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ABSTRACT 
High p e  flomance asynchronous arithmetic operator design tech- 
niques are proposed, which adopt some of the techniques commonly 
used in synchronous systems such as fast precharged logic and 
eflcient latch design, while maintaining the features of localized 
and elastic pipelining control inherent in asynchronous design. A 
pipelined sixteen bit multiplier designed using these techniques is 
presented and its per$ormance compared with several previously 
reported asynchronous and synchronous designs. 

1. INTRODUCTION 

Asynchronous logic design removes the global clock signal and 
hence the global timing constraints of conventional synchronous 
VLSI systems. The flow of data is dictated by local timing 
considerations. This attribute is becoming increasingly important 
as VLSI feature size is reduced and chip complexity increases. Other 
potential advantages of asynchronous design include lower power 
consumption, simplified system level design, and great product 
longevity. In recent years, asynchronous design is finding its way 
into high performance VLSI systems for Digital Signal Processing 
(DSP) applications. 

Arithmetic operators are often the major building blocks and 
performance limiting factors for DSP and other numerical process- 
ing VLSI systems. In recent years, many asynchronous arithmetic 
operators have been reported [4, 14, 6, 7, 91, and some of them 
exhibit better overall performance or superiority in some perfor- 
mance metrics than comparable synchronous designs. For those 
asynchronous arithmetic operators demonstrating performance su- 
periority, the performance advantages are mainly achieved by the 
exploitation of data-dependent operational redundancies in the 
arithmetic operation. 

A typical example is a currycompletion sensing ripple carry 
adder. By detecting the actual longest carry propagation in the 
adder, a cany-completion sensing adder can achieve an average 
delay in the order of O(log, n) [5] ,  while in a synchronous ripple 
carry adder the addition delay must account for the worst-case 
carry propagation delay in the order of O ( n ) .  Another reported 
successful asynchronous arithmetic operator is a 54-bit self-timed 
divider based on a radix-2 SRT division algorithm [15, 141. In this 
asynchronous divider, an early-done detection technique is used to 
terminate the division iterations and generate the division “done” 
signal as soon as the remainder repeats. Special techniques are 
applied to the pipelined ring structure of the divider to achieve 
zero-oveihead performance. This divider has been shown to be 
much faster than the commercial synchronous divider chips. 

However, for many arithmetic operations or implementation 
styles of arithmetic operators, data-dependent operational redun- 
dancies do not exist or often the performmce gain of exploiting the 
operational redundancies is outweighed by the performance over- 
head introduced by doing so. An example is a fully pipelined array 
multiplier in which each carry save adder stage is of fixed delay 
without data-dependent operational redundancy. On the other hand, 

zero-overhead is not achievable for pipelined structures which do 
not have a ring structure. For a straight pipeline, zero-overhead can 
be achieved on latency, but at the penalty of about 50% throughput 
decrease. 

A pipelined structure is commonly used in high performance 
arithmetic operator design. This paper will focus on the design 
of asynchronous pipelined arithmetic operators where no data- 
dependent operational redundancies are exploited. 

It is generally believed that asynchronous pipelined arithmetic 
operators are slower and occupy a larger chip area than their 
synchronous counterparts and this is supported by several published 
studies [ 101. We contend, however, that asynchronous pipelined 
arithmetic operators can be designed with performance similar 
or equal to that of equivalent synchronous ones by using design 
techniques proposed in this paper. When a degradation factor 
(typically 50% or greater 131) is applied to the clock speed of 
synchronous designs to allow for temperature, supply voltage and 
fabrication process variations, asynchronous designs can exhibit a 
significant performance advantage. 

In this paper, we propose design techniques for very high 
performance asynchronous arithmetic operators, which adopt some 
of the design techniques commonly seen in high speed synchronous 
VLSI design. These design techniques will be elaborated by 
the presentation of a sixteen bit fixed point multiplier design, 
which achieves a performance level similar to that of non-derated 
synchronous designs. 

2. ASYNCHRONOUS PIPELINED STRUCTURES 

In this section, we review some of the techniques used for asyn- 
chronous pipelined arithmetic operator designs. 

2.1 Micropipeline 
Micropipelines [ 111 is an asynchronous self-timed circuit or system 
design style using two-cycle or non-return-to-zero self-timed sig- 
naling and a bundleddatu format. Each bit of data is carried over a 
single wire. Arbitrary data widths are bundled and the flow of data 
is controlled by the exchange of common request and acknowledge 
handshake signals. 

To indicate the completion of its operation, the computation 
delay of a computation block in the micropipeline is accounted for 
by introducing an explicit delay element in the control path which 
models or matches the delay of its critical path. This technique of 
delay modeling or delay matching must allow for the worst-case 
delay of each computation block. The delay matching technique 
is free of the completion detection delay incurred by other design 
techniques. It is efficient for completion indication in asynchronous 
system design where the delay of the computation block is data- 
independent, such as in a carry save adder stage of a pipelined 
multiplier. 

In order to use dynamic precharged logic, a precharge period 
between successive evaluation phases is required. Since two-cycle 
signaling does not have areturn-to-z.ero phase which can be used for 
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precharging it is difficult or impossible to incorporate precharged 
logic into a micropipeline in its pure form. Computation within 
the pipeline is usually implemented in static complementary logic 
(CMOS). This results in larger and slower computation blocks than 
achievable using dynamic precharged logic because of the need for 
more complementary P type transistors. 

In micropipeline structure, data latching between pipeline 
stages is controlled by signal transitions (either low-to-high or high- 
to-low). A special transition data latch structure [l 11 is required, 
which may limit the use of high speed and simple latch designs as 
can be used in synchronous or level controlled design. 

2.2 Asynchronous pipeline using DCVSL 
DifSeerential Cascode Voltage Switch Logic (DCVSL) [2, 61 is a 
widely used logic style for self-timed computation block design. 
Data is dual-rail encoded, i.e. two wires are used to encode 
each data bit. Outputs are inverted so thet both outputs are 
low at the precharge phase. This is particularly necessary when 
DCVSL gates are cascaded to form a computation block with a 
common Prechasge/Eualuut ion signal, to ensure that evaluation 
of DCVSL gate can commence only when the outputs of the 
preceding gate have settled. This introduces an inverter delay 
between each gate, which should be avoided in high performance 
arithmetic operator design. 

DCVSL provides complementary outputs which can be used 
for completion detection by simply ORing the output pair. For 
a multi-bit computation block, completion detection of the output 
bundle can be done by a C-element tree or an AND-gate tree 
taking the completion signal of each output bit as inputs, or by 
simply wired-ORing their complements. Completion detection 
can produce a performance improvement when there is a data- 
dependent variation in computation delay. However, even then, the 
time and area overhead for completion detection may outweigh its 
advantages. 

Meng proposed an asynchronous full-handshake pipeline 
structure in [6] using four-cycle self-timed signaling protocol and 
DCVSL computation block. By inserting data latches between 
computation blocks and carefully designing the handshaking control 
circuit, adjacent DCVSL blocks can perform evaluation on different 
data concurrently. Ignoring the C-element delays in the control 
circuit, the throughput (7) and latency (C) of a n stage full- 
handshake pipeline can be represented as 

7 = l / ( D e  + Dc:ed + Dp + Dp:cd + 201) ( 1 )  

C (De + De:cd + 0 ~ )  X 7~ (2)  

where De is the evaluation delay of a DCVSL computation block, 
D, is its precharging delay, De:=d is the completion detection delay 
for the evaluation, Dp:ed is the completion detection delay for the 
precharging, and Dl is the delay of data latch. Equation 2 is 
obtained assuming all the DCVSL blocks are identical. 

From Equation 2, we can see that completion detection delay 
De:cd contributes to the performance overhead of both throughput 
and latency. Throughput overhead is further caused by an extra 
precharging cycle i.e. ( D ,  + DP:=d + Dl), which is required by 
DCVSL logic and speed-independent four-cycle handshake signal- 
ing. To achieve a similar performance level to synchronous design, 
these overheads need to be reduced. 

Williams in [ 131 proposed a technique to overlap the comple- 
tion detection delay of a DCVSL block with the evaluation delay 

of its succeeding block. Data latches are removed between DCVSL 
computation blocks to further improve the latency. The throughput 
and latency of a n-stage pipeline using this technique (ignoring the 
control circuit delays) are 

From Equation 4, we can see that no delay overhead is introduced 
into the latency of this pipeline, therefore this is called a zero- 
latency-over~adpipeline. However, the throughput of this pipeline 
is largely degraded due to the removal of data latches and the 
character of DCVSL gate that inputs must remain unchanged to hold 
the output state. These two factors mean that any three adjacent 
stages in the pipeline cannot evaluate concurrently. 'zhis technique 
has been successfully usedin a self-timed divider with ring structure, 
where the latency of the pipeline is the only performance deciding 
factor while the overall throughput (7) of the divider is 1/L.  
For a normal pipeline, this technique is not very useful because 
of poor throughput performance, particularly when computation 
blocks consist of multiple stages of DCVSL gate, or D e  is large. 

Improvement can be made by incorporating output holding 
function into the DCVSL gate. By inserting a cut-off transistor 
between the NMOS evaluation tree and each of the output node 
which connects its gate to the opposite output node, a modified 
DCVSL circuit is able to hold its output state after the evaluation 
completed and allow the free changeof its inputs. By using DCVSL 
circuits modified in such a way and carefully designing the control 
cirnuit, the throughput of the pipeline can be improved to 

I = 1/(2De + Dp + De:cd + Dp:cd) ( 5 )  

while achieving the same latency. However, due to the use of cut-off 
transistors which introduce an extra stage of serial transistors in the 
NMOS tree, the evaluation delay, D , ,  of the modified DCVSL gate 
is increased. 

Another logic family, Latched Differential Pass Transistor 
Logic (LDPL), is proposed by Salomon et a1 [9] for their fully 
pipelined multiplier design. By using pass transistor logic for 
the NMOS evaluation tree and cut-off transistors between eval- 
uation tree and output nodes which connects their gate to the 
precharge/evaluation signal, it allows the evaluation of the tree to 
be carried out as soon as the inputs are set up even when the LDPL 
C ~ ~ C I J  L is still in precharge phase. Output latching is also incor- 
porsted, although in a different sense from the modified DCVSL 
gate that output state holds when LDPL circuit is in the precharging 
phase. With {his output latching feature, a LDPL circuit stage can 
start precharging while its following stage is still evaluating on its 
outputs. The use of LDPL can further improve the throughput of 
pipeline. However, this may be outweighed by the complexity and 
the speed sacrifice of LDPL. A multiplier designed using LDPL will 
be compared later in the paper. 

3. DESIGN TECHNIQUES FOR HIGH PERFORMANCE 
ASYNCHRONOUS PIPELINES 

The asynchronous pipeline structures and the design techniques 
described in the last section have limitations and introduce var- 
ious performance and hardware cost overheads compared with 
synchronous pipelines. For example, the two-phase handshaking 
signaling protocol of the micropipeline structure excludes the use 
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of high-speed dyriarnic precharged logic for tlie processing block, 
arid requires more complex and slower event-controlled registers. 
The performance of normal. four-phase handshaking pipeline with 
DCVSLprocessing logic is affected by completion detection delays 
and the pipeline throughput is further affected by the extra retum-to- 
zero phayes required by the four-phase signaling protocol. Although 
delay-matching completion indication technique can be applied to 
DCVSL processing logic block which reduces the D c:ed  and Dp:=d 

delays to approximately zero, DCVSE processing logic still has the 
disadvantages of longer evaluation delay due to the inverters inter- 
posed between DCVSE gates, and higher hardware requirement due 
to the dual-rail signal encoding. Although techniques can be used 
to achieve zero latency overhead, these improvements are usually 
achieved at the expense of throughput. 

In conclusion, the reported asynchronous pipeline structures 
and design techniques are not sufficient to design high-performance 
pipelined arithmetic operators in which operational redundancy 
is not exploited within processing blocks. The idea behind our 
design technique for high-performance asynchronous pipelines is 
that to achieve similar pevoimance level lo synchronous designs, 
techniques commonly used in lzighper$ormancesynchronous design 
should be extensively adopted. The key points of our design 
technique is described as follows. 

First, delay matching techniques should be used for indicating 
the operation completion of processing blocks (pipeline stages). By 
using delay matching completion indication, the performance of 
processing blocks can be exploited to at least the same extent 
as in synchronous design. Thus, considering only the processing 
block, an ayynchronous design should achieve at least equivalent 
performance to a synchronous design. In order to guarantee 
correct operation over the requiied temperature and supply voltage 
range and to allow for fabrication process variations, a degradation 
factor is generally applied to the clock speed of synchronous 
design. In contrast, the delay matching technique allows an 
asynchronous design to achieve optimal performance for given 
operating conditions by tracking the variation in computational 
delay. 

Second, to achieve very high performance as seen in syn- 
chronous designs, high-speed logic circuit design techniques, such 
as dynamic precharged logic are used. This excludes the use of the 
micropipeline structure and DCVSL processing logic. 

Third, data latching is done in a similar manner to synchronous 
design, but with a locally generated latching signal pulse instead of 
a global clock signal. This pulse is of fixed width, initiated by the 
completion indication signal of each processing block. The width 
of the pulse does not contribute to the handshaking loop which 
determines the pipeline throughput. High-speed latch designs are 
used. 

Inherent in our design technique is the assumption that logic 
gate and interconnection wire delays are bounded and can be 
modeled (i.e. boundedwire delay model), much in the same way as 
implied in synchronous design. We sacrifice speed-independence 
or delay-insensitivity in order to achieve higher performance. The 
design technique is demonstrated in the next section, through 
the design of a very high-performance asynchronous pipelined 
multiplier. 

Figure 1 : n e  floorplan of the 16 x 16 pipelined multiplier 

4. A 16-BIT ASYNCHRONOUS PIPELINED MULTIPLIER 

In this section, we present an 185MMPS (Million Multiplications 
Per Second) 16x 16 asynchronous pipelined unsigned multiplier 
to demonstrate the high-performance asynchronous pipeline design 
technique. The multiplier is implemented in an 1.2pm single-poly 
double-metal CMOS process [8]. 

4.1 
The multiplier is composed of sixteen stages of 16-bit carry save 
adders (CSA) and a combination of Manchester carry adders and 
carry select adders to merge the final two vectors of cany and partial 
s u m  values generated by the CSA array. It is implemented as afive 
stage pipeline, with the top four pipeline stages each consisting of 
four cascaded 16-bit cany save adders (each of these four pipeline 
stages i s  called a CSA bfock), and the last pipeline stage consisting 
of the Manchester carry select adder. Data latches are used between 
pipeline stages to store the partial products and operanddata flowing 
through the pipeline. The selection of this five stage pipeline is the 
result of a trade-off between throughput, latency, and chip area. It 
has also been based on the consideration that delays of pipelined 
stages are balanced and evenly distributed. Increasing the number 
of stages of pipelining increases the number of interstage latches, 
and input latches for staggeringthe Y operand (or multiplier). This 
results in greater throughput at the expense of a longer latency lime 
and larger chip area. Five stages of pipelining allow us to maximize 
the multiplier throughput while not exceeding the allowable active 
die area (excluding pads) of 3.24mmz for the chosen prototype 
fabrication process (Orbit Semiconductor’s Tiny Chip). 

The floorplan of the pipelined multiplier is shown in Figure 1. 
The X operand (or multiplicand) is input at the top of the CSA 
m a y  and flows down through the interstage latches. Y operand is 
input from the right, and is staggered through the pipelined input 
latches (input pipe) so that Y bits (in the form of 4-bit digits) reach 
CSA blocks at the same time as the respective X operand. Each 
CSA block generates four bits of lower order product which are 
output through the pipelined output latches (output pipe). The 
final 32 bit product is output at the last pipelined latches in parallel. 
The interstage latches also latch the intermediate carry and sum 

Qverall structure of the multiplier 
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Figure 2: Pipelining and data latching control circuit 

results from CSA blocks. In Figure 1, latches Elled with the same 
cross-hatch pattern are controlled by the same latching signal. The 
handshaking between pipeline stages are controlled by the control 
path (CTRL) which occupies a vertical strip between the adder 
array and the input/output pipes. The control path also generates 
the latching signals for the latches. 

4.2 The control path 
The control path circuit which performs the pipelining control and 
generates local data latching signals is shown in Figure 2. It 
generates the data latching signal, Latch, to latch the outputs of 
a CSA block, as well as X operand and digits of Y operand from 
previous latches, after the CSA block completed evaluation, and 
when its following CSA block is empty or has had its output latched. 
Therefore, the control path provides an elastic pipelining control. 
The datalatching signal is locally generated and, similar to the clock 
for a synchronous pipeline, is a positive pulse offied width. 

The operation of the control circuit in Figure 2 is explained as 
follows. Before the start of pipelined operation, the control path is 
reset (Reset low), so that the original state of El,  Ez, S T I ,  ST2 are 
all high, while Doneo,  Donel  are low, and the pipeline is empty. 
When Done0 goes high after the previous CSA block completes its 
evaluation, Latch1 goes high, latching its output data into the latch. 
E1 is then pulied down to low starting the evaluation of the current 
CSA block by dnving Eva1 to high. The drop of E1 also drives 
Latch: to low to complete the fixed width pulse of Latch 1. 

While E1 is low, it prevents the latching of new data into the 
data latch until the current CSA block has completed its evaluation 
and latched its output. Here, the rising of Latchz will generate a 
negative pulse of STI which sets E:  to high, so that a new latching 
cycle of Latch1 may start. The delay element in Figure 2 matches 
the delay of CSA block to indicate the completion of its evaluation. 

As can be seen, this control circuit implementation is not 
speed-independent. However, the delay assumptions that have been 
made, such as on the width of Lutch and ST signal pulses, are 
reasonable and reliable. 

___ 

4.3 Progressive evaluation 
To achieve higher performance, dynamic precharged logic is used 
for the carry save adders, as shown in Figure 3. The sum circuit 
performs the logic function So = Si @ C; @ P and the carry circuit 
performs the logic function C, = S i p  + CiP + Sic;, where Si 
and 6, are the sum and carry signals from the preceding carry save 
adder stage, P is obtained by the logic AND of the corresponding 
bits in the X and Y operands. No carry propagation occurs in the 
horizontal direction in each 16-bit carry save adder. Complementary 
inputs and outputs are used to eliminate the need of inverters for 
obtaining complementary signals. This minimizes the delay of each 
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Figure 3: Carry save adder circuits: (a) sum (b) carry 

carry save adder without sacrificing much of the chip area because 
of the simplicity of the circuit. Simulations using normal SPICE 
device parameter models for the ORBIT process [8] show that both 
sum (So or 3,) and carry (CO or CO) outputs which evaluate to a 
low state reach 50% of rail voltage in 0.6ns and 25% within 0.811s. 

Four stages of such carry save adders are cascaded to form 
a CSA block. To ensure that the NMOS pull down tree evaluates 
correctly, it is essential that evaluation of a given carry save adder 
stage does not commence until all its inputs are valid and stable. 
One technique to ensure this is to interpose inverters between each 
carry save adder while using a commonP/E signal for all stages, like 
in a normal DCVSL processing block. However, this increases the 
delay of CSA blocks. We use a Progmssive Evaluation technique, 
in which adjacent evaluation stages are released from precharge 
after the output of the preceding stage has settled, similar to a 
multi-phase, synchronously-clocked, precharged-logic system 

The complete control path incorporating the Progressive 
Evaluation control is re-drawn in  Figure 4. The delay element is 
composed of a string of NAND gates and inverters which model 
the delay of carry save adder stages. Timing for the precharge 
and evaluation phases is derived from taps in the delay element. 
The evaluation of a carry save adder can be commenced once any 
low level inputs have settled below the threshold of the NMOS 
evaluation tree. A delay of 0.811s is allowed between successive 
evaluations (i.e. P E  signals). This delay allows outputs of a carry 
save adder, which evaluate to low state, reach below 25% of the 
rail voltage, i.e. approximately 1.25V. Although this voltage is still 
a fraction higher than the on-threshold voltage of NMOS transistors 
(typically lV),  only an insignificant amount of stored charge in 
its succeeding carry save adder is discharged before the associated 
NMOS transistors are turned off by the further drop of low level 
output signals. Correct evaluation of its following carry save adder 
stage is ensured 

The carry save adders in a CSA block are precharged concur- 
rently after the outputs of the CSA block are safely latched. The 
precharging of the CSA block is driven by the PTe signal, which 
goes low slightly before the Latch signal goes high. The P/E 
signals are pulled down one NAND gate delay behind the rising 
of Latch signal. This delay, plus the precharging delay of carry 
save adders, together with the special character of our self-latching 
latches guarantee the reliable latching of CSA block output, while 
allowing overlap between data latching and CSA blockprecharging. 
Similarly, the signal generating the negative pulse of ST is derived 
one stage early to improve the pipeline throughput. The Latch  and 
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Figure 4: Control path for Progressive Evaluation and data latching 

Figure 5 :  Data latching and Progressive Evaluation control signals 

PIE signals of one pipeline stage, obtained from a SPICE simulation 
for the whole multiplier control path with the full load of all the 
Latch and P/E signals is shown in Figure 5. 

4.4 Manchester carry select adder 
The final pipeline stage of the multiplier resolves the higher,order 
sixteen bits of the product by adding the sum and carry vectors 
(both are 16 bits) generated by the carry save adder array. To avoid 
becoming the performance bottleneck and to match the delay of 
the other pipeline stages, i.e. CSA blocks of approximately 3.3ns, 
a combination of Manchester carry adders and carry select adders 
[12] are used, referred to as a Manchester carry select adder. 

We use a precharged logic carry lookahead circuit generally 
called a Manchester carry chain (MCC) [12]. Four bits of carry 
signals are generated in each MCC to restrict the number of serial 
transistors in the evaluation path. Dynamic precharged logic is used 
for the Generate Propogate (GP) circuits, MCCs, and the circuits 
generating the carry signals. Progressive Evaluation is again used. 
The sum blocks use normal static complementary CMOS logic, 
because their delay is not critical due to overlap with the evaluation 
of the carry signals. 

SPICE simulation shows the delay of the Manchester carry 
select adder, i.e. the delay from GP block starting evaluation to final 
carry becoming valid is about 3.4ns which is close to the delay of 
other pipeline stages. The multiplexing for the output sum selection 
is incorporated into the data latching stage. 

Salomon et al. have also designed a 16-bit pipelined adder, 
using a combination of Manchester carry chain and the carry 
select technique. as the final stage of a 16 x 16 multiplier [9] to 
merge the partial products of the pipelined carry-save multiplier 
core. The pipelined adder is implemented with 4 pipeline stages 
using a dynamic pass transistor logic family called LDPL (Latched 
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Figure 6: Data latches: (a) positive edge triggered flip-flop (b) 
self-latching register 

Diffeerential Pass Transistorhgic). Their simulations show that the 
adder implemented with 1 .Opm CMOS technology has the addition 
latency of approximately 13ns. 

Our Manchester carry select adder is much faster than the 
one reported by Salomon et al.,  because of the use of dynamic 
precharged logic with Progressive Evaluation, as well as careful 
transistor sizing and layout design. 

4.5 Data latches 
Data latches for X and Y operands, inputs and output pipes use 
a 9-transistor single-phase positive edge triggered D flip-flop [I] .  
The circuit, shown in Figure 6(a) can be implemented with fewer 
transistors than micropipeline-style event-controlled registers [ 111 
and exhibits near zero data hold time. An input inverfer is used to 
give a non-inverting latch, resulting in eleven transistors for each 
latch. Because this input inverter is not in the critical delay path of 
the CSA blocks and X, Y operands are always ready well before the 
latching signals in the interstage latches, it will not introduce any 
performance loss. Simulations indicate the latch has a setup time of 
0.811s and total delay of Ins under normal operating conditions. 

Carry and sum outputs of CSA blocks are latched using 
a so called self-latching register shown in Figure 6(b). The 
complementary outputs of carry and sum are used as the input of the 
- register. When the latch signal Latch i s  high and D is not equal to 
D, the output Q will equal D .  When Latch is low, or D equals 5 
(i.e. when the block is precharged or still in evaluation) the output 
will held. This relaxes constraints of Latch signal width, and the 
timing between Latch signal and PIE signals. Simulation results 
shown a delay of 0.911s from input to output. 

4.6 Performance analysis and comparison 
The chip layout of the multiplier implemented on a 40-pin Orbit 
Semiconductor Tiny Chip is shown in Figute 7. The large block at 
the upper-left of the layout is the CSA array (four pipeline stages), 
and the less regular part of the layout at the bottom is the Manchester 
carry select adder. The right strip of the layout is the input and 
output pipe for the staggered Y operand and lower order product 
bits. In between the CSA array and inputloutput pipes is the control 
path (CTRL) of the multiplier. The effective chip area occupied by 
the multiplier, excluding the input and output multiplexing circuit 
required by the limited pin number, is 3.03mm2. The control path 
occupies only 4.7% of the effective multiplier area. 

SPICE simulations using normal device parameter models 
for the Orbit 1.2pm CMOS process at an operating temperature of 
27OC indicate the multiplier is capable of accepting input operands 
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Design S tyle 
Feature size ( p m )  

Area (n”) 

Throughput (MMPS) 
Latency (ns j 

Area (scaled to l p m )  

Figure 7: Chip layout of the 1 6 x  16 asynchronous multiplier 

DCVSL[6] LDPL[9] Mpipe.[9] Sync.[9] Prog.Eva 
1.6 1 .o 1 .o 1 .o 1.2 

8.1 2.59 2.64 2.53 3.03 
3.16 2.59 2.64 2.53 2.1 
26.3 156 104 172 185 
38 64 23 

every 5.411s or an effective throughput rate of 185 MMPS (million 
multiplications per second). Latency of the multiplier is 2311s. 

Table 1 compares the performance of several 16 x 16 multi- 
plier designs. The “DCVSL multiplier” is reported by Meng [6]. 
It is a non-pipelined Booth-encoded multiplier core, which outputs 
two 16-bit carry and sum vectors (like the output from our CSA 
array), instead of the find product. The “LDPLmultiplier” is a fully 
pipelined multiplier designed by Salomon et al. 191 using Latched 
Dtffeerential Pass  Transistor Logic (LDPL). The micropipelined and 
synchronous multiplier designs are also cited from 191. The entries 
shown for “Area(scaled)” have been scaled to l p m  feature size 
for comparison purposes. As shown in the table, our design tech- 
nique of Progressive Evaluation (Prog.Eva) demonstrates the best 
performance as well as the smallest chip area. 

A clocked synchronous design using the circuit design tech- 
niques similar to those presented here (including Progressive Evalu- 
ation) may be able to achieveperfoimance equal or perhaps slightly 
better than our design (without allowing for a degradation factor). 
Such a design would not, however, have the elastic pipeline proper- 
ties, and requires the distribution of a 185MWz global clock signal 
which is not a easy task. 

5. CONCLUSIONS 

High performance asynchronous arithmetic operator design tech- 
niques have been presented in this papa. An asynchronous pipelined 
multiplier designed using the proposed techniques demonstrates a 
performance level similar to that of a non-derated synchronous 

design, while maintaining the inherent advantages of asynchronous 
design such as elastic pipelining control. The proposed design 
techniques are applicable to many asynchronous, pipelined VLSI 
design problems. 
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