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1. ABSTRACT 
The problem of efficiently compressing a large number, L ,  of 
fl dimensional signal vectors is considered. The approach 
suggested here achieves efficiencies over current preprocess- 
ing and Karhunen-LoCve techniques when both L and N 
are large. 

Preprocessing and partitioning techniques are first a p  
plied to  the L x hf data matrix 3 to reduce the database 
to  a manageable number of subblocks of lower dimension. 
Within each subblock an iterative chain a p p r o h a t i o n  is 
proposed that effects a transform at  each stage of the it- 
erative scheme. A particularly appealing transform, using 
prolate spheroidal sequences, is suggested. 

To evaluate a reduced dimensionality approximation for 
the expansion coefficients, the approach used in the orthog- 
onal Procrustes problem solution is combined with an iter- 
ative interlacing technique due to  Daugavet for factorizing 
matrices. 

2. INTRODUCTION 
Efficient compression of a reasonably large number, L, of 
signals, each represented by an N-vector is an important 
problem in the area of multidimensional signal processing. 
In the image processing case, each component of such a 
signal vector represents an image pixel. Typical applica- 
tions indude handwritten characters and face and object 
recognition. A novel application is the storage of ionogram 
back-scatter data  from over the horizon radar. 
W e  wiU deal with two dimensional signals, but the a p  

proach we present easily extends to  the transmission and 
storage of signals with abitrary dimension. 

Let 3, the data  array formed by the vectors above, be 
the L x N matrix t o  be transmitted or stored. 

The choice of compression algorithm is determined, es- 
sentially, by the following competing criteria: the compres- 
sion ratio or the transmission cost, the quality of the data 
reconstruction (QDR), and the computational complexity. 
The methods commonly used in practice for data (image) 
compression or coding are based on computing a truncated 
Singular Value Decomposition (SVD) of the matrix 3 to 
approximately represent the data  array 3 as the product of 
two matrices, say, r and T, 3 = r x T, with smaller sizes 
L x M and M x N respectively, M < min(L,N). 
In the case of a large dimensionality of the matrix 7 ( t y p  

ically L,  N = O(lO') - 0(106)) the processing required to  
compute a truncated SVD can be prohibitive. 

Another difficulty is the data  transmission cost. Trans- 
mission of two matrices r and T is cheaper than the initial 
data array 3 transmission. However, for the case of the 
large L and N discussed above, the cost of transmitting 
matrices r, can be much greater than the cost of their 
evaluation, and may become prohibitively high. Thus, it is 
natural to strive to determine a technique which allows a 

further reduction in size of the transmitted or stored ma- 
trices while maintaining a reasonable QDR. 

The motivation of this paper comes from a need to reduce 
the overall cost of data array transmission. 

The method proposed allows a reduction in the total cost 
of the process of data compression, transmission/storage 
and reconstruction whilst balancing the criteria discussed 
earlier. 

To achieve this object we propose: 

a a new generic scheme of data array compression based 
on a combination of several preliminary stages and a 
final stage; 

m new discrete transforms for the preliminary stages; 
0 a new compression algorithm for the final stage. 

3. NEW DATA COMPRESSION METHOD 
Our approach to the problem solution is illustrated by the 
block-scheme shown in figure 1. 

I New genenc scheme I 

Figure 1. Block scheme of the signal compression method. 

The blocks (a), (b) and (c) in this figure mean the fol- 

(a): Preprocessing We first assume that the data  base 3 

a has been preprocessed t o  remove redundanaes and 
similarities in the 3 by methods, for example, [6], and 
after that 

0 has been partitioned into subblocks F ( 3 k ) ,  j = 1 : 
p ,  k = 1 : q, according to  schemes such as those consid- 
ered in [7]. 

After the above initial preprocessing stages the size of the 
subblock F ( J k )  F is 1 x n and their number is equal t o  
P x q .  

(b): Chain transform. The next step processes each of 
the pxq subblocks F ( J k ) .  A new generic scheme for carrying 
out this processing is proposed. 

The key idea of this generic scheme is a sequentid re- 
duction of dimensionalities of matrices in a matrix product 
which approximates each subblock F ( I k ) ;  these matrices are 
determined by a discrete transform which is applied a t  each 

lowing. 

of L signals (images): 
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step of the reduction scheme. This part can be mathemat- 
ically represented as a solution of the problem 

with Tm,Tm-l ,..., TI given where F = F ( J k ) ,  W, - - 
W k k )  E 72"q"' and T, = elk) E 7 L q 1 - 1 x q l , q o  = n,z = 
1 : m, g m  < ... < ql < min (I,  n ) .  

By using the equality 

F - WmT:. . . TT = ( F  - W1 TT)  + (WI - WZ T:)TT 

+... + (Wm-] - WmT:)T:-I ... TF (2)  

(3)  

problem (1) reduces to  

1lWk-i - WkTTII -* mi: 

for k = 1 ,2 ,  ...: m and WO = P.We call this the iterative 
scheme of chain approximation. 

Under certain orthonormality conditions, the solution o b  
tained is wk = Wk-lTk SO that Wm = FTiT2 ... Tm. Dia- 
grammatically this block (a) of the scheme above is repre- 
sented by a chain as follows 

The discrete transforms used in this process could be con- 
structed using prolate spheroidal sequences [l] or Cheby- 
shev polynomials. 

We briefly discuss the reason why discrete prolate 
spheroidal sequences are of interest here. They are defined 
as follows. Fix an integer N > 0 and some positive real 
number y E (0, i). We let T = T 7 , ~  be the linear operator 
on 1' given by 

where v(k) denotes the kth coordinate of v E 1'. This 
linear operator is symmetric with finite rank and so [I] 
it has N real eigenvalues Ay7, A;,.,. . . , > 0. Let 
v y  (k = 0,1,. . . , N - 1) be the corresponding eigenvec- 

N-l N-l - -  .. - 
tors normalised so that v y ( m ) '  = 1, v r P T ( m )  2 

m=O mmO 
N-I 

0, x ( N  - 1 - 2 m ) v y ( m )  3 0. These eigenvectors are 

called the discrete prolate spheroidal sequences. They have 
many interesting properties (loc. eit.), some of which will 
be of significance to  us. Their restrictions to the coordi- 
nates (0,1,2,. . . , N - 1) are the eigenvectors of the matrix 
whose (m,  n)th component is 

m=O 

sin 27ry(n - m) 
z(n - m) 

(n,m = 0 , 1 , 2  ,..., N - 1) 
An important property, the orthonormality of this index- 
limited collection of vectors, stems from the symmetry of 
the matrix. The nnlimited vectors are also orthogonal. 
Apart from these properties the sequences satisfy various 
symmetry laws and a difference equation. Of more interest 
to  us is that they (the unlimited sequences) are the most 
concentrated orthogonal sequences v E 1' whose Fourier 
series V ( f )  = C v ( n ) e a v n f  vanishes outside the interval 

n 

( - 7 . 7 )  (modulo 1). That is, given the normalization above. 
the1 have the smallest 1' norm. The limited sequences are. 
on the other hand, those orthogonal sequences of length A- 
whose spectrum is most concentrated in the interval (-y. y )  

in L 2 ( - i ,  +). 
The most interesting fact for our purposes concerns the 

set G, of sequences v in 1' which have lv(n)lZ _< E and 

where I = { 0 , 1 , 2 , .  . . , N - 1) . We look for the small- 
est M such that there is some M dimensional subspace 
D of 1' with the property that every member of G, can 
be approximated on the coordinate set I to  within 1) by 
a member d of D, that is, x ( g ( n )  - d(n))2 < 7. This 

M depends on N,  7, c and 1. For q > E > 0 the limit 
of M / N  as N - oc) is 27 and the discrete spheroidal se- 
quences vf*' (k = 0,1 ,2 , .  . . , [2Ny( l  - T)]) can be used 
as an orthogonal basis for an optimal space D in this sense. 
Thus for large N, if the sequences we are interested in are 
approximately of bandwidth 7 and are very small outside 
the index set I, as described above, then these sequences 
can be essentially described in terms of the first [27N] coef- 
ficients of their expansions in terms of the discrete prolate 
spheroidal sequences. In our context if the rows of the ma- 
trix which we are trying to  approximate have this property 
it makes sense to  use as the basis matrix one whose rows 
are the discrete prolate spheroidal functions. In effect the 
property is that there is relatively little high frequency (that 
is, close to *L) in the sequences. 
In the simplest case of using just one "link" in the trans- 

form chain above, i.e. m = 1 in (l), this approach was 
initially proposed in [2] and a particular case was consid- 
ered in [3]. 

(c): Interlacing iteration algorithm. For the find step of 
this generic scheme, a new matriz compression algorithm 
which combines the approach used in the solution of the 
orthogonal Procrustes problem [4] and the idea of interlac- 
ing iterations [5] is proposed and justified. This algorithm, 
which we term the Interlacing Iteration Algorithm, IIA, re- 
duces an evaluation of SVD for the matrix of interest to  
eigen-decomposition evaluations for several special matri- 
ces with much lower dimensionalities as follows. 

For any matrices C = dd"' E 'RlXqm+l, and B = B$k) E 
'Rqmxqm+l where qm+l < qm, we have 

n E I  

F-CmBzTs ... TT = ( F - W ~ T ~ ) + ( W I - W Z T , ' ) T ~ + - - -  

+(Wm-l- WmT;)T:,1. . . TT + (Wm - Cm B z ) T s .  . TT 
Then, taking into account (2), (3), the problem 

subject to  

is reduced to  the problem sequence (3) considered above 
and the Karhunen-L&ve problem 

B ~ B  = I 

subject to  
B ~ B  = I  (5) 
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where W = W" E 72' ",. For its solution, we first consider 
the related problem for a symmetric matrix S = WTW E 
7LqmXqm: find X E 7Lqmxs and Y E 7Lqmxs with s << qm 
and r ( X )  = r ( Y )  << r ( W )  satisfying the problem 

11s - XY' I I  - min (6) x ,  Y 

subject to 
Y T Y  = I ( 7 )  

Solution of this problem is given by the following. 

position of the symmetric matriz A = A A  
Lemma 1. Let A = X T S  and let the epenvalue decom- 

E 72''" be 

U B U T  = A ,  U T U  = U U T  = I .  

Then X and Y satisfying the equations 

X = S Y  

Y = SX(UQ-1 '2UT)  
solve (6) and (7) .  

Proof is based on using the Procrustes problem solution 

To evaluate X and Y which satisfy these equations we 
construct an iterative procedure as follows: 

Given X O  and S; for a = 0,1,2, ... put 

141. 

A ;  = X:S (8) 

A, = AiAT (9) 

UiB,UiT = A ,  (10) 

x+1 = SX;(UiE);"2U,T) (11) 
x,+1 = sx+1 (12) 

We point out that the fact the eigen-decomposition of the 
small s x s, symmetric matrix A, is easy to  compute is 
central to the appeal of IIA. 

Choice of the initial itemtion X O  requires special atten- 
tion. Suppose ranks = r so that s 5 r 5 qm. Put  
X O  = Sa E Rqmx' where S, consists of s linearly inde- 
pendent columns of S. Let the SVD of S, be 

sa = @.INT 

with ip E Rqmxr,C E a''., it? E R'". Then 

xo = QP (13) 

where P E RrXa. If the first s rows of the matrix P in (13) 
are linearly independent then the corresponding matrix xo 
is denoted- X;. 

Lemma 2. Let the pair X ,  Y be a solution of the problem 
(61.f7). Let 1 > am and let S = W T W  have r a n k s  = r .  (If  . , . I  I 

qm > I we define S = W W T ) .  Denote b y  XI, XZ, ...,A, the 
eigenvalues of S which are such that 

1x11 2 1x21 1 ... 2 I X r I  > 0 

Suppose that s < z,Xo = X ;  and that As+] # A,. Then, 
the following limits m 's t  

x = lim X.+I ,  Y = lim x+1 
1-00 ,-OD 

and we have 

IIX - X.+III < cI(X.+I/X')z('+I) 

IIY - X+III < cz(X,+l/x,)z('+l) 

with constants c1. cz which are independent of A,. X,+1 and 
1 .  

Proof is derived from [ 5 ] .  
The lemmas 1,2 allow us to state the following theorem 

which includes solutions of the problem (4), (5)  and cor re  
spondmg error estimations. 

Theorem 1. Let Z = X T Y  where X ,  Y is a solution of 
(6),(7) and let the eigen-decomposition of S be 

s =  GAG^, G ~ G  = G G ~  = I  

with r a n k s  = r andA = A, E 72"'. L e t s  < r ,  and let Z = 
VRVT, V E R S x "  orthogonal, be the eigen-decomposition of 
the symmetric matriz Z .  Then, R = A ,  and the solution 
required is defined by the relations 

C =  W B ,  

B = Y V  
Moreover, CTC = 

Theorem 2. Let the conditions of Theorem 1 be ful- 
filled and let K+i be defined b y  the eigen-decomposition 
V,+I D,+I V,T1 = Z,+I where Z,+I = X z l  X+I.  

If A,+] # A,, then for  

C.+I = WB,+i. (14) 

B,-LI = Y,+iV,+1 (15) 
we haoe 

IIC - C,+IlI < c3(x,+I/Xs)z('+') 

I IB  - ~ i + l l l <  C~(X,+I/X,)~('+') 

with constants c3, c4 which are independent of A,, A,+] and 

Proofs of these theorems can be established drawing on 
the results [SI. 
On the basis of the above, the interlacing iteration a1g.o- 

rithm, IIA, for solution of the problem (4), (5) is as follows: 
1. given W,S and X O ;  compute Y;+I and Xi+]  for i = 

0 ,1 ,2 ,  .__ in accordance with (8)-(12); 
2. when X,+I and Y,+I satisfy the stopping criteria 

IIXt+l - Xi11 5 e', IIX+I - Y,II 5 e'' with E',"' given, 
compute the small (s x s) dimension symmetric matrix 
Z;  = X:X for this i and the eigen-decomposition 

1. 

zi = v; ni KT (16) 

where ~ ? i  = diag(X1, XZ, ..., A,} as in Theorem 1. 
3. Finally, compute the matrices 

Bi = X K ,  Ci = W B i  (17) 

Note that only C, and B;, of much reduced dimension- 
alities, are transmitted and this leads t o  a correspond- 
ing reduction of the transmission costs. 

Let us consider the computational complezity of IIA. S u p  
pose, l > qm in (4) ,  (5). It follows from (8)-(12) and 
(14), (15), that each iteration of IIA takes O(sqm) flops 
to compute the matrices Ai, X+1 and Xi+]. It also requires 
O(iq,q,+l) flops to evaluate the matrix Ci. These counts 
determine the dominant part of the computational com- 
plexity of IIA. By comparison, using a QR-type algorithm 
to solve the problem (4), (5) for C and B requires 0(413/3)  
flops per iteration. 

Also note that IIA has the high degree of convergence. 
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4. NUMERICAL EXAMPLES 
To demonstrate the viability of the IIA method we took 
some electro encephalographic (EEG) data in which there 
are 512 rows, each with 167 readings taken from one EEG 
sensor. This data was normalized to have maximum mod- 
ulus unity. The rows are grouped in sets of 32, each group 
representing one test with 32 simultaneously sampled sen- 
sors. We applied the compression technique above to the 
first 3 = 32 rows, the first j = 128 rows and then to all 
j = 512 rows. For each choice of row dimension we ran 
IIA with s = 4,12,16 to give a range of compression ratios. 
On each test, we took the first s columns of the matrix S 
as a starting matrix XO and ran the iteration (8)-(12) until 
the relative difference, between successive approximations, 
of Frobenius norm 11s - X Y T l l ~  wbs smaller than 
All the calculations were done using IEEE double precision 
arithmetic with a machine epsilon of about 2 x and 
the Frobenius norm is used throughout. 

The results of these illustrative examples (not meant to 
be a thorough numerical investigation) are summarized in 
the Table 1 below. Column 1 of this table shows the number 
of rows in the sample and Column 2, the number s. The 
next two columns, 3 and 4, show the ratios 

- 1 

respectively, where p is the number of iterations required 
for convergence and W A ~  is the approximation to W given 
by IIA. Column 5 shows the compression, C p  = (< C > + < B >)/ c W >,' where < . > denotes the number of 
elements in the argument matrix, and Column 6 shows the 
number p of iterations for convergence. 

We observed that, universally, the major reduction in the 
norms (18) occurs in the first iteration: subsequent itera- 
tions only produce a small decrease in the accuracy of the 
approximation. This is illustrated in Table 2, where the 
error a t  each of the four iterations needed for convergence, 
is shown. The compression for this example has reduced 
the size of the approximation to 16.5% of the original size. 
Clearly, the improvement obtained depends on the choice 
of initial matrices XO and YO. However, even for arbitrar- 
ily chosen XO and YO we saw very similar convergence be- 
haviour. In Figure 2, we show the corresponding EEG trace 
and its approximation (i.e. the reconstruction after com- 
pression by IIA) on the same axes. 

Table 1. Numerical examples: error ratios, 
compression and number of iterations 

Table 2. 
128 

Error reduction for 
rows with s=12 

o 20 40 so 80 io0 120 140 160 teo 
-0.4 

167datapoiw 

Figure 2. A typical EEG trace and its reconstruction 

5. ADVANTAGES AND SIGNIFICANCE 
In comparison with the known methods 11-51 - -  

The specific generic scheme of the signal compression 
proposed makes it possible to  considerably cut the 
transmission cost; 
The new discrete transforms suggested lead to a high 
quality of the data compresed reconsmction; 
The new approach of uncorrelated compression based 
on a specific combination of the ideas [4], p. 582. and 
[SI has a high speed of convergence and consequently 
allows us to  economize the computational expenditures 
needed to  reach the desired accuracy. 
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