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Abstract: A fuzzy inference system (FIS) was developed to 
detect obstructive sleep apnea (OSA) by analyzing the 
respiratory airflow signal in adults. The parameters analyzed 
were the normalized area and the standard deviation of 
consecutive 3-second intervals of baseline adjusted and 
rectified airflow signal. Fuzzy logic was used to process these 
parameters to detect apnea and hypopnea when the output 
values were within a specified range extracted from OSA 
patient data. The PIS comprised of three major stages of 
computation: fuzzification, fuzzy rule evaluation and 
defuzzification. 

Seven males and two females with an average age of 48 years 
(range: 26 - 66 years), an average weight of 102 Kg (range: 63 - 
159 Kg), an average height of 1.7 m (range: 1.5 - 1.8 m) and an 
average body mass index (BMI) of 33 Kg/m2 (range: 21 - 42 
Kg/m2) participated in this study. Patients spent at  least 8 
hours in an accredited sleep laboratory. However, patient data 
was collected for only part of this time. The total amount of 
test time for all nine patients was 38.83 hours with an average 
of 431  hourdpatient (range: 1.92 - 7.63 hours). The total 
number of apnea events occurring during this time was 808, 
and the number of hypopnea events was 694. 

The membership functions for the FIS were derived by 
analyzing apnea and hypopnea events in four patients. The 
data from all nine patients were used in algorithm performance 
evaluation. The apnea and hypopnea events were scored by a 
sleep specialist and were used to test the correct detection rate 
by the FIS. 

The results demonstrated that the FIS reached an overall 
correct detection rate of 83% across all patients. The false 
negative rate was 17% and the false positive rate was 12%. The 
correct detection rate varied from patient to patient and 
correct rates greater than 90% were achieved in three patients. 

This study suggests that fuzzy inference could provide an 
intelligent algorithm for control of a continuous positive airway 
pressure (CPAP) machine. It would detect apnea and 
hypopnea events and automatically adjust the pressure to 
eliminate them. The performance of the algorithm could be 
further optimized to give increased detection rates. This could 
be achieved by performing further studies on a larger OSA 
patient population and utilizing augmentative methods such as 
neural networks to better sense the fuzzy patterns in the OSA 
data. 
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I. INTRODUCTION 

Sleep-disordered breathing (SDB) has been studied for 
more than two decades. Obstructive sleep apnea (OSA) 
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occurs when respiratory effort is present but the upper 
airway is occluded and air exchange is either completely or 
partially compromised due to pharyngeal wall collapse 
during sleep. It is generally believed that loss of upper 
airway muscle tone during sleep leads to pharyngeal wall 
vibration (loud snoring) and upper airway collapse. 
Repeated apneic events result in the development of a 
pathological condition called obstructive sleep apnea 
syndrome (OSAS). OSAS patients have, among other 
symptoms, excessive daytime sleepiness, systemic 
hypertension, and chronic fatigue. A recent survey in USA 
estimated that 15% of male and 5% of female adults of the 
general population may be suffering from OSAS [I]. 

The methods used to treat OSAS range from weight loss, 
surgical widening of the airway, mechanical devices for 
upper airway maintenance, electrical stimulation of the 
upper airway, pharmacological agents, and oxygen 
administration [2]. All of these methods seem to have some 
benefits. Presently, the most popular therapeutic method for 
treatment of OSA and hypopnea is the nasally applied 
continuous positive airway pressure (CPAP) method [3]. A 
CPAP machine applies a constant pressure, called the 
prescribed pressure, to the patient's airway through a nasal 
mask while the patient sleeps. The level of applied pressure 
is determined in a sleep laboratory by manually titrating the 
applied pressure to eliminate all respiratory events (apnea, 
hypopnea and snoring) during sleep. Advantages of nasal 
CPAP are that it produces immediate relief, is noninvasive, 
and can be used while achieving weight loss or considering 
surgical treatment. 

An obvious limitation with some of the commercially 
available CPAP machines is that they continuously and 
uniformly apply the prescribed pressure throughout the 
night regardless of variations in the patient's weight, 
alcohol consumption, nasal congestion and sleeping 
position that affect the level of pressure required to 
eliminate respiratory events. Patients often complain about 
increased expiratory effort or sensation of forced air 
through their nostrils, especially prior to sleep onset. 
Hence, when CPAP with a fixed pressure is used, the 
patient may be over- or under-treated. Obviously, frequent 
re-evaluation of the prescribed pressure through manual 
titration in a sleep laboratory is cost-prohibitive and 
impractical. 

Recently, it was shown [4] that treatment by CPAP can be 
improved by the use of a variable pressure that is 
automatically adjusted to prevent OSA. Therefo 
automatic positive airway pressure (APAP) machines h: 



been developed [5] to increase patient compliance and 
comfort and to enhance the therapeutic efficacy of CPAP 
therapy. The success of APAP “presupposes” accurate 
detection of apneichypopneic events. Although satisfactory 
performance of the APAP machine does not require perfect 
detection of all apneichypopneic events, an intelligent, 
robust and cost-effective algorithm is needed to further 
enhance the performance characteristics of APAP machines 
and maximize the therapeutic efficacy and comfort of OSA 
patients. 

Fuzzy logic was devised by Zadeh in 1965 [6] to increase 
machine intelligent quotient (MIQ) and mimic human 
thought and decision making processes in computing. This 
was an attempt to characterize classes of objects with 
unsharp boundaries in which membership is a matter of 
degree, rather than a certainty. Recently, fuzzy logic has 
found tremendous applications in industry. The use of 
fuzzy logic in medical research has now spread to a number 
of disciplines. Very recently, it has been also used in sleep 
apnea research [7]. Sleep apnea is a difficult condition to 
describe with deterministic mathematical methods, as there 
is a great degree of variability from person to person. Fuzzy 
logic is well suited to discern the vague or uncertain areas 
when certain parts of the defining quantities overlap or vary 
from person to person as a matter of degree. 

This paper presents a fuzzy inference system for 
detection of apnea events. It presents the design of the 
fuzzy detector and reports on its performance in detecting 
apneic events in nine OSA patients [SI . 

11. MATERIALS AND METHODS 

To design and evaluate the performance of the fuzzy OSA 
detector, airflow signals were collected from nine patients 
suffering from OSAS. In this group of patients there were 7 
males and 2 females. Their ages ranged from 26 to 66 years 
(average: 48k15years); the average weight was 10227 Kg 
(range: 63 to 159 Kg); an average height of 1.7010.13 m 
(range: 1.49 to 1.83 m); and an average body mass index 
(BMI) of 33+6 K g d  (range: 21 to 42). The data for this 
study was obtained during an initial portion of the patient’s 
visit to the sleep laboratory for diagnosis and treatment of 
OSA. The rest of the time was used for titration of patient 
airway pressure during the night. 

The total amount of time, for all nine patients, was 38.83 
hours with an average of 4.31k1.78 hours (range: 1.92 to 
7.63 hours). The number of apnea events that occurred 
during this test time was 808 with an average per patient of 
90+109 (range: 9 to 291). The number of hypopnea events 
that occurred during the test time was 694 with an average 
per patient of 77358 (range: 9 to 154). Apnea index, AI, 
(occurrence of apnea events per hour) ranged from 3 to 66 
with a mean value of 19-12]. A sleep specialist determined 
the apnea and hypopnea events during the test time. The 
hypopnea index, HI, was obtained in a similar manner to AI 

Fig. 1. Block diagram of the fuzzy inference system (FIS) 
for OSA detection. 

with an average of 21 +l9 ranging from 2 to 50. The 
average AH1 was 39f29 (range: 9 to 106). In this study, 
only AI was used in the design of the FIS. Future studies 
will use AI, HI as well as AH1 (apneahypopnea index, 
defined as the sum of apnea and hypopnea events per hour). 

The block diagram for the overall fuzzy OSA detector is 
shown in Fig. 1. The airflow signal was used as input to the 
fuzzy detector and the final output was provided by the 
fuzzy inference algorithm (FIA). The airflow signal was 
acquired from the patient by a data acquisition setup shown 
in Fig. 2. Full polysomnogrdphy data was also collected for 
independent scoring of the data by a certified sleep 
technician. The flow signal was then filtered through a 
digital low-pass filter. The baseline was removed and the 
signal was rectified. Area and standard deviation of 
consecutive 3-second intervals of the baseline-adjusted and 
rectified flow signal were calculated and used as inputs to 
the FIA. The details of each block are explained below. 

A. Insfrumenfation 
Fig. 2. shows the experimental setup to collect the airflow 

signal required for the design of the fuzzy OSA detector. 
The flow signal was measured by a Fleisch 
pneumotachometer that was placed in series with the air 
tube of patient’s breathing mask as shown in the figure. The 
airflow signal was passed through a first-order analog filter 
(band-limiter) with a cutoff frequency of 20 Hz. The 
filtered signal was then amplified and fed through an 
analog-to-digital-converter (ADC, DAS16, Metrobyte, 
USA) with a sampling rate of 1024 sampleds and stored in 
binary format (using a 486 Intel processor operating at 66 
MHz). Fig. 3. shows‘ an example of typical breathing 
patterns in an OSA patient. 

B. Processing ofjlow signal 
Low-pass filter 

The stored flow data were read from the data file and fed 
through a single-pole digital low-pass filter. The analog 
prototype filter used was a single-pole filter with a cutoff 
frequency of 10 r a d s  (1.6 Hz). This filtered some of the 
snoring noise that were present in the signal, as the focus of 
this study was on analyzing the lower frequency 
components of respiratory flow (e.g., 15 breaths per 
minutes or 0.25 Hz). Therefore, the transfer function H(s) 
for the prototype filter was: 

(1) 
1 

O. l s+ l  
H ( s )  =- 
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Fig. 2. Experimental setup for acquisition of airflow data. 

Fig. 3. Typical breathing patterns in an OSA patient. Top: 
respiratory flow in normal breathing. Middle: respiratory 
flow in hypopnea. Lower: Respiratory flow in apnea. All 
plots are in Us. 

The prototype filter was then converted into the digital 
.filter using the bilinear transformation. This was achieved 
by using the ‘c2d’ function in MATLAB. The resulting 
system function H(z) using a sampling period of T=0.001 
(seconds) was: 

(2) 
0.00192+0.0019 - 0.0019+0.~9z-’ - 

Z4.99  1-0.992 

From the system function, the following difference 
equation was derived for software implementation: 
~ ( k )  = 0.99~(k-  1) +O.W9x(k)+O.W931(k - 1) 
The output y(k) represents the filtered airflow data and x(k) 
represents the raw airflow data. Each sample point in the 
airflow signal is represented by k (sample number) in 
discrete form. 

(3) 

B.1 Baseline adjustment and rectification 
From the filtered airflow signal, the baselfie was 

determined by taking the arithmetic mean value, y, of the 
signal and subtracting it from each sample point to remove 
the baseline. The filtered baseline-adjusted flow signal, 
b(k), was rectified by taking the absolute value of each 
sample point to obtain r(k). 

B.2 Area and standard deviation calculation 
From the resulting airflow signal, the area (A) and the 

standard deviation (o), were calculated for consecutive 3- 
second intervals. These values were used as  input for the 
FIA. The area was derived from the trapezoidal rule for 

integration. The following equations were used to calculate 
A and ovalues (n = total number of samples): 

A = 0.5[ p(k - 1) + y( k ) ] X  [ t (k ) - t ( k  - I ) ]  (4 )  
k =I 

B.3 Area and standard deviation normalization 
Due to variations in area and standard deviations between 

patients, it was necessary to normalize these values. The 
normalization was achieved by taking the first 60 or 120 
seconds of normal breathing signals from each patient to 
calculate A and 6. These values were used as the common 
denominator to normalize A and o values, respectively, for 
that particular patient. For patients whose breathing data 
were used to develop the FIA, A and o values for normal 
breathing were available so their average values were used 
in normalization. 

C. Fuzzy inference system (FIS) 
Many types of algorithms have been developed using 

fuzzy logic. The type used in this study was the min-max 
method. It was first developed in early 1970’s by E. 
Mamdani for a control application and is still in use today 
[SI. The FJA consisted of three major stages: (a) 
fuzzification, (b) rule evaluation, and (c) defuzzification. A 
graphical representation is given in Fig. 4. The inputs to the 
FJA were the normalized A and (T values as described 
before. The middle three blocks represent the actual FIA. 
The inputs were fuzzified to give fuzzy inputs by the input 
membership functions. The rule evaluation or fuzzy 
inferencing employed the min-max method to determine 
which rules and their degrees of membership should be 
evaluated in the defuzzification stage. The centroid method 
was utilized in the defuzzification stage to give the final 
crisp outputs. 

The membership functions for A and (T were derived from 
clipped apnea and hypopnea events from four patients. 
Approximately 12% of the apneahypopnea events were 
clipped and analyzed for computing the membership 
functions for the normalized A and (T parameters. The mean 
and two standard deviations on either side of the mean 
values were used to realize the relation between apnea, 
hypopnea and normal breathing membership functions. The 
fuzzy input and output membership functions and graphical 
mapping of some of the IF THEN rules are illustrated in 
Fig. 5. This figure shows the fuzzy input membership 
functions for normalized A and normalized o, and fuzzy 
output membership functions for OSA, hypopnea and 
normal breathing. 
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Figure 5 :  Illustration of fuzzfication of inputs (A and 0) as 
well as output membership functions. 

111. RESULTS 

Fig. 6 illustrates the steps involved in processing 1 
minute of the airflow signal as a graphical example. The 
panels in Fig. 6 show the results obtained from processing 
the flow signal (from top to bottom): the low pass filtered 
flow signal, baseline removed flow signal, the rectified 
baseline removed signal, areas of consecutive 3-second 
intervals, standard deviations of consecutive 3-second 
intervals, and the output of the fuzzy inference system. 

The performance of the FIS was tested on all nine 
patients. All patients had been diagnosed previously with 
sleep apnea by a certified sleep specialist manually scoring 
the recordings from a nocturnal polysomnographic (NPSG) 
study. Blind to the objectives of this study, the specialist 
scored the data for apnea and hypopnea events along with 
the time of occurrence of these events. The specialist’s 
determination of sleep disordered breathing was used as a 
“gold standard”. 

Fig. 6. Steps involved in processing 1 min of the airflow 
signal. 

The total number of apnea events scored by the sleep 
specialist was 808. The number of events detected by the 
FIS was 668 yielding 83% correct detection rate. The false 
negative events (those not detected by the FIS but scored by 
the specialist) was 140 yielding a rate of 17%. The false 
positive events (those detected by the FIS but not scored by 
the specialist) excluding hypopnea events was 94, yielding 
a rate of 12%. 

1V. DISCUSSION 

The results demonstrated that the FIS reached an overall 
correct detection rate of 83%. The correct detection rate 
varied from patient to patient but was greater than 90% for 
three patients. In one patient it was 59%. This suggests that 
the FIS should include other characteristics of the data such 
as airflow profile, snoring intensity andor  frequency, and 
other features. The performance of the fuzzy inference 
system could be fully optimized by performing further 
studies on a larger population of OSA patients and neural 
networks could be utilized to better sense the fuzzy patterns 
in the OSA data to provide better fuzzy rules to achieve 
higher correct apneahypopnea detection [lo]. 

V. COlrJCLUSION 

This study suggests that a fuzzy inference system could 
provide an intelligent algorithm as an integral part of a 
controller for continuous positive airway pressure (CPAP) 
machines. Such a system would detect apnea and hypopnea 
events and automatically adjusts the air pressure on 
decreased depth of breathing. The FIS has the potential to 
make the realization of a robust, fast, and low-cost fuzzy 
controller for the APAP machines a feasible reality in the 
near future. 
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