
 
 

 

 

  

Abstract—Fast algorithms and heuristics for real-time object 
recognition and tracking have enabled a new hybrid world 
technology in which one can manipulate a real world object 
and have its virtual world counterpart move correspondingly. 
This technology has been developed as part of a teaching head 
platform that was initially designed for language teaching but is 
now also being used in a range of health-oriented contexts. In 
this paper, the requirements of the technology are motivated 
and elucidated, with direct comparison of our proposed 
heuristics with well known object recognition algorithms  

I. INTRODUCTION 

IRTUAL TUTORS are an exciting new development in 
Artificial Intelligence that have been enabled by a 

broad spectrum language and learning based technologies.  
Whilst speech technology and face generation is based on 

conventional and commercial technologies dependent on 
artificial neural networks and related models, the language 
and computer assisted instruction technologies depend on ad 
hoc pattern matching, and tend to lack grounding in the 
sense of connection to the real world. 

Children learn language and ontology together, that is 
they learn about the world and learn to talk about the world 
in parallel in an intimately connected way.  The necessity of 
grounding in the real world has been extensively argued 
from the perspectives of psychology, linguistics, philosophy, 
connectionism and learning theory [1,2], and has been the 
basis for cognitive linguistic programs in Machine Learning 
of Natural Language (MLNL) [2,3]. An essential tenet of 
this approach since the birth of both Cognitive Linguistics 
and Connectionism is that the nature of the world dictates 
the nature of the learning mechanism and its biases, 
including the natural networks of neurons that implement 
both perception of the world and learning of linguistic 
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concepts, speech, grammar, etc. 
Whereas conventional conversational agents use 

technologies that are intrinisically heuristic, and resemble a 
text editor more than a learning system, learning approaches 
with connection to the real world can start to learn grounded 
language directly [4].  On the other hand the traditional 
approaches remain more powerful and well developed with a 
pedigree that extends back to and has not developed much 
since Eliza [5], and we are using Alice [6] for much of our 
current Teaching Head research [7] as its AIML language is 
very easy to teach to both teachers and students who wish to 
extend the capabilities of an Embodied Conversational 
Agent. 

If grounding is important for language learning, it stands 
to reason that it is also important for language teaching, and 
indeed we are borrowing the multimedia technology of 
MLNL to enhance the capabilities of Computer Aided 
Language Learning (CALL) [7].  The basic structure of a 
Thinking Head system is illustrated in Fig. 1: the animated 
face acts as teacher and illustrates important aspects of 
correct linguistic, cultural and social usage; to provide a 
partially enclosed physical arena the two screens are 
typically angled at around 120˚; the second screen provides a 
window into the teacher’s world, while the two screen-based 
cameras provide different (near orthogonal) viewpoints on 
the partially enclosed physical arena; the physical arena 
represents the learner’s world and in practice has also been 
expanded to include half the room, including a whiteboard; 
and the middle camera concentrates on tracking the learner’s 
face, monitoring their lip movements, expression and facial 
gestures. 

 

 
Fig. 1. The layout of the Teaching Head installation. Reproduced by 
permission of DMW Powers and T Lewis© 
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Fig. 2: The layout of the Teaching Head 
 

The Teaching Head concept has since been expanded to 
include a range of other applications including teaching 
social skills to children with disabilities, and assisting older 
people with independent living, but we focus here on CALL. 

II. ARCHITECTURE 

The focus of this paper is the specification and development 
of the visual object recognition and tracking system, and its 
integration into the world to allow the corresponding objects 
in the virtual world to be moved and the teacher to 
discriminate a correct or incorrect answer. The complete 
description is described at greater length in a thesis [8]. 
 The project consists of four components, as seen in Fig. 2: 

• The object database contains details, recognition 
signatures and 3D models of all the objects used in 
the system.  

• The object recognition system takes input from the 
camera, and determines the identities and locations 
of any objects visible.  

• The virtual world system takes the details of the 
objects detected by the object recognition system 
and displays them in a 3D environment.  

• The Thinking Head is used as in interface to the 
user. It gives the user instructions and for language 
learning applications, will talk to the user in the 
language that the user is to learn. 

The object database is a plaintext file which the other 
components of the system read upon startup. The object 
recognition program writes to this file when adding new 
objects to the system. Other changes, such as renaming or 
removing objects, can be carried out by hand using a text 
editor. 

The virtual world acts as the central server for the rest of 
the system. It connects to the object recognition system via 
networking sockets (through the local loopback address, 
127.0.0.1) to obtain the object location data, and sends 
information to the Thinking Head by means of the Head’s 
API. 

 The system as a whole, including the hybrid world 
object tracking system, has been demonstrated using two 
sample lessons, one involving building towers with blocks, 
and the other involving manipulating a tiger against a jungle 
background. The objects were scanned into the virtual world 
using a Next Engine 3D scanner, but we have also created 
objects using Blender for printing with our 3D printer. 

III. OBJECT RECOGNITION 

The visual processing was largely carried out using OpenCV 
[10] which provides a comprehensive array of basic 
learning, neural network and statistical tools as well as 
setting the standard for visual processing tools. 

A. Scale Invariant Feature Transform (SIFT)  
The first version of the object recognition system was built 
using David Lowe’s Scale Invariant Feature Transform 
(SIFT) algorithm, building on an implementation in C and 
OpenCV [10-12]. 

This implementation was successful at locating detailed 
objects facing the camera, as seen in Fig. 3, but the SIFT 
algorithm experienced difficulty searching for less detailed 
objects such as the blocks and toys intended for to use in the 
project. It also failed to locate the object if it was rotated 
more than approximately 30 degrees away from the camera, 
as expected, and patching over this difficulty by using 
multiple images proved to be a complex task. This was 
important, since forcing the user to constrain the objects to a 
particular orientation would be impractical and render the 
system unusable. 

There was also a major issue re speed. On a reasonably 
modern computer (Intel Core2 Duo, 2.2GHz), the SIFT 
feature search took 0.5 to 1.0 seconds, before any additional 
processing. This meant that when the user moved an object, 
it took around a second for that motion to be reflected on the 
virtual world display – too slow to be practical. 

We determined that the system could be sped up 
somewhat by using SIFT to identify the objects, then using 
the much faster Lucas Kanade optical flow tracking method 
[11] to track the movements of the identified objects while 
the next SIFT scan was running. However, this would be a 
complex system to train, and we believed we could do as 
well with a simpler approach. 

 
Fig. 3: SIFT feature matching in action. The reference image (below) is 
located within the camera frame (above) by locating common key points, 
connected by lines. 



 
 

 

 

B. Colour Histogram Analysis 
A Colour Histogram Analysis algorithm was developed as a 
faster and less complicated alternative to object recognition 
algorithms such as SIFT. It works on the principle that each 
object will have a distinct set of colours which can be used 
to identify it. These colours are recorded in histograms and 
used to identify and locate the object later. The overall 
structure of the algorithm is given in Fig. 4. 

The system works by moving the images into a colour 
space in which it is easy to separate colour information from 
lighting information so that the effects of lighting 
differences can be easily ignored. Information about the 
colours of each object, summarised into histograms, is 
retrieved from the database. Next, a detector algorithm is 
used with each object’s histograms to determine whether the 
object is present in the image, irrespective of the location, or 
any other objects. If an object is present, a locator algorithm 
is used to determine its likely location, and a different, more 
stringent type of detector is used on the area located to 
ensure it is not a false positive. The location is then 
converted from 2D screen coordinates to 3D coordinates for 
use in the virtual world environment. 
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Fig. 4: Colour Histogram Analysis flowchart 

1) Colour Spaces 
The canonical image produced by the camera is in the RGB 
colour space – that is, there are three bytes for each pixel, 
describing the intensity of the red, green and blue 
components of the colour. This is not particularly useful for 
object colour analysis, since the apparent colour will change 
due to lighting effects, and this changes the value of all three 
bytes. In other words, the lighting information and the colour 
information are encoded into the same variables.  In fact 
colour television and image compression use variants forms 

that extract some kind of monochrome luminance or 
brightness signal that is essentially a weighted average of the 
primary RGB colour signals. This kind of system is 
potentially also useful for separating the lighting effects 
from the colour of the object. Several such systems are 
potentially useful, including variants on YUV and YCbCr 
that used fixed weightings on RGB, have some relationship 
to the complementary colour processing of the human visual 
system, and are used to provide a high information 
monochrome image.  The HSV and HSL represent 
brightness in terms of the strongest primary component 
(HSV), or the average of the strongest and weakest 
component (HSL), rather than an average assigning non-zero 
weights to all components as in YUV and derivatives.  

The Hue (H) in these systems is the same and represents a 
single recurrent dimension which is very convenient for 
distinguishing colours in a natural way.  Saturation (S) is 
quite different, with HSV defining a linear Saturation that 
reduces as one adds white (RGB with equal weight), and 
HSL defining a linear Saturation that increases as one adds 
white or black, or alternately as one adds or subtracts white, 
from a mid-grey base level.  Perceptually, for natural scenes, 
more information goes into the Y signal than into either L or 
V, whilst more information goes into S in HSV than HSL, 
and into L versus V.  UYUV, VYUV, Cb, Cr, SHSV and VHSV 
tend to have less information and appear softer or blurry, as 
can be seen in any comparative review of colour spaces [12]. 

The HSV colour space was used because it is designed to 
separate colour information from lighting information, it is 
very simple and fast, and it appears to maximize the 
information in HS and minimize the perceptual information 
in V, which retains most of the shadow. Conversion is 
straightforward and we used the routines included in 
OpenCV. Investigation into other colour spaces is still 
desirable, and proper white balancing systems should also be 
investigated, noting that the colour of shadow is dominated 
by sky blue and the colour of direct daylight is dominated by 
the complementary yellow of the sun. Traditional 
whitebalancing is towards sunlight, with the effect that 
shadows tend to come up blue in HSV – this can be 
construed as a bug or a feature of our system, however it is 
one that is not so much of a problem indoors!  

Colour spaces can be changed without affecting the rest of 
the system, although object signatures would need to be 
retrained in the new colour space. 

2) Gathering Training Data 
To train the system to recognise an object, colour data is 
gathered from many pictures of the object, posed at different 
locations, rotations, and so forth, and stored in histograms. 
For the sake of speed and convenience, this is done ‘on the 
fly’, meaning that training images are taken from a live 
camera stream triggered by the user’s keypresses, meaning 
that the user can position the object, take some pictures, 
reposition the object, take some more pictures, and so on. 
Using this procedure, many tens to hundreds of samples 



 
 

 

 

worth of data can be taken in a matter of minutes, with very 
little processing time required. 

Of course, when camera images of an object are used to 
gather colour data, the object is not the only thing in the 
images. There will always be some other colours in the 
background, and it is important not to include these pixels in 
the object signature histograms. Therefore, the object needs 
to be separated from the background. This is accomplished 
by taking a reference image, without the object in place, and 
generating a mask by comparing the reference image with 
each camera frame. The pixels which differ in value should 
then all belong to the object, which was added to the scene 
since the reference image was taken. 

 In reality, there is a certain amount of noise in the 
camera image, so a threshold is applied to the difference 
calculation. Practical experimentation shows that a value of 
50 (out of 255, for an 8-bit pixel) is a good threshold for 
removing camera noise, (even in sub-optimal lighting 
conditions, which tend to increase noise,) whilst retaining 
most of the object. Since a colour image has three channels, 
an average of these is used. 

3) Detection: ‘Is the object in this bitmap?’ 
The first step in the object recognition system is to 
determine which objects, if any, are present in the camera 
image, irrespective of their locations. For this, we desire a 
function which will process the image and return a single 
number representing how likely it is that the object is 
present. A threshold can then be used to make a decision. If 
the object is present, further analysis will be performed to 
determine its location. This should be a fast routine, as it will 
be run against every relevant object in the database.  

a) Statistical Correlation 

One approach to comparing an image to the recorded object 
signature is to generate a histogram signature from the 
camera image, then compare that signature mathematically 
with the object’s signature. This can be done by performing 
a sampled correlation between the two histograms. 

b) Fast Unique Pixel Count 

Signature correlation (section a)) gives a good indication of 
whether or not the selected bitmap contains only the object 
in question, but any other colours in the bitmap will decrease 
the correlation. In many applications, the object will only 
make up a small portion of the bitmap, with the rest being 
other objects and the background. Since the object may only 
be a small portion of the total bitmap, it will be 
overwhelmed in the signature by the colours of the 
background, and return a bad correlation. Therefore, the 
correlation function does not give a good indication if an 
object is present. 

In order to determine whether the bitmap contains the 
object, an algorithm was devised which ignores unwanted 
colours, and the proportions of colours present, and simply 
checks to see if all the colours in the object are present in the 

image. It only counts one pixel of each colour, so 
proportions are ignored, and an object taking up a small 
window of a large bitmap will still be detected. Colours that 
are in the image add to the score proportionally to how often 
they occur in the training data. 

As well as ignoring proportions and backgrounds, this 
algorithm has an additional advantage over the correlation 
function: speed. Correlation requires three multiplications 
and three additions per pixel, whereas the pixel count 
requires one bit test, and possibly one addition per pixel. 
Considering how many pixels must be analysed when 
processing even a low resolution video stream, this is a 
significant performance gain.  

Further speedups could theoretically be gained by 
stopping the loop when all the flags are set, since once that 
occurs the score cannot change any further. However, in 
practice, it is very rare for an image to contain pixels from 
every single colour histogram bin, so the speed gained 
would be negligible. 

This algorithm is used to scan the entire image several 
times, once with each object signature in the database, to 
determine which objects are present. When the score is high 
enough to indicate that an object is probably present, more 
sophisticated (and slower) methods are used to determine the 
location of the object, and confirm that it is actually present. 

Despite the effects of noise, practical experimentation 
shows the Fast Unique Pixel Count proves to be a very 
reliable method for determining the presence or otherwise of 
an object in the camera image. It also suffers only small 
effects from changes in lighting, changes in the position and 
angle of an object, and so forth. 

The algorithm can return false positives quite easily, 
especially if many similar colours are present in other 
objects, but later tests in the locating step check for false 
positives and filter them out. 

The acceptance threshold is different for each object. A 
reliable method for pre- calculating the threshold has yet to 
be determined. InIn the stead of making such a calculation, 
thresholds are currently set manually through observation 
and experimentation. 

4) Location: ‘Where in the bitmap is the object?’ 
Once an object has been identified within the bitmap, the 
next task is to determine where it is. That is, we want to find 
a bounding box which fully encloses the object but is not 
any larger than it needs to be to do so. 

When considering how to accomplish this, the approach 
which seems most obvious is to take one of the identifying 
algorithms developed in section 3) and modify it or extend it 
in some way to analyse a smaller window or sub-section of 
the camera image, and find windows which score higher 
than others, ‘scanning’ the image for the highest scoring 
areas, which represent the most likely location of the object. 
Three algorithms were devised, implemented and developed 
to accomplish this. They are described in the following 
subsections.  



 
 

 

 

 
Fig. 5: The sliding window technique, using a Fast Unique Pixel Count 
filter. The upper image shows the camera image, and the lower image 
shows the output of the algorithm, searching for the signature of the toy 
train. The area of the object is clearly marked. Some noise is visible from 
other objects and details 
 

a) Sliding window filter 

One approach to locating the object is to apply the two 
scoring algorithms to smaller windows of the bitmap, using 
a sliding window similar to those used with sliding mean 
and median filters in image processing applications. 

The output is a bitmap describing the match quality, 
where the intensity of each pixel in the output image is 
proportional to the score of the window around the 
respective pixel in the camera frame. Areas of high intensity 
represent the presence of the object. 

Since the best response occurs when the window fully 
encompasses the object, differing window sizes would need 
to be processed in an arrangement similar to a scale-space 
pyramid [17,18]. 

For the correlation function, the single scale-space pixel 
with the maximum intensity value represents the window 

which best encloses the object. It would not, however, be 
necessary to calculate every single point in the pyramid, as 
the smaller scale scans would be used to rule out unlikely 
locations and focus the (slower) increasing window size 
scans only on likely areas. 

Practical experimentation showed that this approach was 
too computationally expensive to be practical, making it too 
slow for real time video processing. For example, using a 
window of 16x16 pixels, which is about the minimum 
practical size,  each pixel in the image will be processed 256 
times. 

b) Image segment and link 

To reduce the number of times each pixel is analysed, a 
variation on window scanning can be used whereby the 
image is separated into fixed size segments, and each 
segment is analysed separately. For each segment, a 
signature histogram is generated, then compared to the 
object signature using the correlation function, giving the 
segment a score. 

The highest scoring segment is then considered. This 
segment is combined with each adjacent segment in turn, 
accomplished by summing their histograms and normalising, 
and the combined histograms are scored by correlation. If 
the combined score is an improvement, the adjacent segment 
is added to a list of segments which describe the object, and 
itsits adjacencies are tested in the same manner. This process 
continues until no more segments can be added without 
decreasing the overall score, at which point all of the 
segments which contain the object have been identified. 

This system operates in a similar manner to the flood fill 
or boundary fill algorithms found in many graphics 
programs, and specifically paint programs. 

The problems with this method are twofold. First, since 
the object will most likely cover several segments, no 
individual segments contain the whole object, meaning they 
will not exactly match the object signature. If the object has 
distinct regions of colour, then most of the segments will 
describe only some of these colours, skewing the signature, 
and reducing the difference in scores between a segment of 
matching object and a segment of anything else – essentially 
lowering the Signal to Noise Ratio (SNR). 

The other is that the segments represent large blocks of 
the image and do not handle the edges of the object well. 
AThe score of a segment which partially contains the object 
will tend to hover around the threshold of inclusion and 
exclusion from the object, meaning that it is included and 
excluded intermittently in consecutive frames. When this 
occurs, it has a dramatic effect on the perceived position of 
the object, causing a massive amount of noise in the location 
outputs, even after significant amounts of rolling average or 
median filtering.  

For these reasons, the segment mapping method is not 
sufficient for the purposes of controlling the virtual world, as 
all of this noise will be reflected visibly to the user in the 
virtual world display.  



 
 

 

 

c) Linear Border Search and Refine 

The fastest and simplest method for locating the object 
within a bitmap is to locate each border separately. For most 
of the process, the Fast Unique Pixel Count is used. 

For example, to find the left edge of the object, the image 
is analysed one column of pixels at a time, in turn from the 
left edge to the right. Each column is analysed using the Fast 
Unique Pixel Count algorithm, producing a score for each 
column. The algorithm is continuous between the columns – 
that is, the score and flag table are not reset for each column, 
meaning that the score recorded for each column is actually 
the score for a rectangle extending between that column and 
the left hand border, with the full height of the screen. 

Over the first few columns the score will quickly climb to 
a baseline level caused by the pixel colours of the 
background which happen to coincide with the object 
signature. There will be a small amount of increase in the 
score over the width of the image due to different colours 
occurring. In most cases, this base line will be less than 0.5 
(in a scale from 0.0 to 1.0); 

When the first columns containing the object are 
encountered, large numbers of high scoring pixel colours are 
encountered, causing a rapid increase in score, usually to 0.9 
or more. Once these colours have been encountered, there 
will be little increase in score for the rest of the image. 

 
Fig. 6: Image Segment and Link Mapping. Camera image is above, segment 
map below. On the segment map, each segment is coloured according to its 
correlation score – brighter shades indicating better matches. The segments 
whose combined signatures match the object are highlighted by the 
continuous, lighter shading. 

Therefore, the edge of the object can be identified by 
searching for the largest instantaneous increase in score. 
This will be the maximum value of the differential of score 
over columns, calculated by taking a column’s score and 
subtracting the score of the column directly adjacent to it on 
the left. The greatest difference is taken as the border of the 
object. 

The same procedure is followed for the other three 
borders. Of course, once the left hand border has been 
located, the scan for the right hand border need only run 
from the right edge of the screen to the previously 
determined left border of the object, since the right hand 
border will always be to the right of the left hand border.  

Once the left and right hand borders have been identified, 
the scans for the top and bottom borders are performed by 
scanning the rows of pixels between the previously 
established left and right borders. These border limits 
improve the speed of the algorithm by excluding 
unnecessary pixels from scans for which they are not 
relevant. 

Other objects and background details can cause spurious 
increases in column scores, but these will usually be 
significantly smaller than those caused by the object edges. 
However. small, sharp increases can occasionally overrun 
the main peak. Some of these can be filtered out by applying 
a sliding average to the differential signal. The exact benefits 
and drawbacks of this filtering step are still to be 
investigated. 

Since there is always a large spike of new pixels in the 
first few rows or columns of a scan, the algorithm allows a 
small border of 5 pixels (plus the width of the filter 
mentioned above) in which peaks will not be considered and 
object borders will not be placed. This stops the initial 
‘inrush’ of pixels from creating the largest differential. 

The Fast Unique Pixel Count algorithm has a tendency to 
generate false positives, so the portion of the bitmap 
contained within the object boundaries is scored using the 
correlation function to determine if it really does contain the 
object, and to filter out any false positives. 

This algorithm runs very quickly, and provides accurate 
and consistent object locations. Often, large errors occur in 
one border for periods of a single frame, meaning that they 
can be filtered out by applying a rolling median filter. It is 
the fastest of the locating algorithms considered, and is also 
more accurate than image segmentation. The sliding window 
filter system could possibly produce even more accurate 
results, but its prohibitive speed limits its usefulness, leaving 
the boundary search as the best option. 

Further development of the border search replaced the 
single running score with a sliding window, similar to that 
used in section a). Instead of running the window over the 
entire image, two 1D score arrays are produced: one vertical, 
and one horizontal. Each element in the horizontal score 
array corresponds to the pixel count score for the 
corresponding column of pixels in the camera image, and the 
columns surrounding it. The window size used was 16 



 
 

 

 

columns for a 320x240 pixel image. The same process is 
used with rows of pixels to produce the vertical array. 

The two arrays are processed with a threshold, to 
eliminate noise, and the vertical and horizontal borders were 
placed to encompass 80% of the total signal ‘energy’ over 
the threshold, thus filtering out the occasional score peaks 
due to noise. 

This provided accuracy similar to the sliding window 
approach at a fraction of the running time, and addressed the 
tendency for the ‘running score’ approach to place borders 
on noise-related score increases. 

5) Inverse 3D projection 
Once the object borders have been located, the 2D 
coordinates of each object in the image are known. This 
means that we have the pixel coordinates of a bounding box 
around the object. In order to use this in any 3D application, 
we need to translate these coordinates into 3D coordinates x, 
y and z. This means applying the inverse of the projection of 
the 3D objects onto the 2D image [13]. 

 
Fig. 7: A practical example. The upper image shows the camera frame with 
the object borders highlighted. The lower images show the running score 
(white) and unfiltered differential (cyan-grey) used to locate the left hand 
border. There is a clear jump which occurs at the left hand border of the 
object. 

IV. VIRTUAL WORLD 
The Virtual World displays the objects recognised by the 
Object Recognition system and reflects their movements. In 
additional, the Virtual World contains a frame work for 
creating lessons that are used to teach and test the student’s 
knowledge in the second language of their choice.  

This section will discuss the requirements of the virtual 
world system, how it was developed, and the hardware and 
software involved.  

A. Virtual World Requirements 
Before we develop a 3D environment for the Virtual World 
it is useful to consider the requirements the system is 
required to fulfil.  

The main goal of the Virtual World is to reflect objects 
and their movements from the real world. The first 
requirement of this goal is that we have models representing 
the real world objects. These objects needs to resemble the 
real world objects as closely as possible. Models can be 
produced by using various 3D modelling software packages.  
The objects’ movementmovements also hashave to also be 
displayed, but only in terms of translation in the 3D space. 
Since rotation is not detected by the object recognition 
algorithm, it cannot be displayed in the virtual world. 

As the intent of the Virtual World is to teach a second 
language to a user, lessons have to be created. These lessons 
must involve the use of physical objects being manipulated 
in the real world to achieve a goal in the virtual world. The 
lessons must also be easy to understand with an interface 
that adhere to the principles of good interface design, with 
clear unambiguous relationships between the real and virtual 
world manipulations. Since the project is being narrated by 
the Thinking Head, the instructions or any narration given 
during the use of the system must be clear and logical.  

B. Design of Virtual World 
Before we construct the Virtual World, we produced a 
design of how we want the system to look and act. To do 
this, simple drawings were created for every state the Virtual 
World might enter.  

The initial and default state is the ‘non-lesson’ state, 
where the objects can be manipulated in any way, against a 
black background. The heads up display (HUD) displays the 
names of the objects that are being recognised. The Thinking 
Head will name objects as they are introduced to the system, 
and possibly describe their movements. 

From the initial state, the Virtual World can enter the 
‘lesson’ state. The lessons are activated through the use of 
keyboard input. Each lesson includes a background, which is 
displayed when the lesson state is entered, along with a 
lesson header to let the user know which lesson he/she is 
attempting. Narration is provided by Thinking Head, giving 
instructions for the lesson. 

One example of a lesson asks the student to “put the green 
block on top of the red block” in a traditional blockworld 
scenario, whilst in a storybook scenario about a tiger, the 



 
 

 

 

student is asked to “take the tiger to the lake for a drink” 
(Fig. 8). Once the user completes the task as given to them 
by the Thinking Head, a congratulatory message will be 
given to the user through the Thinking Head, and the Virtual 
World display. 

 

 
Fig. 8: Screen shot of Lesson 1. 

C. 3D API and Modelling 
After detailed comparison of alternatives considered as a 3D 
world software environment and API, we did initially use 
our own MicroJaea scripting language for Java3D. 
Unfortunately the development of Java3D has stalled, but 
due to its speed and its ongoing development backed by an 
active community, we adopted jMonkey as ideal for this 
project [13], using it to animate our lessons as illustrated in 
Fig 8. 

Similarly we sought an open-source 3D modeling package 
to allow us to construct our own objects and adopted 
Blender [14]. 

V. EVALUATION 

In this study, we have considered a variety of algorithms 
designed for effective object recognition.  Our application 
however, required real-time object-recognition and tracking 
so our criterion was not accuracy of recognition of objects 
from some standard dataset, but rather ensuring that it could 
be used for practical Teaching Head lessons, keeping up 
with a Logitech Sphere webcam operating at 25fps. 

As explained in the detailed discussion of the 
development of an acceptable package of algorithms and 
heuristics, we evaluated and discarded the standard Image 
Recognition Algorithms and sought to develop hybrid 
algorithms that were more appropriate for our specific 
application. A detailed summary of the issues associated 
with the various algorithms is given in Table I, and in 
particular not that only our Colour Histogram Analysis is 
fast enough to keep up with a 25fps camera.  Moreover, the 
best competitor, Viola-Jones/Haar, which is better known for 
a specific face recognition application, is only half the speed 
at 320x240 pixels (as shown – the gap widens for larger 
resolutions). In addition, as noted in the table, Viola-Jones 

has a considerable training overhead which is quite 
reasonable for a ubiquitous task like face recognition, but 
quite inappropriate for fast development of lessons by 
teachers rather than experts in learning and neural nets. 

In terms of accuracy, we used whatever office, home, 
class or desktop the computer was being used in along with 
props (blocks and other toys) that were selected arbitrarily 
without any effort to make them distinctive.  However, by 
their nature colourful toys designed for young children do 
tend to contrast rather well with the university and home 
environments we tested in. Because we are getting 25 frames 
per second from our camera, 100% accuracy isn’t strictly 
necessary, but we mainly encountered errors only when most 
of the object was obscured by a person’s hand or other 
object.  By allowing for this and keeping track of the 
previous history of the object, sufficient stability was 
ensured for the purposes of this application, notwithstanding 
the occasional frame in which the image couldn’t be 
recognized.  Success was measured in terms of the student 
being able to complete the lesson without being hindered in 
any way by the algorithm. 

We also demonstrated the ability to distinguish and track 
multiple objects, and this capability also allows another 
trick: the Colour Histogram Analysis (CHA) can be applied 
efficiently to a library that includes multiple views (scales, 
angles, aspects or parts) of each object, and can thus achieve 
more reliable detection. The formal evaluation of this 
potential remains future work, although the basic technique 
is now being used successfully as part of our entry into the 
MAGIC Grand Challenge1, finding and distinguishing 
hostile and non-hostile objects of interest.  

VI. VISUAL COGNITION AND NEURAL NETWORKS 

Whereas traditional Artificial Neural Networks train each 
neuron or synapse separately, all the algorithms we 
considered train specific Perceptron or RBF feature detectors 
that are effectively replicated for each pixel at each scale. 

Edge detectors, such as the Haar detector, and feature 
detectors such as the difference of Gaussians (DoGs) used in 
SIFT are in many ways similar to the visual edge and feature 
detectors that are well known and fit very general models of 
visual processing in the ganglia and cortex [17]. 

The RGB colour space, and variants like HSV, HSL and 
YUV, all have interesting relationships to human vision 
processing.  The red cone absorption spectrum is precisely 
complementary to that of haemoglobin, and the green 
corresponds well to a range of chlorophyll spectra, so that 
red-green (or red-cyan) opponents (like axes in UV and HS) 
are good for distinguishing animal from plant as well as 
features of an animal that is basically filtered haemoglobin. 
The blue-yellow contrast fits remarkably with a sky-sun 
contrast and can also identify shadows, whether as unwanted 
noise/artefact or key textural features [20]. CHA is thus 
biologically sound as a stage preceding edge detection.  

 
1 http://www.dsto.defence.gov.au/MAGIC2010/ 



 
 

 

 

VII. CONCLUSION 
This paper has compared a number of standard algorithms 
and well known techniques, and has introduced fast 
heuristics to enable real time object recognition and tracking. 
The resulting Colour Histogram Analysis algorithm is fast 
enough to allow real time Teaching Head lessons.  A sample 
lesson was built and demonstrated at an expo where it was 
successfully used, in real time, by of the order of 100 
visitors. 

Future work will need to formally analyse the contribution 
of the different components of the system. We also may be 
able to make better use of the possibilities of operating at 
multiple scales [19,20] and with multiple stored views. 

REFERENCES 
[1] D. M. W. Powers, Special Issue on the Connectionism versus 

Symbolism Debate, THINK 2:1,1993; PSYCOLOQUY 12, 2001. 
[2] D. M. W. Powers and Christopher Turk, Machine Learning of Natural 

Language, Research Monograph, Springer-Verlag (NewYork/Berlin), 
1989. 

[3] J. Feldman, G. Lakoff, D. Bailey, S. Narayanan, T. Regier, A. Stolcke,  
1996. L0 – The first five years of an automated language acquisition 
project, Artificial Intelligence Review 10: 1-2, April 1996. 

[4] D.M.W.Powers "Robot babies: what can they teach us about language 
acquisition?" Invited chapter, J. Leather and J. Van Dam, eds The 
Ecology of Language Acquisition, Kluwer, pp.160-182, 2002. 

[5] Weizenbaum, Joseph (January 1966), "ELIZA - A Computer Program 
For the Study of Natural Language Communication Between Man 
And Machine", Communications of the ACM 9 (1): 36–45 

[6] R.S.Wallace, The Annotated A.L.I.C.E. AIML. Accessed 4 February 
2010: http://www.alicebot.org/aiml/aaa/.  

[7] D.M.W.Powers, R.Leibbrandt, D.Pfitzner, M.Luerssen, T.Lewis, 
A.Abrahamyan, K.Stevens, “Langauge teaching in a mixed reality 
games environment,” PETRA '08: Proceedings of the 1st international 

conference on PErvasive Technologies Related to Assistive 
Environments, pp. 1-7, 2008. 

[8] D. Franzel and W. Newman, “Virtual World – Hybrid Reality for 
Computer Learning and Teaching”, Engineering Honours Project, 
School of Computer Science, Engineering and Mathematics, Flinders 
University of South Australia, 2008. 

[9] OpenCV-2.0.0.0. Accessed on 2nd February 2010 at: 
http://sourceforge.net/projects/opencvlibrary/,  

[10] R. Hess, 2006. ‘SIFT Implementation’, Accessed on 30th October 
2009: http://web.engr.oregonstate.edu/~hess/. 

[11] D. G. Lowe, 1999. ‘Object recognition from local scale-invariant 
features’. In Computer Vision, 1999. The Proceedings of the Seventh 
IEEE International Conference on, vol. 2, pp. 1150-1157 vol.2. 

[12] D. G. Lowe, 2004. ‘Distinctive image features from scale-invariant 
keypoints’. International Journal of Computer Vision 60:91-110. 

[13] B. D. Lucas & T. Kanade, 1981. ‘An Iterative Image Registration 
Technique with an Application to Stereo Vision’. In IJCAI’81 pp. 674-
679. 

[14] Illustrations in Wikipedia articles on colour spaces. Accessed on 2nd 
February 2010 through 
http://en.wikipedia.org/wiki/List_of_color_spaces_and_their_uses, 
http://en.wikipedia.org/wiki/YCbCr and 
http://en.wikipedia.org/wiki/HSL_and_HSV. 

[15] Wetherill, J, 2007. ‘Comparing Java 3D with jMonkey Engine’, Sun 
Microsystems, Accessed on 29th September 2009 at: http: 
//blogs.sun.com/john/entry/comparing_java_3d_with_jmonkeyengine. 

[16] WikiBooks, ‘Blender 3D: Noob to Pro/UV Map Basics’, WikiBooks, 
Accessed viewed 25th September 2009 at: http: 
//en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/UV_Map_Basics 

[17] D.M.W.Powers, "Lateral Interaction Behaviour Derived from 
Neural Packing Considerations", DCS Report No 8317, 
Department of Computer Science, University of NSW. 

[18] T. W. Lewis (2000), "Audio Visual Speech Recognition: 
Extraction, Recognition and Integration", Flinders University,  

[19] T. Lindeberg, 1994. ‘Scale-Space Theory in Computer Vision’. 
Kluwer Academic Publishers Royal Institute of Technology, 
Stockholm, Sweden. 

[20] T. Lindeberg, 1998. ‘Feature Detection with Automatic Scale 
Selection’. International Journal of Computer Vision 30(2):79-116. 

TABLE I 
PROPERTIES OF OBJECT RECOGNITION SYSTEMS USED 

 Viola Jones Haarlike SIFT, SURF Colour Histogram Analysis 
Performance 
Training time and 
requirements 

100-1000+ hand annotated 
images, many many hours 

One picture. A few seconds. ~20 pictures taken ‘on line.’  
5 minutes or less. 

Processing speed 67 milliseconds per frame  680 milliseconds per frame  32ms per frame 
Recognition accuracy Depends on training set Good for detailed objects Good for simple coloured objects, 

occasionally misclassifies. 
Location accuracy Untested Very accurate Generally accurate and consistent. 

Small amount of ‘wobble’. 
Can the system recognize objects distorted by: 
Translation Yes Yes Yes 
Scaling Yes Yes Yes 
In plane rotation No Yes No 
3D rotation No Up to ~30 degrees by affine 

transform 
No 

Obscuring No Yes. System returns correct 
location despite obscuring of 
object. 

No. Apparent ‘scale’ of object is 
reduced to visible portion, offsetting 
position and increasing apparent 
distance. 

Limitations    
Mistaken objects Depends on training set. Significant feature matching – 

e.g. writing or symbols. 
Predominant matching colours 

Limitations Training time, cannot 
distinguish rotation. 

Slow, some objects do not 
generate good features, cannot 
distinguish out-of-plane 
rotation. 

Colours matching between objects, 
cannot determine rotation, results 
skewed by obscured portions. 

 
 
 


