
DESIGN TECHNIQUES FOR HIGH PERFORMANCE ASYNCHRONOUS ARITHMETIC OPERATORS

Xingcha Fan, Richard G. Burford and Neil W. Bergmann
School of Information Science & Technology
Hinders University, Adelaide, AUSTRALIA

ABSTRACT
High p e flomance asynchronous arithmetic operator design tech-
niques are proposed, which adopt some of the techniques commonly
used in synchronous systems such as fast precharged logic and
eflcient latch design, while maintaining the features of localized
and elastic pipelining control inherent in asynchronous design. A
pipelined sixteen bit multiplier designed using these techniques is
presented and its per$ormance compared with several previously
reported asynchronous and synchronous designs.

1. INTRODUCTION

Asynchronous logic design removes the global clock signal and
hence the global timing constraints of conventional synchronous
VLSI systems. The flow of data is dictated by local timing
considerations. This attribute is becoming increasingly important
as VLSI feature size is reduced and chip complexity increases. Other
potential advantages of asynchronous design include lower power
consumption, simplified system level design, and great product
longevity. In recent years, asynchronous design is finding its way
into high performance VLSI systems for Digital Signal Processing
(DSP) applications.

Arithmetic operators are often the major building blocks and
performance limiting factors for DSP and other numerical process-
ing VLSI systems. In recent years, many asynchronous arithmetic
operators have been reported [4, 14, 6, 7, 91, and some of them
exhibit better overall performance or superiority in some perfor-
mance metrics than comparable synchronous designs. For those
asynchronous arithmetic operators demonstrating performance su-
periority, the performance advantages are mainly achieved by the
exploitation of data-dependent operational redundancies in the
arithmetic operation.

A typical example is a currycompletion sensing ripple carry
adder. By detecting the actual longest carry propagation in the
adder, a cany-completion sensing adder can achieve an average
delay in the order of O(log, n) [5] , while in a synchronous ripple
carry adder the addition delay must account for the worst-case
carry propagation delay in the order of O (n) . Another reported
successful asynchronous arithmetic operator is a 54-bit self-timed
divider based on a radix-2 SRT division algorithm [15, 141. In this
asynchronous divider, an early-done detection technique is used to
terminate the division iterations and generate the division “done”
signal as soon as the remainder repeats. Special techniques are
applied to the pipelined ring structure of the divider to achieve
zero-oveihead performance. This divider has been shown to be
much faster than the commercial synchronous divider chips.

However, for many arithmetic operations or implementation
styles of arithmetic operators, data-dependent operational redun-
dancies do not exist or often the performmce gain of exploiting the
operational redundancies is outweighed by the performance over-
head introduced by doing so. An example is a fully pipelined array
multiplier in which each carry save adder stage is of fixed delay
without data-dependent operational redundancy. On the other hand,

zero-overhead is not achievable for pipelined structures which do
not have a ring structure. For a straight pipeline, zero-overhead can
be achieved on latency, but at the penalty of about 50% throughput
decrease.

A pipelined structure is commonly used in high performance
arithmetic operator design. This paper will focus on the design
of asynchronous pipelined arithmetic operators where no data-
dependent operational redundancies are exploited.

It is generally believed that asynchronous pipelined arithmetic
operators are slower and occupy a larger chip area than their
synchronous counterparts and this is supported by several published
studies [101. We contend, however, that asynchronous pipelined
arithmetic operators can be designed with performance similar
or equal to that of equivalent synchronous ones by using design
techniques proposed in this paper. When a degradation factor
(typically 50% or greater 131) is applied to the clock speed of
synchronous designs to allow for temperature, supply voltage and
fabrication process variations, asynchronous designs can exhibit a
significant performance advantage.

In this paper, we propose design techniques for very high
performance asynchronous arithmetic operators, which adopt some
of the design techniques commonly seen in high speed synchronous
VLSI design. These design techniques will be elaborated by
the presentation of a sixteen bit fixed point multiplier design,
which achieves a performance level similar to that of non-derated
synchronous designs.

2. ASYNCHRONOUS PIPELINED STRUCTURES

In this section, we review some of the techniques used for asyn-
chronous pipelined arithmetic operator designs.

2.1 Micropipeline
Micropipelines [111 is an asynchronous self-timed circuit or system
design style using two-cycle or non-return-to-zero self-timed sig-
naling and a bundleddatu format. Each bit of data is carried over a
single wire. Arbitrary data widths are bundled and the flow of data
is controlled by the exchange of common request and acknowledge
handshake signals.

To indicate the completion of its operation, the computation
delay of a computation block in the micropipeline is accounted for
by introducing an explicit delay element in the control path which
models or matches the delay of its critical path. This technique of
delay modeling or delay matching must allow for the worst-case
delay of each computation block. The delay matching technique
is free of the completion detection delay incurred by other design
techniques. It is efficient for completion indication in asynchronous
system design where the delay of the computation block is data-
independent, such as in a carry save adder stage of a pipelined
multiplier.

In order to use dynamic precharged logic, a precharge period
between successive evaluation phases is required. Since two-cycle
signaling does not have areturn-to-z.ero phase which can be used for

0-7803-2440-4/94/ $ 4 00 0 1994 IEEE 4C.11.1 127

precharging it is difficult or impossible to incorporate precharged
logic into a micropipeline in its pure form. Computation within
the pipeline is usually implemented in static complementary logic
(CMOS). This results in larger and slower computation blocks than
achievable using dynamic precharged logic because of the need for
more complementary P type transistors.

In micropipeline structure, data latching between pipeline
stages is controlled by signal transitions (either low-to-high or high-
to-low). A special transition data latch structure [l 11 is required,
which may limit the use of high speed and simple latch designs as
can be used in synchronous or level controlled design.

2.2 Asynchronous pipeline using DCVSL
DifSeerential Cascode Voltage Switch Logic (DCVSL) [2, 61 is a
widely used logic style for self-timed computation block design.
Data is dual-rail encoded, i.e. two wires are used to encode
each data bit. Outputs are inverted so thet both outputs are
low at the precharge phase. This is particularly necessary when
DCVSL gates are cascaded to form a computation block with a
common Prechasge/Eualuut ion signal, to ensure that evaluation
of DCVSL gate can commence only when the outputs of the
preceding gate have settled. This introduces an inverter delay
between each gate, which should be avoided in high performance
arithmetic operator design.

DCVSL provides complementary outputs which can be used
for completion detection by simply ORing the output pair. For
a multi-bit computation block, completion detection of the output
bundle can be done by a C-element tree or an AND-gate tree
taking the completion signal of each output bit as inputs, or by
simply wired-ORing their complements. Completion detection
can produce a performance improvement when there is a data-
dependent variation in computation delay. However, even then, the
time and area overhead for completion detection may outweigh its
advantages.

Meng proposed an asynchronous full-handshake pipeline
structure in [6] using four-cycle self-timed signaling protocol and
DCVSL computation block. By inserting data latches between
computation blocks and carefully designing the handshaking control
circuit, adjacent DCVSL blocks can perform evaluation on different
data concurrently. Ignoring the C-element delays in the control
circuit, the throughput (7) and latency (C) of a n stage full-
handshake pipeline can be represented as

7 = l / (D e + Dc:ed + Dp + Dp:cd + 201) (1)

C (De + De:cd + 0 ~) X 7~ (2)

where De is the evaluation delay of a DCVSL computation block,
D, is its precharging delay, De:=d is the completion detection delay
for the evaluation, Dp:ed is the completion detection delay for the
precharging, and Dl is the delay of data latch. Equation 2 is
obtained assuming all the DCVSL blocks are identical.

From Equation 2, we can see that completion detection delay
De:cd contributes to the performance overhead of both throughput
and latency. Throughput overhead is further caused by an extra
precharging cycle i.e. (D , + DP:=d + Dl), which is required by
DCVSL logic and speed-independent four-cycle handshake signal-
ing. To achieve a similar performance level to synchronous design,
these overheads need to be reduced.

Williams in [131 proposed a technique to overlap the comple-
tion detection delay of a DCVSL block with the evaluation delay

of its succeeding block. Data latches are removed between DCVSL
computation blocks to further improve the latency. The throughput
and latency of a n-stage pipeline using this technique (ignoring the
control circuit delays) are

From Equation 4, we can see that no delay overhead is introduced
into the latency of this pipeline, therefore this is called a zero-
latency-over~adpipeline. However, the throughput of this pipeline
is largely degraded due to the removal of data latches and the
character of DCVSL gate that inputs must remain unchanged to hold
the output state. These two factors mean that any three adjacent
stages in the pipeline cannot evaluate concurrently. 'zhis technique
has been successfully usedin a self-timed divider with ring structure,
where the latency of the pipeline is the only performance deciding
factor while the overall throughput (7) of the divider is 1/L.
For a normal pipeline, this technique is not very useful because
of poor throughput performance, particularly when computation
blocks consist of multiple stages of DCVSL gate, or D e is large.

Improvement can be made by incorporating output holding
function into the DCVSL gate. By inserting a cut-off transistor
between the NMOS evaluation tree and each of the output node
which connects its gate to the opposite output node, a modified
DCVSL circuit is able to hold its output state after the evaluation
completed and allow the free changeof its inputs. By using DCVSL
circuits modified in such a way and carefully designing the control
cirnuit, the throughput of the pipeline can be improved to

I = 1/(2De + Dp + De:cd + Dp:cd) (5)

while achieving the same latency. However, due to the use of cut-off
transistors which introduce an extra stage of serial transistors in the
NMOS tree, the evaluation delay, D , , of the modified DCVSL gate
is increased.

Another logic family, Latched Differential Pass Transistor
Logic (LDPL), is proposed by Salomon et a1 [9] for their fully
pipelined multiplier design. By using pass transistor logic for
the NMOS evaluation tree and cut-off transistors between eval-
uation tree and output nodes which connects their gate to the
precharge/evaluation signal, it allows the evaluation of the tree to
be carried out as soon as the inputs are set up even when the LDPL
C ~ ~ C I J L is still in precharge phase. Output latching is also incor-
porsted, although in a different sense from the modified DCVSL
gate that output state holds when LDPL circuit is in the precharging
phase. With {his output latching feature, a LDPL circuit stage can
start precharging while its following stage is still evaluating on its
outputs. The use of LDPL can further improve the throughput of
pipeline. However, this may be outweighed by the complexity and
the speed sacrifice of LDPL. A multiplier designed using LDPL will
be compared later in the paper.

3. DESIGN TECHNIQUES FOR HIGH PERFORMANCE
ASYNCHRONOUS PIPELINES

The asynchronous pipeline structures and the design techniques
described in the last section have limitations and introduce var-
ious performance and hardware cost overheads compared with
synchronous pipelines. For example, the two-phase handshaking
signaling protocol of the micropipeline structure excludes the use

12 4c. 1 1.2

of high-speed dyriarnic precharged logic for tlie processing block,
arid requires more complex and slower event-controlled registers.
The performance of normal. four-phase handshaking pipeline with
DCVSLprocessing logic is affected by completion detection delays
and the pipeline throughput is further affected by the extra retum-to-
zero phayes required by the four-phase signaling protocol. Although
delay-matching completion indication technique can be applied to
DCVSL processing logic block which reduces the D c:ed and Dp:=d

delays to approximately zero, DCVSE processing logic still has the
disadvantages of longer evaluation delay due to the inverters inter-
posed between DCVSE gates, and higher hardware requirement due
to the dual-rail signal encoding. Although techniques can be used
to achieve zero latency overhead, these improvements are usually
achieved at the expense of throughput.

In conclusion, the reported asynchronous pipeline structures
and design techniques are not sufficient to design high-performance
pipelined arithmetic operators in which operational redundancy
is not exploited within processing blocks. The idea behind our
design technique for high-performance asynchronous pipelines is
that to achieve similar pevoimance level lo synchronous designs,
techniques commonly used in lzighper$ormancesynchronous design
should be extensively adopted. The key points of our design
technique is described as follows.

First, delay matching techniques should be used for indicating
the operation completion of processing blocks (pipeline stages). By
using delay matching completion indication, the performance of
processing blocks can be exploited to at least the same extent
as in synchronous design. Thus, considering only the processing
block, an ayynchronous design should achieve at least equivalent
performance to a synchronous design. In order to guarantee
correct operation over the requiied temperature and supply voltage
range and to allow for fabrication process variations, a degradation
factor is generally applied to the clock speed of synchronous
design. In contrast, the delay matching technique allows an
asynchronous design to achieve optimal performance for given
operating conditions by tracking the variation in computational
delay.

Second, to achieve very high performance as seen in syn-
chronous designs, high-speed logic circuit design techniques, such
as dynamic precharged logic are used. This excludes the use of the
micropipeline structure and DCVSL processing logic.

Third, data latching is done in a similar manner to synchronous
design, but with a locally generated latching signal pulse instead of
a global clock signal. This pulse is of fixed width, initiated by the
completion indication signal of each processing block. The width
of the pulse does not contribute to the handshaking loop which
determines the pipeline throughput. High-speed latch designs are
used.

Inherent in our design technique is the assumption that logic
gate and interconnection wire delays are bounded and can be
modeled (i.e. boundedwire delay model), much in the same way as
implied in synchronous design. We sacrifice speed-independence
or delay-insensitivity in order to achieve higher performance. The
design technique is demonstrated in the next section, through
the design of a very high-performance asynchronous pipelined
multiplier.

Figure 1 : n e floorplan of the 16 x 16 pipelined multiplier

4. A 16-BIT ASYNCHRONOUS PIPELINED MULTIPLIER

In this section, we present an 185MMPS (Million Multiplications
Per Second) 16x 16 asynchronous pipelined unsigned multiplier
to demonstrate the high-performance asynchronous pipeline design
technique. The multiplier is implemented in an 1.2pm single-poly
double-metal CMOS process [8].

4.1
The multiplier is composed of sixteen stages of 16-bit carry save
adders (CSA) and a combination of Manchester carry adders and
carry select adders to merge the final two vectors of cany and partial
s u m values generated by the CSA array. It is implemented as afive
stage pipeline, with the top four pipeline stages each consisting of
four cascaded 16-bit cany save adders (each of these four pipeline
stages i s called a CSA bfock), and the last pipeline stage consisting
of the Manchester carry select adder. Data latches are used between
pipeline stages to store the partial products and operanddata flowing
through the pipeline. The selection of this five stage pipeline is the
result of a trade-off between throughput, latency, and chip area. It
has also been based on the consideration that delays of pipelined
stages are balanced and evenly distributed. Increasing the number
of stages of pipelining increases the number of interstage latches,
and input latches for staggeringthe Y operand (or multiplier). This
results in greater throughput at the expense of a longer latency lime
and larger chip area. Five stages of pipelining allow us to maximize
the multiplier throughput while not exceeding the allowable active
die area (excluding pads) of 3.24mmz for the chosen prototype
fabrication process (Orbit Semiconductor’s Tiny Chip).

The floorplan of the pipelined multiplier is shown in Figure 1.
The X operand (or multiplicand) is input at the top of the CSA
m a y and flows down through the interstage latches. Y operand is
input from the right, and is staggered through the pipelined input
latches (input pipe) so that Y bits (in the form of 4-bit digits) reach
CSA blocks at the same time as the respective X operand. Each
CSA block generates four bits of lower order product which are
output through the pipelined output latches (output pipe). The
final 32 bit product is output at the last pipelined latches in parallel.
The interstage latches also latch the intermediate carry and sum

Qverall structure of the multiplier

4c.11.3 129

Figure 2: Pipelining and data latching control circuit

results from CSA blocks. In Figure 1, latches Elled with the same
cross-hatch pattern are controlled by the same latching signal. The
handshaking between pipeline stages are controlled by the control
path (CTRL) which occupies a vertical strip between the adder
array and the input/output pipes. The control path also generates
the latching signals for the latches.

4.2 The control path
The control path circuit which performs the pipelining control and
generates local data latching signals is shown in Figure 2. It
generates the data latching signal, Latch, to latch the outputs of
a CSA block, as well as X operand and digits of Y operand from
previous latches, after the CSA block completed evaluation, and
when its following CSA block is empty or has had its output latched.
Therefore, the control path provides an elastic pipelining control.
The datalatching signal is locally generated and, similar to the clock
for a synchronous pipeline, is a positive pulse offied width.

The operation of the control circuit in Figure 2 is explained as
follows. Before the start of pipelined operation, the control path is
reset (Reset low), so that the original state of El, Ez, S T I , ST2 are
all high, while Doneo, Donel are low, and the pipeline is empty.
When Done0 goes high after the previous CSA block completes its
evaluation, Latch1 goes high, latching its output data into the latch.
E1 is then pulied down to low starting the evaluation of the current
CSA block by dnving Eva1 to high. The drop of E1 also drives
Latch: to low to complete the fixed width pulse of Latch 1.

While E1 is low, it prevents the latching of new data into the
data latch until the current CSA block has completed its evaluation
and latched its output. Here, the rising of Latchz will generate a
negative pulse of STI which sets E: to high, so that a new latching
cycle of Latch1 may start. The delay element in Figure 2 matches
the delay of CSA block to indicate the completion of its evaluation.

As can be seen, this control circuit implementation is not
speed-independent. However, the delay assumptions that have been
made, such as on the width of Lutch and ST signal pulses, are
reasonable and reliable.

4.3 Progressive evaluation
To achieve higher performance, dynamic precharged logic is used
for the carry save adders, as shown in Figure 3. The sum circuit
performs the logic function So = Si @ C; @ P and the carry circuit
performs the logic function C, = S i p + CiP + Sic;, where Si
and 6, are the sum and carry signals from the preceding carry save
adder stage, P is obtained by the logic AND of the corresponding
bits in the X and Y operands. No carry propagation occurs in the
horizontal direction in each 16-bit carry save adder. Complementary
inputs and outputs are used to eliminate the need of inverters for
obtaining complementary signals. This minimizes the delay of each

p’E-i P -

Figure 3: Carry save adder circuits: (a) sum (b) carry

carry save adder without sacrificing much of the chip area because
of the simplicity of the circuit. Simulations using normal SPICE
device parameter models for the ORBIT process [8] show that both
sum (So or 3,) and carry (CO or CO) outputs which evaluate to a
low state reach 50% of rail voltage in 0.6ns and 25% within 0.811s.

Four stages of such carry save adders are cascaded to form
a CSA block. To ensure that the NMOS pull down tree evaluates
correctly, it is essential that evaluation of a given carry save adder
stage does not commence until all its inputs are valid and stable.
One technique to ensure this is to interpose inverters between each
carry save adder while using a commonP/E signal for all stages, like
in a normal DCVSL processing block. However, this increases the
delay of CSA blocks. We use a Progmssive Evaluation technique,
in which adjacent evaluation stages are released from precharge
after the output of the preceding stage has settled, similar to a
multi-phase, synchronously-clocked, precharged-logic system

The complete control path incorporating the Progressive
Evaluation control is re-drawn in Figure 4. The delay element is
composed of a string of NAND gates and inverters which model
the delay of carry save adder stages. Timing for the precharge
and evaluation phases is derived from taps in the delay element.
The evaluation of a carry save adder can be commenced once any
low level inputs have settled below the threshold of the NMOS
evaluation tree. A delay of 0.811s is allowed between successive
evaluations (i.e. P E signals). This delay allows outputs of a carry
save adder, which evaluate to low state, reach below 25% of the
rail voltage, i.e. approximately 1.25V. Although this voltage is still
a fraction higher than the on-threshold voltage of NMOS transistors
(typically lV), only an insignificant amount of stored charge in
its succeeding carry save adder is discharged before the associated
NMOS transistors are turned off by the further drop of low level
output signals. Correct evaluation of its following carry save adder
stage is ensured

The carry save adders in a CSA block are precharged concur-
rently after the outputs of the CSA block are safely latched. The
precharging of the CSA block is driven by the PTe signal, which
goes low slightly before the Latch signal goes high. The P/E
signals are pulled down one NAND gate delay behind the rising
of Latch signal. This delay, plus the precharging delay of carry
save adders, together with the special character of our self-latching
latches guarantee the reliable latching of CSA block output, while
allowing overlap between data latching and CSA blockprecharging.
Similarly, the signal generating the negative pulse of ST is derived
one stage early to improve the pipeline throughput. The Latch and

4C. 1 1.4

Figure 4: Control path for Progressive Evaluation and data latching

Figure 5 : Data latching and Progressive Evaluation control signals

PIE signals of one pipeline stage, obtained from a SPICE simulation
for the whole multiplier control path with the full load of all the
Latch and P/E signals is shown in Figure 5.

4.4 Manchester carry select adder
The final pipeline stage of the multiplier resolves the higher,order
sixteen bits of the product by adding the sum and carry vectors
(both are 16 bits) generated by the carry save adder array. To avoid
becoming the performance bottleneck and to match the delay of
the other pipeline stages, i.e. CSA blocks of approximately 3.3ns,
a combination of Manchester carry adders and carry select adders
[12] are used, referred to as a Manchester carry select adder.

We use a precharged logic carry lookahead circuit generally
called a Manchester carry chain (MCC) [12]. Four bits of carry
signals are generated in each MCC to restrict the number of serial
transistors in the evaluation path. Dynamic precharged logic is used
for the Generate Propogate (GP) circuits, MCCs, and the circuits
generating the carry signals. Progressive Evaluation is again used.
The sum blocks use normal static complementary CMOS logic,
because their delay is not critical due to overlap with the evaluation
of the carry signals.

SPICE simulation shows the delay of the Manchester carry
select adder, i.e. the delay from GP block starting evaluation to final
carry becoming valid is about 3.4ns which is close to the delay of
other pipeline stages. The multiplexing for the output sum selection
is incorporated into the data latching stage.

Salomon et al. have also designed a 16-bit pipelined adder,
using a combination of Manchester carry chain and the carry
select technique. as the final stage of a 16 x 16 multiplier [9] to
merge the partial products of the pipelined carry-save multiplier
core. The pipelined adder is implemented with 4 pipeline stages
using a dynamic pass transistor logic family called LDPL (Latched

9 f

Figure 6: Data latches: (a) positive edge triggered flip-flop (b)
self-latching register

Diffeerential Pass Transistorhgic). Their simulations show that the
adder implemented with 1 .Opm CMOS technology has the addition
latency of approximately 13ns.

Our Manchester carry select adder is much faster than the
one reported by Salomon et al., because of the use of dynamic
precharged logic with Progressive Evaluation, as well as careful
transistor sizing and layout design.

4.5 Data latches
Data latches for X and Y operands, inputs and output pipes use
a 9-transistor single-phase positive edge triggered D flip-flop [I] .
The circuit, shown in Figure 6(a) can be implemented with fewer
transistors than micropipeline-style event-controlled registers [111
and exhibits near zero data hold time. An input inverfer is used to
give a non-inverting latch, resulting in eleven transistors for each
latch. Because this input inverter is not in the critical delay path of
the CSA blocks and X, Y operands are always ready well before the
latching signals in the interstage latches, it will not introduce any
performance loss. Simulations indicate the latch has a setup time of
0.811s and total delay of Ins under normal operating conditions.

Carry and sum outputs of CSA blocks are latched using
a so called self-latching register shown in Figure 6(b). The
complementary outputs of carry and sum are used as the input of the
- register. When the latch signal Latch i s high and D is not equal to
D, the output Q will equal D . When Latch is low, or D equals 5
(i.e. when the block is precharged or still in evaluation) the output
will held. This relaxes constraints of Latch signal width, and the
timing between Latch signal and PIE signals. Simulation results
shown a delay of 0.911s from input to output.

4.6 Performance analysis and comparison
The chip layout of the multiplier implemented on a 40-pin Orbit
Semiconductor Tiny Chip is shown in Figute 7. The large block at
the upper-left of the layout is the CSA array (four pipeline stages),
and the less regular part of the layout at the bottom is the Manchester
carry select adder. The right strip of the layout is the input and
output pipe for the staggered Y operand and lower order product
bits. In between the CSA array and inputloutput pipes is the control
path (CTRL) of the multiplier. The effective chip area occupied by
the multiplier, excluding the input and output multiplexing circuit
required by the limited pin number, is 3.03mm2. The control path
occupies only 4.7% of the effective multiplier area.

SPICE simulations using normal device parameter models
for the Orbit 1.2pm CMOS process at an operating temperature of
27OC indicate the multiplier is capable of accepting input operands

4C.11.5 131

Design S tyle
Feature size (p m)

Area (n”)

Throughput (MMPS)
Latency (ns j

Area (scaled to l p m)

Figure 7: Chip layout of the 1 6 x 16 asynchronous multiplier

DCVSL[6] LDPL[9] Mpipe.[9] Sync.[9] Prog.Eva
1.6 1 .o 1 .o 1 .o 1.2

8.1 2.59 2.64 2.53 3.03
3.16 2.59 2.64 2.53 2.1
26.3 156 104 172 185
38 64 23

every 5.411s or an effective throughput rate of 185 MMPS (million
multiplications per second). Latency of the multiplier is 2311s.

Table 1 compares the performance of several 16 x 16 multi-
plier designs. The “DCVSL multiplier” is reported by Meng [6].
It is a non-pipelined Booth-encoded multiplier core, which outputs
two 16-bit carry and sum vectors (like the output from our CSA
array), instead of the find product. The “LDPLmultiplier” is a fully
pipelined multiplier designed by Salomon et al. 191 using Latched
Dtffeerential Pass Transistor Logic (LDPL). The micropipelined and
synchronous multiplier designs are also cited from 191. The entries
shown for “Area(scaled)” have been scaled to l p m feature size
for comparison purposes. As shown in the table, our design tech-
nique of Progressive Evaluation (Prog.Eva) demonstrates the best
performance as well as the smallest chip area.

A clocked synchronous design using the circuit design tech-
niques similar to those presented here (including Progressive Evalu-
ation) may be able to achieveperfoimance equal or perhaps slightly
better than our design (without allowing for a degradation factor).
Such a design would not, however, have the elastic pipeline proper-
ties, and requires the distribution of a 185MWz global clock signal
which is not a easy task.

5. CONCLUSIONS

High performance asynchronous arithmetic operator design tech-
niques have been presented in this papa. An asynchronous pipelined
multiplier designed using the proposed techniques demonstrates a
performance level similar to that of a non-derated synchronous

design, while maintaining the inherent advantages of asynchronous
design such as elastic pipelining control. The proposed design
techniques are applicable to many asynchronous, pipelined VLSI
design problems.

REFERENCES

[I] M. Afghahi and C. Svensson. A unified single-phase clocking scheme
for VLSI systems. IEEE J . Solid-State Circuits, SC-25(1):225 - 233,
February 1990.

[2] K.M. Chu and D.L. Pulfrey. A comparison of CMOS circuit tecli-
niques: Differential cascode voltage switch logic versus conventional
logic. IEEE J. Solid-State Circuits, SC-22(4):528-532, August 1987.

[3] M.E. Dean. S m P : A self-timed RISC processor. Technical Report
CSL-TR-92-543, Computer System Laboratory, Stanford University,
July 1992.

[4] J.D. Garside. A CMOS VLSI implementation of an asyncllronous
ALU. P m . IFIP Working Conference on Asynchronous Design
Methndologia, Manchester England, March 1993.

[5] K. Hwang. Computer Arithmetic: Principles, Adti tecture, and
Design. John Wley & Sons, 1979.

[6] T.H.-Y. Meng. Synchronization Design fo r Digital Systems. Kluwer

[7] C.D. Nielsen and A.J. Martin. A delay-insenwive multiply-
accumulate unit. Technical Report Caltech-CS-TR-92-03, Computer
Science Department, California Institute of Technology, 1992.

[8] Orbit Semiconductor Inc., Sunnyvale, CA. Foresight Usem Manucrl,
rev 1.4 edition, July 1991.

191 0. Salomon and H. Klar. Self-timed fully pipelined multiplier. Proc.
IFIP Working Conference on Asynchronous Design Methodologies,
Manchester; England, March 1993.

[lo] J. Sparse, C.D. Nielsen, L.S. Nielsen, and J . Staunstrup. Design of
self-timed multipliers: A comparison. Pmc. IFIP Working Conference
on Asynchronous Design Methodologies, Manchester; England, March
1993.

[l 11 I.E. Sutherland. Micropipelines. Communications of the ACM,

[12] N. Weste and K. Eshraghian. Principles of CMOS VLSI Design, A
System Perspective. Addison-Wesley, 1985.

[13] T.E. William. Analyzing and improving the latency and throughput
performance of self-timed pipelines and rings. Proc. 1992 IEEE
International Symposium on Circuits and Sys tem, pages 665469,
May 1992.

[14] T.E. William and M.A. Horowitz. A zerc-overheadself-timed 160-ns
54-b CMOS divider. IEEE J . Solid-state Circuits, 26(11):1651-1<61,
Nov. 1991.

[15] T.E. William, M.A. Horowitz, R.L. Alverson, and T.S. Yang. A self-
timed cllip for division. Proc. 1987Stanford Conference on Avnnced
Research in VLSI, pages 75-96, March 1987.

Academic Publishers, 1991.

32(6):720-738, June 1989.

4c. 1 1 .h

