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Convergence under Dynamical
Thresholds with Delays

K. Gopalsamy and Issic K. C. Leung

Abstract—Necessary and sufficient conditions are obtained for
the existence of a globally asymptotically stable equilibrium of
a class of delay differential equations modeling the action of a
neuron with dynamical threshold effects.

Index Terms— Lyapunov functional, omega-limit set,
Poincare–Benedixson’s negative criterion, thresholds, time
delays.

I. INTRODUCTION

ONE of the mathematical models proposed by Caianiello
[3] for the study of the dynamical characteristics of

neurons or neuron-like threshold devices consists of a set of
“neuronic” and “mnemonic” equations. The neuronic equa-
tions describe the dynamics of neurons while the mnemonic
equations describe the temporal variation of the synaptical
interconnections (or weights). The processes described by the
mnemonic equations and in particular the temporal variation
of the interneuronal synaptic couplings is much slower with
respect to the cellular activities of neurons; we can therefore
as a first approximation assume that the weights are constant
with respect to time. The neuronic equation (also known as
the decision equation) considered by Caianiello and De Luca
[5] is of the form

(1)

where denotes the unit step function

if
otherwise

(2)

and denotes the neuron response assumed to have the
values zero or one, denotes the external stimulus to the
neuron, denotes the neuronal threshold, denotes the
refractoriness of the neuron after it has fired or responded,
i.e., gone from state zero to state one, anddenotes the delay
of the system which indicates the interval of time which must
elapse before the system can respond, after the reception of a
stimulus of sufficiently strong strength to cause such an action.

The purpose of this paper is to investigate the dynamical
characteristics of a model neuron which is capable of firing or
responding continuously in time while its firing is modulated
by the difference between its current status and a weighted
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average of its firing history. Accordingly, we modify (1) and
(2) by the following: we replace and the nonlinearity
in (1) and (2) by

(3)

(4)

Thus we are led to consider the following integrodifferential
equation:

(5)
in which we can set (otherwise we can rescale the time
variable); the constants and have the obvious meanings;
i.e., denotes the range of the continuous variable while

denotes a measure of the inhibitory influence of the past
history. An equation of the type in (5) can be considered to
represent a case with a local positive feedback with delays.
The term in the argument of the tanh function in (5)
denotes a local positive feedback. In biological literature such
local positive feedbacks are known as reverberations [4], while
in the literature on neural networks these positive feedbacks
are known as self excitations. A discussion of the implications
of positive feedbacks and delays for temporal processing of
information can be found in [7]. Our model will be complete
if we specify the delay kernel and this will be done below.

In this article, we examine the stability characteristics of the
scalar autonomous delay differential equations of the form

(6)

(7)

(8)
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where , and are nonnegative numbers and
is a continuous delay kernel satisfying certain

restrictions to be specified later. Equations of the above type
occur in the study of neural networks with threshold effects
(see, for instance, [13]). Equations similar to (6)–(8) appear
also in the temporal evolution of sublattice magnetizations
[14]. In the study of neural networks, especially concerned
with the storage and retrieval of temporal patterns (limit
cycles), equations of the above form occur [6], [15].

It is also possible to interpret the above system of equations
in the following way. denotes the activation level of
a neuron which is capable of self-activation modulated by
a dynamic threshold, which depends on the history of its
previous activations. The time delays incorporated in the
thresholds can lead to wide ranging behavior of the system
from relaxation to a stable equilibrium, instability resulting in
stable oscillations and “chaos” [15]. There has been recently
numerous investigations of Hopfield-type networks with time
delays (see, for instance, [1], [2], [9], [10], [16], and the
references in these works). Since Hopfield networks with
thresholds have not received any attention so far, the system
considered in this article is just a beginning in this direction;
a multineuron model system with threshold delays will be
considered in a future article. A primary purpose of this
paper is to obtain sufficient conditions for the systems of the
type (1)–(3) to converge to the temporally static equilibrium
position; bifurcation to persistant periodic oscillations has been
considered in a companion article (see [11]).

II. CONVERGENCE TOEQUILIBRIUM

In this section we derive sufficient conditions for the model
systems (1)–(3) to have unique equilibria such that the respec-
tive equilibria are globally asymptotically stable. We consider
the system (1) with first and subsequently discuss the
behavior of the system when ; when , we have
from (1)

(9)

We note that the delay differential equation (9) is supplemented
with an initial condition of the form

where is assumed to be a continuous real valued function
on . We let

(10)

and obtain from (9) that

(11)

If denotes an equilibrium of (11), then satisfies

(12)

We assume that are such that

(13)

It is now elementary to note that (12) has a unique solution
under (13) denoted by . Thus (11) has the trivial resting
state on as its only equilibrium. Our first
result provides sufficient conditions for the global asymptotic
stability of of (11).

Proposition 2.1: Suppose that the parameters and
satisfy

and (14)

Then all solutions of (11) satisfy

(15)

Proof: Consider a Lyapunov-like functional de-
fined by

(16)

Calculating the upper right derivative along the solutions
of (11),

(17)

It follows from (17) that

(18)
By hypothesis in (14), and hence it follows
from (18) and (16) that remains bounded on ;
consequently, it will follow from (11) that remains
bounded on . Hence is uniformly continuous on

. Now (18) implies that

(19)

hence we have by Barbalatt’s lemma (see [8]) that

and this completes the proof.
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Corollary 2.2: Under the assumptions of Proposition (9),
all solutions of (9) satisfy

(20)

Proof: We have from (9) and (10) that

(21)

An integration of (21) leads to

(22)

We let and note that if

then

(23)

if

then

(24)
since as . Thus (20) follows from (22)–(24).

It will be shown in the next section that the set of sufficient
conditions established in corollary (10) for the global asymp-
totic stability of the trivial solution of (1) when are also
necessary. We consider next models of the form (2) with the
assumption that the distributed delay kernel

is of the type

where denotes a characteristic constant representing the
decay rate of the weight with which the past effects continue to
affect the current dynamics; kernels of the above type denote
exponentially fading memory. More general kernels of the type

will be considered in future investigations. We consider now
the dynamics of the following special case of (2):

(25)

in which and are positive numbers. We are in particular
interested in the conditions on the various parametersand

for the neuron to eventually relax in the sense that
as . We simplify the analysis of (25) by letting

(26)

One can derive from (26) that

(27)

It is thus sufficient to consider the dynamics of the system

(28)

Since the set of solutions of (28) contain the solutions of (25),
the stability of the trivial solution of (28) will imply that of
(25). Let be an equilibrium of (28), then

and (29)

We assume in the following that:

(30)

When (28) holds, one can verify that (0,0) is the unique
equilibrium of (28); note that this is a consequence of the
properties of the sigmoid function . Under
the assumption (30), (28) has a single equilibrium at (0,0).
It is natural to inquire, under what conditions is the unique
equilibrium globally asymptotically stable? This will then
mean that no periodic solutions of (28) are possible. The
boundedness of all solutions of (28) can be established easily;
for instance, we have from (28) that

for (31)

from which it follows that there exist positive numbersand
such that

for (32)

For such , we also have

(33)

which also implies that remains bounded for .
Thus, due to the arbitrary nature of , the region

is an attractor for (28). The next
result establishes the global asymptotic stability of the trivial
solution of (28).

Lemma 2.3:Assume that are positive numbers such
that

or when

(34)
Then all solutions of (28) satisfy

(35)

Proof: We have seen that all solutions of (28) remain
bounded and are eventually attracted to the set

. If we can show that there are no periodic solutions
of (28), then the -limit set of (28) consists of the single
equilibrium (0,0); all solutions of (28) approach their respec-
tive -limit sets and -limit sets are themselves invariant with
respect to (28); the -limit set of every solution of (28) is the
singleton (0,0). Thus we are motivated to look for conditions
ensuring the nonexistence of periodic solutions of (28). We
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rewrite (28) in the form

(36)

It is elementary to note from (36) that the divergence of the
vector field satisfies the following:

sech

if or (37)

By the well-known Poincare–Bendixson negative criterion (see
[12]), it follows that (28) has no nontrivial periodic solutions;
now, since solutions of (28) remain bounded for , by
the discussion above, the conclusion (35) follows and this
completes the proof.

In our consideration of (3), we again let and assume
that the delay kernel is continuous on with the
following properties:

(38)

Note that an initial condition for (3) is of the type

we assume that is bounded and piecewise continuous on
.

Proposition 2.4: Let the delay kernel satisfy (38). Suppose
further that

(39)

Then all solutions of

(40)

corresponding to bounded initial conditions on satisfy

(41)

Proof: We consider a Lyapunov functional de-
fined by

(42)

Calculating the upper right derivative along the solutions
of (40)

(43)

Hence

(44)
The remaining details of proof are similar to those of Propo-
sition 2.1 above and hence are omitted.

We conclude this section with a brief discussion of the
model systems (1)–(3) when . For instance, we let

(45)

in (1) and obtain that is governed by

(46)

It is easy to see that an equilibrium of (46) is a solution of

(47)

When , it is seen from the assumption that
(47) has a unique solution . Thus including , in
(1)–(3) corresponds to a translation of the equilibrium on the
real line and of course when becomes the trivial
equilibrium. All our stability and convergence results hold for
the system (1)–(3) with except that the respective steady
states are now defined by (47).

III. N ECESSARY CONDITIONS FOR

THE STABILITY OF EQUILIBRIA

We have shown that a set of sufficient conditions for the
global asymptotic stability of the unique equilibrium of (1) is
that the conditions in (14) hold. It is natural to investigate
whether these conditions are necessary for the asymptotic
stability of the trivial solution of (1); we show now that these
conditions are also necessary for the asymptotic stability of
the equilibrium of (9).

The linear variational system corresponding to the trivial
solution of (9) is given by

(48)
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The characteristic equation associated with (48) is the tran-
scendental equation

(49)

The roots of (49) depend continuously onand that for ,
the only root of (49) satisfies

(50)

By the continuous dependence ofon , it follows from (50)
that for small , the roots of (49) have negative real parts,
which implies the local asymptotic stability of the equilibrium
of (9). If there exists a such that for , (49) has a
pair of pure imaginary roots, say then

(51)

which leads to

(52)

If , then or ; thus if

(53)

then there exists a for which (49) has roots with zero
real parts and the trivial solution of (9) becomes unstable.
We summarize the above analysis as follows.

Proposition 3.1: The sufficient conditions required in (14)
are also necessary for the existence of a unique equilibrium
for (9) and its asymptotic stability.

Let us now consider the necessity of the conditions (18) for
the asymptotic stability of (2) with . We proceed to find
conditions necessary for the local asymptotic stability of (0,0)
of (11). We consider the variational system

(54)

The eigenvalues of the coefficient matrix in (54) are the roots
of the equation

(55)

It is easily seen from (55) that when , the roots
of (55) have negative real parts whenever

or for (56)

also when or , the roots of (16) become
purely imaginary, in which case the asymptotic stability of
(0,0) is lost. We summarize these observations in the follow-
ing.

Theorem 3.2:Let ; suppose that
. Then a set of necessary and sufficient conditions for the

global asymptotic stability of (0,0) is that either or
.

We consider the necessity of the conditions (39) for the
convergence of all solutions of (3) to its equilibrium. The
corresponding linear variational system associated with (3) is

(57)
The characteristic equation corresponding to (57) is

(58)

We shall show that implies that all the roots of
(58) have negative real parts while implies the
existence of a root of (58) with zero real part. For instance let

(59)

in (58) to obtain

(60)

if and , then

(61)

which is impossible. Also we note that when , (58)
has a root with zero real part. Hence the condition
is also necessary for the asymptotic stability of the trivial
solution of (3) with ; the same conclusion holds for
(3) when with a different equilibrium.

IV. CONCLUDING REMARKS

We conclude with the following interpretation of the results
obtained in this article. If the model systems (1)–(3) possess
unique equilibria (known as static memories or patterns in neu-
ral network literature), then all the solutions of model systems
converge to the equilibria (or recall the patterns) whenever
the neuron gain is small in comparison with the threshold
parameter; this associative recall is independent of the size of
the time delays in threshold dynamics. Unlike many results of
the neural network dynamics, all our convergence to equilibria
are global in the sense that solutions corresponding to initial
values far from the equilibria converge to the equilibria of the
respective models.

The numerical simulations of the system (34) for different
values of the various parameters are graphically (trajectory and
phase plots) displayed in Figs. 1–7.
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(a) (b)

Fig. 1. (a) and (b).a = 0:8; b = 1:75; T = 1.

(a) (b)

Fig. 2. (a) and (b).a = 0:8; b = 1:75; T = 2.

(a) (b)

Fig. 3. (a) and (b).a = 0:8; b = 1:75; T = 3.
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(a) (b)

Fig. 4. (a) and (b).a = 1; b = 1:75; T = 4.

(a) (b)

Fig. 5. (a) and (b).a = 1:75; b = 0:93; T = 1.

(a) (b)

Fig. 6. (a) and (b).a = 2; b = 1; T = 0:75.
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(a) (b)

Fig. 7. (a) and (b).a = 4; b = 1:25; T = 0:23.
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