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Delay-Independent Stability in Bidirectional Associative Memory Networks 
K. Gopalsamy and Xue-Zhong He 

Abstract-It is shown that if the neuronal gains are small com- 
pared with the synaptic connection weights, then a bidirectional 
associative memory network with axonal signal transmission 
delays converges to the equilibria associated with exogenous 
inputs to the network; both discrete and continuously distributed 
delays are considered; the asymptotic stability is global in the 
state space of neuronal activations and also is independent of the 
delays. 

I. INTRODUCTION 

HE stability characteristics of equilibria of continuous T bidirectional associative memory networks of the type 

n i = 1 , 2 , . . . , n  
;=1 

- -  dYi(t) - -Yi(t) + C m i j s ( x j ( t ) )  + Ji 
dt 

j=1 

and some of their generalizations have been investigated by 
Kosko [9], [lo]. Networks of the form (1) generalize the 
continuous Hopfield circuit model [8] and can be obtained as a 
special case from the model of Cohen and Grossberg [3]. If one 
assumes that the exogenous inputs Ii,  Ji ( i  = 1,2,  . . . , n)  and 
the connection weights mij ( i ,  j = 1 ,2 ,  . . . , n) are constants 
while the neuronal output signal function S is a differentiable, 
monotonic nondecreasing real valued function on (-m, m), 
then it is possible to introduce an energy function (or Lyapunov 
function) E such that 

n CT. n n  

n n n 

i = l  j=1  j=1 

( 2 )  

where S’(z) = F. It has been shown in [9] that 

n n 

k l  j=1 

One can show from (3) that as t i m, i i ( t )  i 0,  y i ( t )  + 0, 
i = 1 , 2 ,  . . . , n implying that the network (1) converges to an 
equilibrium corresponding to the constant extemal inputs Ii,  Ji 
(i = 1 , 2 ,  . . . , n). The equilibria are sometimes called pattems 
or memories associated with the extemal inputs I and J .  
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It is possible to simplify bidirectional networks of the type 
in (1) to a single system of a network of the type 

for suitably defined nonlinear functions fi, i = 1 ,2 ,  . . . , n. 
In fact, a referee suggested that we do such a simplification. 
The authors have to retain the model (1) as it stands since 
such a simplification will alter the bidirectional interplay of 
the input-output nature of the two layers of the system and 
will reduce the system to that of a single layer system. For 
a detailed investigation of single layer systems we refer to a 
recent article of Gopalsamy and He [7]. 

The purpose of this brief article is to investigate the exis- 
tence and stability characteristics of the equilibria of networks 
of the form 

n 
d U i ( t )  - 

d t  - -ui(t) + j=1 UijS(AjWj(t - C r Z j ) )  + I; 

i =  1 , 2 , * . . , n  (4) 

in which Xj p j ,  rij , aij (2, j = 1 ,2 ,  . . . , n) are nonnegative 
constantsand&, Ji ,  ai;, b i j ( i , j =  1 , 2 , . ‘ . , n )  arerealnum- 
bers; for convenience of exposition in the following we choose 
the signal response function as follows 

S(z) = tanh(x), z E (-m, 00).  ( 5 )  

The time delays T~~ and ~ 7 % ~  correspond to the finite speed of 
the axonal transmission of signals; for example T~, corresponds 
to the time lag from the time the 2-th neuron in the I-layer 
emits a signal and the moment this signal becomes available 
for the j-th neuron in the J-layer of (4) (see for instance 
Domany et al. [4]). The constants A,, p J  correspond to the 
neuronal gains associated with the neuronal activations. We 
refer to Babcock and Westervelt [l], Marcus and Westervelt 
[12], [13] and Marcus et al. [14] for linear analyses of single 
layer networks with delays. 

One of the problems in the analysis of the dynamics of the 
delay differential system (4) is the existence of solutions of 
(4). The initial conditions associated with (4) are assumed to 
be of the form 

u, (s )  = h ( s ) ,  s E [ - ~ * , 0 ] ,  T* = maxlsz,23snTz, 
u,(s) = & ( s ) ,  s E [-0*,0] ,  (T* = maxl<z,,<n gZI 1 

i = 1 , 2 , . . . , n  (6 )  
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in which q5i, $i are continuous real valued functions defined 
on their respective domains. One can use the method of steps 
and continuation (see Elsgolt's and Norkin [SI) and show that 
solutions of (4)-(6) exist for all t 2 0. The following result 
provides sufficient conditions for the existence of equilibria 
associated to each pair of inputs I and J in (4). 

where 

U l j S ( X j Y j )  + I1 cj=1 @jS(XjYj) + 1 2  

a n j S ( X j y j )  + I n  

bljqpjzj)  + J1 

E j = 1  bZjS(P jZ j )  + Jz 

F ~ ( x , y )  = r=' ... 1 ,  
i) the connection weights uij, bij ( i ,  j = 1,2 , .  . . , n)  are real F Z h Y )  = I ... 

Theorem 1: Assume the following: 

constants; 
ii) the exogenous inputs Ii, Ji ( i  = 1,2 , .  .. ,n) are real 

constants; We note from (12) and (13) that if (x, y) and ( X ,  Y) are any 
two points of R, then iii) the gain parameters p j ,  X j  ( j  = 1,2,  . . . , n) and the time- 

delays rij and ' ~ i j  ( i , j  = 1 , 2 , - . . , n )  are nonnegative 
constants: llF(x9 Y)-F(X,Y)II 

n n  

= I [.ij{S(XjYj/j) - sj(xjY,)l 
iv) there exists a number c E (0 , l )  such that the neuronal 

i=l j=1 
gains and the connection weights satisfy 

+ b i j { S ( P j x j )  - S(PjXj))l 

Then corresponding to each exogenous input pair of vectors 
I = (11,12,- . - , In)  and J = ( J 1 , J z , . . - , J n )  there exists an 
unique equilibrium ( U * ,  'U*) of (4) satisfying 

n 

n i = 1,2, .  . . , n. (8) 

Uf = u;js(xj'U;) + Ii 
j=1 

W: = bijS(pju5)  + Ji 
j=1 

Pro08 We have from (4) and (5) that an arbitrary solution 
of (4)-(6) satisfies the following differential inequalities 

i = 1 , 2 , . . . , n  

(9) 

- U i ( t )  - a; 5 
- w i ( t )  - pi 5 

* I -ui(t) + a2 
q 5 - w i ( t )  + pi 

where 

i = 1 , 2 , - . . , n .  (10) 
Pi = lbijl + IJil 

j=1 

is invariant with respect to the delay differential equations 
(4). Thus if the system (4) has an equilibrium, then such an 
equilibrium is a fixed point of the mapping F : R + RZn 
defined by 

n n  

n 

in deriving (15) and subsequent inequalities we have used the 
facts that 8; lies between Xjyj and X j q ,  6'7 lies between 
pjxj and pjXj as well as 

S'(8) = 1 - Sz(6) 5 1 for 8 E ( 0 , ~ ) .  

The mapping F is continuous and F ( R )  C R; it follows from 
(16) and c < 1 that F is a contraction on 0. By the well 
known contraction mapping principle, we conclude that there 
exists a unique point say ( U * ,  'U*) such that 

(18) F(u*, w*) = ( U * ,  'U*) 

and this completes the proof. 
Thus there exists a unique pattem or memory (or equilib- 

rium) associated with each set of the external inputs I and J 
when the connection weights uij and bij  are fixed. In the next 
section we derive conditions for the global asymptotic stability 
of the unique equilibrium ( U * ,  'U*) of (4). 
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11. RECALL OF ASSOCIATIVE MEMORY 

The equilibrium or the pattem (u*,w*) of (4) associated 
with a given ( I ,  J )  is said to be globally asymptotically 
stable independent of the delays if every solution of (4) 
corresponding to an arbitrarily given set of initial values (6) 
satisfy 

solutions of (21) 

laijlXjlYj(t - U i J I  

i=l j=1 

i=l 
- IYi(t)l + Ib i j IPMt  - %)I 

lim U;@)  = U :  and lim vi(t) = wz* (i = 1 , 2 , . - . , n ) .  
t-oo t-co 

(19) 
Weremark that when aij # b i j ,  X j  # 1, pj # 1, rij 
0, the method of Lyapunov functions exploited by Hopfield 
[8], Cohen and Grossberg [3], Kosko [9] is not applicable; 
the existence of a Lyapunov function is dependent on the 
symmetry of the synaptic connection weights in [8], [9] and 

Theorem 2 Suppose the assumptions of Theorem 1 hold. 
Then the equilibrium (U* ,  w * )  of (4) is globally asymptotically 
stable. 

0, U 

a.. - b . .  i z3 - z3 n the case of Kosko [9]. 

Proof: Define the variables xi and y; by the following 

j = 1  

n 

One can derivative that the deviations xi, y; are governed by it is consequence of (25) that 

It follows from (26) and (23) that V is bounded on (0,m); the 
boundedness of V on ( 0 , ~ )  implies that xi, yi are bounded 

(0, CO) and this implies that xi, y; are uniformly continuous 
on (0, CO). We note from (22) that k i ,  $i are bounded on 

on ( 0 , ~ ) .  A consequence of (26) is that 

9 = -yi(t) + E b;jpjSi(BG(t))xj(t - ~ i j )  
j = 1  

i = 1,2,  " . , n  (21) 

in which er j ( t )  lies between Xjvg and Xjvj(t-gij)  and 19:~(t) 
lies between pju; and pju j ( t  - T ~ ~ )  for j = 1 , 2 , .  . . , n. We 
note that 

i= 1 
S'(s) = 1 - S2(s) 5 1, s E R 

The uniform continuity of [Ixi(t)l + Iyi(t)l] on ( 0 , ~ )  
together with (27) implies by Barbalat's Lemma (see Barbalat and hence we have from (21) that 

n [2] or Gopalsamy [6]) that 

n 

n [Ixi(t)l+ ~yi(t)ll -+ o as t + 00. (28) 
i=l  

Thus it follows xi(t) --+ O,yi(t) -+ 0 as t -+ CO, i = 
1,2, . . . , n and hence (22) 

9 5 -xi(t) + E lUijIXjlYj(t - % j ) (  

3=1 

5 - y i ( t )  + Ibij(pjlzj(t - ~ j ) l  
j=1 

i = 1 , 2 , . . . , n .  

Consider a Lyapunov functional V ( t )  = V(z, y)(t) defined by 

L 
111. DISTRIBUTED DELAYS 

The use of constant fixed delays in models of delayed 
feedback provides of a good approximation in simple circuits 
consisting of a small number of cells. Neural networks usually 
have a spatial extent due to the presence of a multitude of 

(23) I + 2 Ibij lPj J' I Z j ( S ) I  ds * 

3 = l  t-rq 

Calculating the upper right derivative D+V of V along the 
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parallel pathways with a variety of axon sizes and lengths. 
Thus there will be a distribution of conduction velocities along 
these pathways and a distribution of propagation delays. In 
these circumstances the signal propagation is not instantaneous 
and cannot be modeled with discrete delays and a more 
appropriate way is to incorporate continuously distributed 
delays. The extent to which the values of the state variable in 
the past affect its present dynamics is determined by a delay 
kemel; the case of constant discrete delays corresponds to a 
choice of the delay kemel to be a Dirac delta function. Kernels 
of the form 

p + l  

m! K ( t )  = -tme--at , t 2 0, a,m E [O,m) 

have been found mathematically tractable in many models 
of dynamic systems in mathematical ecology especially in 
population dynamics. 

We shall now consider a class of bidirectional associa- 
tive memory networks with continuously distributed delays 
described by 

d t  7 = 1  03 I 
in which the extemal inputs li, Ji and the connection weights 
aij , bij are constants; the neuronal gains X j  and pj are positive 
constants; the delay kemels IC::), k$) are nonnegative valued 
continuous functions defined on [0, m) satisfying 

The initial values associated with (29) are of the f o q  

Ui(S) = di(S), Yi(S) = $i(S), s E (-,OI, 
i = l , 2 , . . . , n  (31) 

where di, $; are assumed to be bounded continuous functions 
defined on (-w,O]. For an extensive discussion of the stability 
and asymptotic behavior of integro-differential equations such 
as (29) and their applications, we refer to the recent monograph 
by Gopalsamy [6]. For applications of integro-differential 
equations with continuously distributed delays such as those 
in (29), we refer to Tank and Hopfield [15]. 

One can see that the equilibrium (U* ,  w*) defined by (15) is 
again an equilibrium of (29) due to (30). 

Theorem3: Suppose the hypotheses of Theorem 1 hold: 
suppose further (30) holds. Then the equilibrium ( U * ,  U * )  of 
(29) is globally asymptotically stable in the sense that all 
solutions of (29)-(31) satisfy 

Proof: Details of proof are similar to those of Theorem 2 
and hence we shall to brief. As before we define x i ,  yi by (22) 
and derive from (29)-(30) that zi and yi satisfy the system 

which as before leads to 

i = 1 , 2 , . . . , n .  (34) 

We consider a Lyapunov type functional V ( t )  = V(x,y)(t) 
defined by 

i=l 

(35) 

By our assumption on the initial values on (-m,O] and the 
hypotheses on the delay kemels, one can verify that V is 
defined on (0,m) and V is bounded on (0, m). Also the upper 
right derivative D+V of V along the solutions of (33) can be 
calculated so that 

n 

D+V(t) I -(I - c )  [IZi(t)l + IYZ(t)ll. (36) 
i=l 

The remaining details of proof are identical to these of 
Theorem 2 and hence are omitted. The proof is complete. 

IV. REMARKS 

Recall of memories is one of the processes by which the 
brain retums in some sense from a current state to another state 
in which it has been before. In neural network models, memory 
corresponds to a temporally stationary or nonstationary equi- 
librium and recall is modeled by the convergence of neuronal 
activations in the neuronal activation space to the equilibrium. 
The trigger provided for the system to recall the memory may 
come from outside as extemal inputs. Thus the patterns or 
equilibria associated with extemal inputs are recalled by the 
convergence of system dynamics; global asymptotic stability 
of an equilibrium means that the recall is “perfect” in the 
sense no hints or guesses are needed as in the case of local 
stability analyses; that is when the extemal inputs are provided 
to the system, irrespective of the initial values, the system 
converges to the equilibrium associated with the inputs. Recall 
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with the help of hints and guesses correspond to local stability 
of equilibria; since the initial values have to be in a suitable 
neighborhood of the corresponding equilibrium. 

It is known (see [12]) that time delays in response or 
transmission can induce sustained oscillations and “chaos”. We 
have discussed the stability characteristics of an already trained 
bidirectional not necessarily symmetric associative network 
with transmission delays and obtained sufficient conditions for 
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