion of a 
programming language may change if we assume that 
software development occurs within an integrated soft- 
ware development environment with interaction facili- 
ties typical of those available on current workstations. 
The binding table comprises a mixture of linear tex- 
tual programming language notation (used in the al- 
gorithm specification part), two-dimensional represen- 
tation (the table part) and an interface centred around 
a pointing device (used for making bindings). 

The remainder of this paper will use this example as 
the basis of illustrations of our formalism for describ- 

ing programming notations which are not restricted to 
solely textual forms. 

4 Modelling program development 
mechanisms 

We are currently developing a formalism that meets 
the requirements stated in Section 2, the intention of 
which is to enable the description of language and 
environment mechanisms in a clear and unambigu- 
ous manner, and to allow the implementation of such 
mechanisms to proceed automatically from their for- 
mal description. Using the formalism, the specifier 
builds a multi-layered model of a language and associ- 
ated environment mechanisms, layered in the manner 
illustrated by Figure 2. In the figure, a horizontal line 
indicates that the layer above the line explicitly refers 
to information defined in the layer below the line. 

Editing Schema t Manipulation Syntax 

I Manipulation Semantics I 
I Structure I 
I I 

Figure 2: Model layers. 

The lowest layer in Figure 2, the structure layer is 
composed of a declarative specification of the informa- 
tion structures that are used to represent sections of 
code for the language being modelled’; this includes a 
description of what it means for a piece of code to be 
in a consistent state. 

Figure 3 illustrates the notation used in the struc- 
ture layer. Lines 1, 30 and 36 of the figure show 
that constructs called Procedure, Expression, and 
IdentifierYse are being defined. Line 36 fur- 
ther indicates that Identif ier-Use is a sub-class of 
Expression, and thereby extends its structure and se- 
mantic rules. Lines 3-6 define the parts of a Procedure 
that must be specified by the user. For example, Line 5 
indicates that an Procedure has a part named locals 
which is itself a set of Declaration objects. A set is 
used in this instance since the order of local decla- 
rations has no semantic significance. Lines 9 and 10 
specify that there are two semantic values (values that 
can be derived from a collection of objects represent- 

~~ ~ 

‘Recall that code need not imply the traditional notion of 
programs. 

277 



1 

a 
3 

4 

5 

6 

7 

8 

9 

10 

11 

ia 

13 

14 

15 

16 

17 

18 

19 

20 

21 

aa 

a3 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

Procedure ::= { 
syntactic parts 
name : string 
parameter-list : list of Parameter 
locals : set of Declaration 
code : Block 

semantic values 
requires-binding : set of string 
bindings : set of Binding 

functions 
Is-Parameter(name : string) : boolean : := 
3 p in parameter-list (p.name = name) 

Declared-Locally(s : string) : boolean ::= 
3 d in locals (d.name = s )  or Is-Parameter(s) 

semantic rules 
V s in code.statements (s.procedu-e <- this) 

V name in requires-binding ( 
3 b : Binding ( 
b.name <- name ; 
bindings contains b ; 

1 
) 

3 

Expression : := C 
semantic values 
type : Type 
procedure : Procedure 

3 

Identif ier-Use : Expression : := C 
syntactic parts 
name : string 

semantic values 
binding : Binding 

semantic rules 
if not procedure.Declared-Locally(name) then 
procedure. requires-binding cont ains name 

binding <- select b in procedure.bindings ( b.name = name ) 

type <- binding.target.type 
3 

Figure 3: Defining structure. 

278 



ing code), a set of strings called r e q u i r e s h i n d i n g  
and a set of Binding objects called bind ings .  

The nature of each semantic value is defined in the 
semantic rules. Semantic rules are essentially a se- 
ries of predicates which, if satisfied, imply that the 
code is in a consistent state. The calculus employed 
when specifying such predicates was developed in ac- 
cordance with our requirement that the formalism 
must be amenable to supporting the generation of a 
semantic analyser that acts in unison with the var- 
ious program construction mechanisms. Such predi- 
cates may employ various simple operators (the full 
details of which are not given here) as well as func- 
tions defined by the specifier. Lines 12-17 define two 
functions IsSarameter and D e f  ined- loca l ly .  The 
function IsSarameter is used within the definition of 
Def i n e d l o c a l l y ,  which is itself used in the semantic 
rule on line 44. This latter rule effectively states that 
if an identifier appears within the body of a procedure, 
then its name should appear in the r e q u i r e s h i n d i n g  
set for that procedure. When processed by the incre- 
mental semantic analyser, the rule on lines 22-27 en- 
sures that for every name in the r e q u i r e s h i n d i n g  
set of a procedure, a Binding object with that name 
will exist in the set bind ings  associated with the pro- 
cedure. The rule on line 47 defines the Binding asso- 
ciated with an I d e n t i f i e r Y s e .  The rule on line 49 
defines the type of the I d e n t i f  ier-Use expression in 
terms of that binding. 

The manipulation semantics layer in Figure 2 de- 
scribes the operations that may be performed on the 
structures defined in the structure layer. These oper- 
ations may include functions similar to those used in 
the structure layer, as well as procedures (functions 
with no return type). Whereas the functions defined 
in the structure layer are those that are used in the 
definition of semantic rules, the functions defined in 
the manipulation syntax layer represent an interface 
to the structure from the upper layers. The behaviour 
of each procedure, such as Bind and Unbind in Fig- 
ure 4, may be derived from the given predicate which 
is effectively an immediate post-condition for that pro- 
cedure. Such predicates are restricted to those which 
may be enforced by our incremental semantic analyser. 
For example, when the procedure Unbind associated 
with Procedure in Figure 4 is invoked, the target as- 
sociated with the given binding (the parameter to the 
procedure Bind) will no longer be defined. 

The manipulation syntax layer shown in Figure 2 
consists of a declarative specification which maps se- 
quences of abstract events to the operations described 
in the manipulation semantics layer. For example, 

1 

1 

3 

4 

6 

6 

7 

8 

9 

10 

11 

12 

Ident i f  ier-Use C 
Bind(export : Binding) ::= 

binding.target <- export.target 
1 

Procedure C 
Bind(b : Binding, export : Binding) ::= 

b.target  <- export.target 

Unbind(b : Binding) ::= 
undefined (b. target)  

1 

Figure 4: Defining the semantics of manipulations. 

the first rule in Figure 5 specifies that when an iden- 
tifier usage is selected, followed by a definition ex- 
ported by some module, and the abstract event Link 
is invoked, then the Bin& operation (defined in Fig- 
ure 4) should be called appropriately. Similarly, the 
second rule of the figure specifies that a binding may 
be formed by first selecting an entry in the binding 
table of a procedure instead of an identifier usage in 
the body of the procedure. However, these descrip- 
tions are at an abstract level, since we do not yet 
know what it means to “select an identifier’’ or “select 
an entry”. That is, abstract events (like S e l e c t l d  
and S e l e c t x n t r y )  defined in the manipulation syn- 
tax layer need to be bound to actual user interface 
events via a series of declarations within the editing 
schema, the uppermost layer in Figure 2. For exam- 
ple, Figure 6, lines 7 and 8 specify that the abstract 
event S e l e c t x n t r y  occurs as a result of the actual 
event Double-Click’ being generated over one of ele- 
ments of the set bind ings  (refer to line 10 of Figure 3) 
associated with the Procedure. 

The editing schema also describe how the various 
structures defined in the structure layer should be dis- 
played on the screen. This is acheived by simply by 
declaring the graphical objects that are used to com- 
pose the display of the given construct, and their re- 
lationship to one another. For example, line 2 of Fig- 
ure 6 specifies that a Procedure is displayed using a 
paned window, the first pane of which is a  box (line 3 )  
which vertically tiles the views of each of the bind- 
ings associated with the Procedure (lines 4 and 5 ) .  
Graphical objects such as those found in most mod- 

’Strictly speaking, Doubles l i ck  is itself an abstract term, 
bound at the level of the particular wiridowing system being 
used. 

279 



Select-Id(id) Select,Export(module,export) Link => id.Bind(export) 
Select-Entry(proc ,binding) Select-Export (module,export) Link => proc .Bind(binding,export) 
Select-Entry (proc ,binding) Delete => proc.Unbind(binding) 

Figure 5: Defining the syntax of manipulations. 

ern window systems, have corresponding primitives in 
the formalism, such as paned window, for example). 

Other graphical objects including vbox and hbox 
(following the page-layout model of w), support the 
tiling of components in various pre-defined ways. A 
generic box is provided for modelling free-form layout. 
Each editing scheme is effectively parameterised by the 
editing shema of its constituent parts. For instance, 
line 5 of Figure 6 specifies merely that the “view” of 
each Binding is contained within the vbox. The exact 
details of how a Binding is drawn are specified in its 
own editing scheme, along with the description of any 
events that may relate to it. It is important to note 
that, in general, there need not be a one-to-one corre- 
spondence between visual artefacts and the structures 
used to represent a section of code. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1  

i a  
13  

14 

15 

Procedure : := c 

vbox ( 
paned window name ( 

V binding in bindings ( 
view binding 

when Double-Click on binding do 
Select-Entry (m) 

) 
1, 
vbox ( 

Figure 6: An editing scheme. 

The emboldened line in Figure 2 indicates the divi- 
sion between the description of the programming lan- 
guage and the description of the programming envi- 
ronment. Which of the layers shown in Figure 2 should 
be considered as standard across all implementations 
of a language and environment remains an open ques- 
tion at this stage. Regarding only the structure layer 

as standard implies that providers of language systems 
are free to implement their own construction and dis- 
play mechanisms. While this might imply that users 
can choose the environment that best suits their needs 
(a novice programmer may choose an environment dif- 
ferent than that chosen by a skilled programmer, for 
example), it might also create difficulties for program- 
mers shifting from one environment to another. In 
the past, programming language definitions ([2], for 
example) have defined programming language syntax 
down to the level of the format for particular tokens; 
user interface events, such as Double-Click can be re- 
garded as the analogs of tokens in our extended notion 
of program construction; thus, there is some precedent 
for suggesting a level of standardization close to the 
top layer in Figure 2. 

There is a large body of work that is relevant to 
the development of the formalism outlined above. In 
relation to the structure layer, there have been many 
formalisms proposed for describing the semantics of 
programming languages, including attribute gram- 
mars [3], two level grammars (described in [4]), pro- 
duction systems [5], and many more. Such formalisms 
have typically been designed only with traditional 
text-based languages in mind, or are not well suited 
to the generation of incremental semantic analysers; 
thus, we have chosen to employ our own notation in- 
spired by the use of attribute grammars by Reps [6], 
Horwitz [7], Hedin [8] and many others, but extending 
the notion to support non-hierarchical program struc- 
tures. Related to the manipulation semantics layer 
are approaches such as those in [9] and [lo]. Relat- 
ing to the upper two layers of Figure 2 are unparsing 
schemes for text-based programming languages (such 
as that in [ll]), and work such as that in [12, 131 on 
the construction of user-interface facilities suitable for 
programming environments. 

5 Summary 

On-going work on the design of complementary pro- 
gramming language and software development envi- 
ronment mechanisms to support software engineering 

280 



activities has been outlined. This work is based on 
the assumption that software components will always 
be developed and composed within an integrated soft- 
ware development environment of some kind. 

An important part of this work has been the de- 
velopment of a formalism for describing programming 
language semantics which encompasses the extended 
notion of “language” implied by having combinations 
of traditional programming language features work- 
ing in concert with software development environment 
mechanisms. This formalism was outlined in Sec- 
tion 3 of the paper, and is currently being used in 
the description of some examples of combined lan- 
guage/environment program construction paradigms. 
Two such examples are discussed below3: 

0 One way in which the creation of more generic 
code components can be fostered is to supple- 
ment the text-based name binding mechanisms 
of traditional programming languages with a 
pointing-oriented binding interface and accompa- 
nying graphical display, whilst retaining a textual 
specification of the algorithmic aspects of a com- 
ponent. 

0 In order to support some level of post hoc reuse, 
and to ease the task of maintaining multiple ver- 
sions of related code, an environment mechanism 
is being developed which supports the creation 
of derived components by monitoring the way in 
which an existing component is modified when 
deriving a new component from it. By establish- 
ing the relationship between a derived component 
and the component from which it is derived, it is 
possible to automatically update the former as a 
result of modifications to the latter. 

References 

[l] S. S. Chok and K.  Mariott. Parsing visual lan- 
guages. Australian Computer Science Communi- 
cations, 17(1):90-98, 1995. 

[2] Reference manual for the Ada programming lan- 
guage. Technical Report ANSI/MIL-STD-l815A, 
United States Department of Defense, 1983. 

[3] D. E. Knuth. Semantics of contexbfree lan- 
guages. Mathematical Systems Theory, 2(2):127- 
145, 1968. 

[4] J. C. Cleaveland and R. C. Uzgalis. Grammars for 
Programming Languages. Elsevier, New Holland, 
Inc., New York, 1977. 

3Further details can be found in [14]. 

[5] H. F. Ledgard. Production systems: Or can we do 
better than BNF? Communications of the ACM, 
17( 2) :94-102, 1974. 

[6] T. Reps. Generating Language-Based Environ- 
ments. M.I.T. Press, Cambridge, Massachusetts, 
1984. 

[7] S. Horwitz. Adding relational query facili- 
ties to software development enviornments. In 
H. Ganzinger, editor, ESOP88: 2nd European 
Symposium on Programming, volume 300, pages 
269-283. Springer-Verlag, New York-Heidelberg- 
Berlin, 1988. 

[8] G. Hedin. An object-oriented notation for at- 
tribute grammars. Technical Report LU-CS-TR- 
89-42, Lund Institute of Technology, Lund, Swe- 
den, 1989. 

[9] L. R. Dykes and R. D. Cameron. Towards high- 
Software level editing in syntax-based editors. 

Engineering Journal, 5(4):237-244, 1990. 

[lo] F. Arefi, C. Hughes, and D. Workman. Auto- 
matically generating visual syntax-directed edi- 
tors. Communications of the AGM, 33(3):349- 
360, 1990. 

[ll] N. Habermann, R. Ellison, R. Medina-Mora, 
P. Feiler, D. S. Notkin, G. E. Kaiser, D. B. Gar- 
lan, and S. Popovich. The second compendium of 
gandalf documentation. Department of Computer 
Science, Carnegie-Mellon University, Pittsburgh, 
Pennsylvania, May 1982. 

[12] M. Young, R. Taylor, and D. Troup. Software en- 
vironment architectures and user interface facil- 
ities. IEEE Transactions on Software Engineer- 
ing, 14(6):697-708, 1988. 

[13] P. Dewan and M. Solomon. An approach to 
support automatic generation of user interfaces. 
ACM TOPLAS, 12(4):566-609, 1990. 

[14] K. J. Ransom and C. D. Marlin. Supporting soft- 
ware reuse within an integrated software devel- 
opment environment. In 1995 ACM SIGSOFT 
Symposium on Software Reusability, pages 233- 
237. ACM Press, New York, New York, 1995. 

281 


