

Abstract—Fast algorithms and heuristics for real-time object
recognition and tracking have enabled a new hybrid world
technology in which one can manipulate a real world object
and have its virtual world counterpart move correspondingly.
This technology has been developed as part of a teaching head
platform that was initially designed for language teaching but is
now also being used in a range of health-oriented contexts. In
this paper, the requirements of the technology are motivated
and elucidated, with direct comparison of our proposed
heuristics with well known object recognition algorithms

I. INTRODUCTION

IRTUAL TUTORS are an exciting new development in
Artificial Intelligence that have been enabled by a

broad spectrum language and learning based technologies.
Whilst speech technology and face generation is based on

conventional and commercial technologies dependent on
artificial neural networks and related models, the language
and computer assisted instruction technologies depend on ad
hoc pattern matching, and tend to lack grounding in the
sense of connection to the real world.

Children learn language and ontology together, that is
they learn about the world and learn to talk about the world
in parallel in an intimately connected way. The necessity of
grounding in the real world has been extensively argued
from the perspectives of psychology, linguistics, philosophy,
connectionism and learning theory [1,2], and has been the
basis for cognitive linguistic programs in Machine Learning
of Natural Language (MLNL) [2,3]. An essential tenet of
this approach since the birth of both Cognitive Linguistics
and Connectionism is that the nature of the world dictates
the nature of the learning mechanism and its biases,
including the natural networks of neurons that implement
both perception of the world and learning of linguistic

Manuscript received February 7, 2010. This work was supported in part
by the joint NHMRC and ARC Special Research Initiative on Thinking
Systems grant number TS0669874 ‘Thinking Head’. Please address
correspondence to David.Powers@flinders.edu.au.

W. J. Newman and D. Franzel undertook this work as students in the
School of Computer Science Engineering and Mathematics, Flinders
University of South Australia (email: wjn@internode.on.net,
franzel_d@hotmail.com).

T. Matsumoto, R. Leibbrandt, T. W. Lewis and M. H. Luerssen are
research fellows in the Artificial Intelligence Laboratory of the School of
Computer Science Engineering and Mathematics, Flinders University of
South Australia (email: {Takeshi.Matsumoto, Richard.Leibbrandt,
Trent.Lewis, Martin.Luerssen}@flinders.edu.au).

D. M.W. Powers is Professor of Computer Science and Director of the
Artificial Intelligence Laboratory in the School of Computer Science
Engineering and Mathematics, Flinders University of South Australia
(email: David.Powers@flinders.edu.au).

concepts, speech, grammar, etc.
Whereas conventional conversational agents use

technologies that are intrinisically heuristic, and resemble a
text editor more than a learning system, learning approaches
with connection to the real world can start to learn grounded
language directly [4]. On the other hand the traditional
approaches remain more powerful and well developed with a
pedigree that extends back to and has not developed much
since Eliza [5], and we are using Alice [6] for much of our
current Teaching Head research [7] as its AIML language is
very easy to teach to both teachers and students who wish to
extend the capabilities of an Embodied Conversational
Agent.

If grounding is important for language learning, it stands
to reason that it is also important for language teaching, and
indeed we are borrowing the multimedia technology of
MLNL to enhance the capabilities of Computer Aided
Language Learning (CALL) [7]. The basic structure of a
Thinking Head system is illustrated in Fig. 1: the animated
face acts as teacher and illustrates important aspects of
correct linguistic, cultural and social usage; to provide a
partially enclosed physical arena the two screens are
typically angled at around 120˚; the second screen provides a
window into the teacher’s world, while the two screen-based
cameras provide different (near orthogonal) viewpoints on
the partially enclosed physical arena; the physical arena
represents the learner’s world and in practice has also been
expanded to include half the room, including a whiteboard;
and the middle camera concentrates on tracking the learner’s
face, monitoring their lip movements, expression and facial
gestures.

Fig. 1. The layout of the Teaching Head installation. Reproduced by
permission of DMW Powers and T Lewis©

Hybrid World Object Tracking For A Virtual Teaching Agent
William Newman, David Franzel, Takeshi Matsumoto, Richard Leibbrandt,

Trent W Lewis, Martin H Luerssen, David M W Powers, Senior Member, IEEE

V

978-1-4244-8126-2/10/$26.00 ©2010 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Flinders Academic Commons

https://core.ac.uk/display/14946756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Object
recognition

Object database

Virtual
World

AIML
scripts

OpenCV Blender /
JMonkey

Thinking
Head

Fig. 2: The layout of the Teaching Head

The Teaching Head concept has since been expanded to
include a range of other applications including teaching
social skills to children with disabilities, and assisting older
people with independent living, but we focus here on CALL.

II. ARCHITECTURE

The focus of this paper is the specification and development
of the visual object recognition and tracking system, and its
integration into the world to allow the corresponding objects
in the virtual world to be moved and the teacher to
discriminate a correct or incorrect answer. The complete
description is described at greater length in a thesis [8].
 The project consists of four components, as seen in Fig. 2:

• The object database contains details, recognition
signatures and 3D models of all the objects used in
the system.

• The object recognition system takes input from the
camera, and determines the identities and locations
of any objects visible.

• The virtual world system takes the details of the
objects detected by the object recognition system
and displays them in a 3D environment.

• The Thinking Head is used as in interface to the
user. It gives the user instructions and for language
learning applications, will talk to the user in the
language that the user is to learn.

The object database is a plaintext file which the other
components of the system read upon startup. The object
recognition program writes to this file when adding new
objects to the system. Other changes, such as renaming or
removing objects, can be carried out by hand using a text
editor.

The virtual world acts as the central server for the rest of
the system. It connects to the object recognition system via
networking sockets (through the local loopback address,
127.0.0.1) to obtain the object location data, and sends
information to the Thinking Head by means of the Head’s
API.

 The system as a whole, including the hybrid world
object tracking system, has been demonstrated using two
sample lessons, one involving building towers with blocks,
and the other involving manipulating a tiger against a jungle
background. The objects were scanned into the virtual world
using a Next Engine 3D scanner, but we have also created
objects using Blender for printing with our 3D printer.

III. OBJECT RECOGNITION

The visual processing was largely carried out using OpenCV
[10] which provides a comprehensive array of basic
learning, neural network and statistical tools as well as
setting the standard for visual processing tools.

A. Scale Invariant Feature Transform (SIFT)
The first version of the object recognition system was built
using David Lowe’s Scale Invariant Feature Transform
(SIFT) algorithm, building on an implementation in C and
OpenCV [10-12].

This implementation was successful at locating detailed
objects facing the camera, as seen in Fig. 3, but the SIFT
algorithm experienced difficulty searching for less detailed
objects such as the blocks and toys intended for to use in the
project. It also failed to locate the object if it was rotated
more than approximately 30 degrees away from the camera,
as expected, and patching over this difficulty by using
multiple images proved to be a complex task. This was
important, since forcing the user to constrain the objects to a
particular orientation would be impractical and render the
system unusable.

There was also a major issue re speed. On a reasonably
modern computer (Intel Core2 Duo, 2.2GHz), the SIFT
feature search took 0.5 to 1.0 seconds, before any additional
processing. This meant that when the user moved an object,
it took around a second for that motion to be reflected on the
virtual world display – too slow to be practical.

We determined that the system could be sped up
somewhat by using SIFT to identify the objects, then using
the much faster Lucas Kanade optical flow tracking method
[11] to track the movements of the identified objects while
the next SIFT scan was running. However, this would be a
complex system to train, and we believed we could do as
well with a simpler approach.

Fig. 3: SIFT feature matching in action. The reference image (below) is
located within the camera frame (above) by locating common key points,
connected by lines.

B. Colour Histogram Analysis
A Colour Histogram Analysis algorithm was developed as a
faster and less complicated alternative to object recognition
algorithms such as SIFT. It works on the principle that each
object will have a distinct set of colours which can be used
to identify it. These colours are recorded in histograms and
used to identify and locate the object later. The overall
structure of the algorithm is given in Fig. 4.

The system works by moving the images into a colour
space in which it is easy to separate colour information from
lighting information so that the effects of lighting
differences can be easily ignored. Information about the
colours of each object, summarised into histograms, is
retrieved from the database. Next, a detector algorithm is
used with each object’s histograms to determine whether the
object is present in the image, irrespective of the location, or
any other objects. If an object is present, a locator algorithm
is used to determine its likely location, and a different, more
stringent type of detector is used on the area located to
ensure it is not a false positive. The location is then
converted from 2D screen coordinates to 3D coordinates for
use in the virtual world environment.

Capture

Camera

Colour Space
RGB

Database Detector

Threshold

HSV or similar

Score

EndFail

Pass

Locator

Detector
2D coordinates

Threshold
Score

EndFail

Pass

3D Projection-1
3D coordinates

Virtual World

Fig. 4: Colour Histogram Analysis flowchart

1) Colour Spaces
The canonical image produced by the camera is in the RGB
colour space – that is, there are three bytes for each pixel,
describing the intensity of the red, green and blue
components of the colour. This is not particularly useful for
object colour analysis, since the apparent colour will change
due to lighting effects, and this changes the value of all three
bytes. In other words, the lighting information and the colour
information are encoded into the same variables. In fact
colour television and image compression use variants forms

that extract some kind of monochrome luminance or
brightness signal that is essentially a weighted average of the
primary RGB colour signals. This kind of system is
potentially also useful for separating the lighting effects
from the colour of the object. Several such systems are
potentially useful, including variants on YUV and YCbCr
that used fixed weightings on RGB, have some relationship
to the complementary colour processing of the human visual
system, and are used to provide a high information
monochrome image. The HSV and HSL represent
brightness in terms of the strongest primary component
(HSV), or the average of the strongest and weakest
component (HSL), rather than an average assigning non-zero
weights to all components as in YUV and derivatives.

The Hue (H) in these systems is the same and represents a
single recurrent dimension which is very convenient for
distinguishing colours in a natural way. Saturation (S) is
quite different, with HSV defining a linear Saturation that
reduces as one adds white (RGB with equal weight), and
HSL defining a linear Saturation that increases as one adds
white or black, or alternately as one adds or subtracts white,
from a mid-grey base level. Perceptually, for natural scenes,
more information goes into the Y signal than into either L or
V, whilst more information goes into S in HSV than HSL,
and into L versus V. UYUV, VYUV, Cb, Cr, SHSV and VHSV
tend to have less information and appear softer or blurry, as
can be seen in any comparative review of colour spaces [12].

The HSV colour space was used because it is designed to
separate colour information from lighting information, it is
very simple and fast, and it appears to maximize the
information in HS and minimize the perceptual information
in V, which retains most of the shadow. Conversion is
straightforward and we used the routines included in
OpenCV. Investigation into other colour spaces is still
desirable, and proper white balancing systems should also be
investigated, noting that the colour of shadow is dominated
by sky blue and the colour of direct daylight is dominated by
the complementary yellow of the sun. Traditional
whitebalancing is towards sunlight, with the effect that
shadows tend to come up blue in HSV – this can be
construed as a bug or a feature of our system, however it is
one that is not so much of a problem indoors!

Colour spaces can be changed without affecting the rest of
the system, although object signatures would need to be
retrained in the new colour space.

2) Gathering Training Data
To train the system to recognise an object, colour data is
gathered from many pictures of the object, posed at different
locations, rotations, and so forth, and stored in histograms.
For the sake of speed and convenience, this is done ‘on the
fly’, meaning that training images are taken from a live
camera stream triggered by the user’s keypresses, meaning
that the user can position the object, take some pictures,
reposition the object, take some more pictures, and so on.
Using this procedure, many tens to hundreds of samples

worth of data can be taken in a matter of minutes, with very
little processing time required.

Of course, when camera images of an object are used to
gather colour data, the object is not the only thing in the
images. There will always be some other colours in the
background, and it is important not to include these pixels in
the object signature histograms. Therefore, the object needs
to be separated from the background. This is accomplished
by taking a reference image, without the object in place, and
generating a mask by comparing the reference image with
each camera frame. The pixels which differ in value should
then all belong to the object, which was added to the scene
since the reference image was taken.

 In reality, there is a certain amount of noise in the
camera image, so a threshold is applied to the difference
calculation. Practical experimentation shows that a value of
50 (out of 255, for an 8-bit pixel) is a good threshold for
removing camera noise, (even in sub-optimal lighting
conditions, which tend to increase noise,) whilst retaining
most of the object. Since a colour image has three channels,
an average of these is used.

3) Detection: ‘Is the object in this bitmap?’
The first step in the object recognition system is to
determine which objects, if any, are present in the camera
image, irrespective of their locations. For this, we desire a
function which will process the image and return a single
number representing how likely it is that the object is
present. A threshold can then be used to make a decision. If
the object is present, further analysis will be performed to
determine its location. This should be a fast routine, as it will
be run against every relevant object in the database.

a) Statistical Correlation

One approach to comparing an image to the recorded object
signature is to generate a histogram signature from the
camera image, then compare that signature mathematically
with the object’s signature. This can be done by performing
a sampled correlation between the two histograms.

b) Fast Unique Pixel Count

Signature correlation (section a)) gives a good indication of
whether or not the selected bitmap contains only the object
in question, but any other colours in the bitmap will decrease
the correlation. In many applications, the object will only
make up a small portion of the bitmap, with the rest being
other objects and the background. Since the object may only
be a small portion of the total bitmap, it will be
overwhelmed in the signature by the colours of the
background, and return a bad correlation. Therefore, the
correlation function does not give a good indication if an
object is present.

In order to determine whether the bitmap contains the
object, an algorithm was devised which ignores unwanted
colours, and the proportions of colours present, and simply
checks to see if all the colours in the object are present in the

image. It only counts one pixel of each colour, so
proportions are ignored, and an object taking up a small
window of a large bitmap will still be detected. Colours that
are in the image add to the score proportionally to how often
they occur in the training data.

As well as ignoring proportions and backgrounds, this
algorithm has an additional advantage over the correlation
function: speed. Correlation requires three multiplications
and three additions per pixel, whereas the pixel count
requires one bit test, and possibly one addition per pixel.
Considering how many pixels must be analysed when
processing even a low resolution video stream, this is a
significant performance gain.

Further speedups could theoretically be gained by
stopping the loop when all the flags are set, since once that
occurs the score cannot change any further. However, in
practice, it is very rare for an image to contain pixels from
every single colour histogram bin, so the speed gained
would be negligible.

This algorithm is used to scan the entire image several
times, once with each object signature in the database, to
determine which objects are present. When the score is high
enough to indicate that an object is probably present, more
sophisticated (and slower) methods are used to determine the
location of the object, and confirm that it is actually present.

Despite the effects of noise, practical experimentation
shows the Fast Unique Pixel Count proves to be a very
reliable method for determining the presence or otherwise of
an object in the camera image. It also suffers only small
effects from changes in lighting, changes in the position and
angle of an object, and so forth.

The algorithm can return false positives quite easily,
especially if many similar colours are present in other
objects, but later tests in the locating step check for false
positives and filter them out.

The acceptance threshold is different for each object. A
reliable method for pre- calculating the threshold has yet to
be determined. InIn the stead of making such a calculation,
thresholds are currently set manually through observation
and experimentation.

4) Location: ‘Where in the bitmap is the object?’
Once an object has been identified within the bitmap, the
next task is to determine where it is. That is, we want to find
a bounding box which fully encloses the object but is not
any larger than it needs to be to do so.

When considering how to accomplish this, the approach
which seems most obvious is to take one of the identifying
algorithms developed in section 3) and modify it or extend it
in some way to analyse a smaller window or sub-section of
the camera image, and find windows which score higher
than others, ‘scanning’ the image for the highest scoring
areas, which represent the most likely location of the object.
Three algorithms were devised, implemented and developed
to accomplish this. They are described in the following
subsections.

Fig. 5: The sliding window technique, using a Fast Unique Pixel Count
filter. The upper image shows the camera image, and the lower image
shows the output of the algorithm, searching for the signature of the toy
train. The area of the object is clearly marked. Some noise is visible from
other objects and details

a) Sliding window filter

One approach to locating the object is to apply the two
scoring algorithms to smaller windows of the bitmap, using
a sliding window similar to those used with sliding mean
and median filters in image processing applications.

The output is a bitmap describing the match quality,
where the intensity of each pixel in the output image is
proportional to the score of the window around the
respective pixel in the camera frame. Areas of high intensity
represent the presence of the object.

Since the best response occurs when the window fully
encompasses the object, differing window sizes would need
to be processed in an arrangement similar to a scale-space
pyramid [17,18].

For the correlation function, the single scale-space pixel
with the maximum intensity value represents the window

which best encloses the object. It would not, however, be
necessary to calculate every single point in the pyramid, as
the smaller scale scans would be used to rule out unlikely
locations and focus the (slower) increasing window size
scans only on likely areas.

Practical experimentation showed that this approach was
too computationally expensive to be practical, making it too
slow for real time video processing. For example, using a
window of 16x16 pixels, which is about the minimum
practical size, each pixel in the image will be processed 256
times.

b) Image segment and link

To reduce the number of times each pixel is analysed, a
variation on window scanning can be used whereby the
image is separated into fixed size segments, and each
segment is analysed separately. For each segment, a
signature histogram is generated, then compared to the
object signature using the correlation function, giving the
segment a score.

The highest scoring segment is then considered. This
segment is combined with each adjacent segment in turn,
accomplished by summing their histograms and normalising,
and the combined histograms are scored by correlation. If
the combined score is an improvement, the adjacent segment
is added to a list of segments which describe the object, and
itsits adjacencies are tested in the same manner. This process
continues until no more segments can be added without
decreasing the overall score, at which point all of the
segments which contain the object have been identified.

This system operates in a similar manner to the flood fill
or boundary fill algorithms found in many graphics
programs, and specifically paint programs.

The problems with this method are twofold. First, since
the object will most likely cover several segments, no
individual segments contain the whole object, meaning they
will not exactly match the object signature. If the object has
distinct regions of colour, then most of the segments will
describe only some of these colours, skewing the signature,
and reducing the difference in scores between a segment of
matching object and a segment of anything else – essentially
lowering the Signal to Noise Ratio (SNR).

The other is that the segments represent large blocks of
the image and do not handle the edges of the object well.
AThe score of a segment which partially contains the object
will tend to hover around the threshold of inclusion and
exclusion from the object, meaning that it is included and
excluded intermittently in consecutive frames. When this
occurs, it has a dramatic effect on the perceived position of
the object, causing a massive amount of noise in the location
outputs, even after significant amounts of rolling average or
median filtering.

For these reasons, the segment mapping method is not
sufficient for the purposes of controlling the virtual world, as
all of this noise will be reflected visibly to the user in the
virtual world display.

c) Linear Border Search and Refine

The fastest and simplest method for locating the object
within a bitmap is to locate each border separately. For most
of the process, the Fast Unique Pixel Count is used.

For example, to find the left edge of the object, the image
is analysed one column of pixels at a time, in turn from the
left edge to the right. Each column is analysed using the Fast
Unique Pixel Count algorithm, producing a score for each
column. The algorithm is continuous between the columns –
that is, the score and flag table are not reset for each column,
meaning that the score recorded for each column is actually
the score for a rectangle extending between that column and
the left hand border, with the full height of the screen.

Over the first few columns the score will quickly climb to
a baseline level caused by the pixel colours of the
background which happen to coincide with the object
signature. There will be a small amount of increase in the
score over the width of the image due to different colours
occurring. In most cases, this base line will be less than 0.5
(in a scale from 0.0 to 1.0);

When the first columns containing the object are
encountered, large numbers of high scoring pixel colours are
encountered, causing a rapid increase in score, usually to 0.9
or more. Once these colours have been encountered, there
will be little increase in score for the rest of the image.

Fig. 6: Image Segment and Link Mapping. Camera image is above, segment
map below. On the segment map, each segment is coloured according to its
correlation score – brighter shades indicating better matches. The segments
whose combined signatures match the object are highlighted by the
continuous, lighter shading.

Therefore, the edge of the object can be identified by
searching for the largest instantaneous increase in score.
This will be the maximum value of the differential of score
over columns, calculated by taking a column’s score and
subtracting the score of the column directly adjacent to it on
the left. The greatest difference is taken as the border of the
object.

The same procedure is followed for the other three
borders. Of course, once the left hand border has been
located, the scan for the right hand border need only run
from the right edge of the screen to the previously
determined left border of the object, since the right hand
border will always be to the right of the left hand border.

Once the left and right hand borders have been identified,
the scans for the top and bottom borders are performed by
scanning the rows of pixels between the previously
established left and right borders. These border limits
improve the speed of the algorithm by excluding
unnecessary pixels from scans for which they are not
relevant.

Other objects and background details can cause spurious
increases in column scores, but these will usually be
significantly smaller than those caused by the object edges.
However. small, sharp increases can occasionally overrun
the main peak. Some of these can be filtered out by applying
a sliding average to the differential signal. The exact benefits
and drawbacks of this filtering step are still to be
investigated.

Since there is always a large spike of new pixels in the
first few rows or columns of a scan, the algorithm allows a
small border of 5 pixels (plus the width of the filter
mentioned above) in which peaks will not be considered and
object borders will not be placed. This stops the initial
‘inrush’ of pixels from creating the largest differential.

The Fast Unique Pixel Count algorithm has a tendency to
generate false positives, so the portion of the bitmap
contained within the object boundaries is scored using the
correlation function to determine if it really does contain the
object, and to filter out any false positives.

This algorithm runs very quickly, and provides accurate
and consistent object locations. Often, large errors occur in
one border for periods of a single frame, meaning that they
can be filtered out by applying a rolling median filter. It is
the fastest of the locating algorithms considered, and is also
more accurate than image segmentation. The sliding window
filter system could possibly produce even more accurate
results, but its prohibitive speed limits its usefulness, leaving
the boundary search as the best option.

Further development of the border search replaced the
single running score with a sliding window, similar to that
used in section a). Instead of running the window over the
entire image, two 1D score arrays are produced: one vertical,
and one horizontal. Each element in the horizontal score
array corresponds to the pixel count score for the
corresponding column of pixels in the camera image, and the
columns surrounding it. The window size used was 16

columns for a 320x240 pixel image. The same process is
used with rows of pixels to produce the vertical array.

The two arrays are processed with a threshold, to
eliminate noise, and the vertical and horizontal borders were
placed to encompass 80% of the total signal ‘energy’ over
the threshold, thus filtering out the occasional score peaks
due to noise.

This provided accuracy similar to the sliding window
approach at a fraction of the running time, and addressed the
tendency for the ‘running score’ approach to place borders
on noise-related score increases.

5) Inverse 3D projection
Once the object borders have been located, the 2D
coordinates of each object in the image are known. This
means that we have the pixel coordinates of a bounding box
around the object. In order to use this in any 3D application,
we need to translate these coordinates into 3D coordinates x,
y and z. This means applying the inverse of the projection of
the 3D objects onto the 2D image [13].

Fig. 7: A practical example. The upper image shows the camera frame with
the object borders highlighted. The lower images show the running score
(white) and unfiltered differential (cyan-grey) used to locate the left hand
border. There is a clear jump which occurs at the left hand border of the
object.

IV. VIRTUAL WORLD
The Virtual World displays the objects recognised by the
Object Recognition system and reflects their movements. In
additional, the Virtual World contains a frame work for
creating lessons that are used to teach and test the student’s
knowledge in the second language of their choice.

This section will discuss the requirements of the virtual
world system, how it was developed, and the hardware and
software involved.

A. Virtual World Requirements
Before we develop a 3D environment for the Virtual World
it is useful to consider the requirements the system is
required to fulfil.

The main goal of the Virtual World is to reflect objects
and their movements from the real world. The first
requirement of this goal is that we have models representing
the real world objects. These objects needs to resemble the
real world objects as closely as possible. Models can be
produced by using various 3D modelling software packages.
The objects’ movementmovements also hashave to also be
displayed, but only in terms of translation in the 3D space.
Since rotation is not detected by the object recognition
algorithm, it cannot be displayed in the virtual world.

As the intent of the Virtual World is to teach a second
language to a user, lessons have to be created. These lessons
must involve the use of physical objects being manipulated
in the real world to achieve a goal in the virtual world. The
lessons must also be easy to understand with an interface
that adhere to the principles of good interface design, with
clear unambiguous relationships between the real and virtual
world manipulations. Since the project is being narrated by
the Thinking Head, the instructions or any narration given
during the use of the system must be clear and logical.

B. Design of Virtual World
Before we construct the Virtual World, we produced a
design of how we want the system to look and act. To do
this, simple drawings were created for every state the Virtual
World might enter.

The initial and default state is the ‘non-lesson’ state,
where the objects can be manipulated in any way, against a
black background. The heads up display (HUD) displays the
names of the objects that are being recognised. The Thinking
Head will name objects as they are introduced to the system,
and possibly describe their movements.

From the initial state, the Virtual World can enter the
‘lesson’ state. The lessons are activated through the use of
keyboard input. Each lesson includes a background, which is
displayed when the lesson state is entered, along with a
lesson header to let the user know which lesson he/she is
attempting. Narration is provided by Thinking Head, giving
instructions for the lesson.

One example of a lesson asks the student to “put the green
block on top of the red block” in a traditional blockworld
scenario, whilst in a storybook scenario about a tiger, the

student is asked to “take the tiger to the lake for a drink”
(Fig. 8). Once the user completes the task as given to them
by the Thinking Head, a congratulatory message will be
given to the user through the Thinking Head, and the Virtual
World display.

Fig. 8: Screen shot of Lesson 1.

C. 3D API and Modelling
After detailed comparison of alternatives considered as a 3D
world software environment and API, we did initially use
our own MicroJaea scripting language for Java3D.
Unfortunately the development of Java3D has stalled, but
due to its speed and its ongoing development backed by an
active community, we adopted jMonkey as ideal for this
project [13], using it to animate our lessons as illustrated in
Fig 8.

Similarly we sought an open-source 3D modeling package
to allow us to construct our own objects and adopted
Blender [14].

V. EVALUATION

In this study, we have considered a variety of algorithms
designed for effective object recognition. Our application
however, required real-time object-recognition and tracking
so our criterion was not accuracy of recognition of objects
from some standard dataset, but rather ensuring that it could
be used for practical Teaching Head lessons, keeping up
with a Logitech Sphere webcam operating at 25fps.

As explained in the detailed discussion of the
development of an acceptable package of algorithms and
heuristics, we evaluated and discarded the standard Image
Recognition Algorithms and sought to develop hybrid
algorithms that were more appropriate for our specific
application. A detailed summary of the issues associated
with the various algorithms is given in Table I, and in
particular not that only our Colour Histogram Analysis is
fast enough to keep up with a 25fps camera. Moreover, the
best competitor, Viola-Jones/Haar, which is better known for
a specific face recognition application, is only half the speed
at 320x240 pixels (as shown – the gap widens for larger
resolutions). In addition, as noted in the table, Viola-Jones

has a considerable training overhead which is quite
reasonable for a ubiquitous task like face recognition, but
quite inappropriate for fast development of lessons by
teachers rather than experts in learning and neural nets.

In terms of accuracy, we used whatever office, home,
class or desktop the computer was being used in along with
props (blocks and other toys) that were selected arbitrarily
without any effort to make them distinctive. However, by
their nature colourful toys designed for young children do
tend to contrast rather well with the university and home
environments we tested in. Because we are getting 25 frames
per second from our camera, 100% accuracy isn’t strictly
necessary, but we mainly encountered errors only when most
of the object was obscured by a person’s hand or other
object. By allowing for this and keeping track of the
previous history of the object, sufficient stability was
ensured for the purposes of this application, notwithstanding
the occasional frame in which the image couldn’t be
recognized. Success was measured in terms of the student
being able to complete the lesson without being hindered in
any way by the algorithm.

We also demonstrated the ability to distinguish and track
multiple objects, and this capability also allows another
trick: the Colour Histogram Analysis (CHA) can be applied
efficiently to a library that includes multiple views (scales,
angles, aspects or parts) of each object, and can thus achieve
more reliable detection. The formal evaluation of this
potential remains future work, although the basic technique
is now being used successfully as part of our entry into the
MAGIC Grand Challenge1, finding and distinguishing
hostile and non-hostile objects of interest.

VI. VISUAL COGNITION AND NEURAL NETWORKS

Whereas traditional Artificial Neural Networks train each
neuron or synapse separately, all the algorithms we
considered train specific Perceptron or RBF feature detectors
that are effectively replicated for each pixel at each scale.

Edge detectors, such as the Haar detector, and feature
detectors such as the difference of Gaussians (DoGs) used in
SIFT are in many ways similar to the visual edge and feature
detectors that are well known and fit very general models of
visual processing in the ganglia and cortex [17].

The RGB colour space, and variants like HSV, HSL and
YUV, all have interesting relationships to human vision
processing. The red cone absorption spectrum is precisely
complementary to that of haemoglobin, and the green
corresponds well to a range of chlorophyll spectra, so that
red-green (or red-cyan) opponents (like axes in UV and HS)
are good for distinguishing animal from plant as well as
features of an animal that is basically filtered haemoglobin.
The blue-yellow contrast fits remarkably with a sky-sun
contrast and can also identify shadows, whether as unwanted
noise/artefact or key textural features [20]. CHA is thus
biologically sound as a stage preceding edge detection.

1 http://www.dsto.defence.gov.au/MAGIC2010/

VII. CONCLUSION
This paper has compared a number of standard algorithms
and well known techniques, and has introduced fast
heuristics to enable real time object recognition and tracking.
The resulting Colour Histogram Analysis algorithm is fast
enough to allow real time Teaching Head lessons. A sample
lesson was built and demonstrated at an expo where it was
successfully used, in real time, by of the order of 100
visitors.

Future work will need to formally analyse the contribution
of the different components of the system. We also may be
able to make better use of the possibilities of operating at
multiple scales [19,20] and with multiple stored views.

REFERENCES
[1] D. M. W. Powers, Special Issue on the Connectionism versus

Symbolism Debate, THINK 2:1,1993; PSYCOLOQUY 12, 2001.
[2] D. M. W. Powers and Christopher Turk, Machine Learning of Natural

Language, Research Monograph, Springer-Verlag (NewYork/Berlin),
1989.

[3] J. Feldman, G. Lakoff, D. Bailey, S. Narayanan, T. Regier, A. Stolcke,
1996. L0 – The first five years of an automated language acquisition
project, Artificial Intelligence Review 10: 1-2, April 1996.

[4] D.M.W.Powers "Robot babies: what can they teach us about language
acquisition?" Invited chapter, J. Leather and J. Van Dam, eds The
Ecology of Language Acquisition, Kluwer, pp.160-182, 2002.

[5] Weizenbaum, Joseph (January 1966), "ELIZA - A Computer Program
For the Study of Natural Language Communication Between Man
And Machine", Communications of the ACM 9 (1): 36–45

[6] R.S.Wallace, The Annotated A.L.I.C.E. AIML. Accessed 4 February
2010: http://www.alicebot.org/aiml/aaa/.

[7] D.M.W.Powers, R.Leibbrandt, D.Pfitzner, M.Luerssen, T.Lewis,
A.Abrahamyan, K.Stevens, “Langauge teaching in a mixed reality
games environment,” PETRA '08: Proceedings of the 1st international

conference on PErvasive Technologies Related to Assistive
Environments, pp. 1-7, 2008.

[8] D. Franzel and W. Newman, “Virtual World – Hybrid Reality for
Computer Learning and Teaching”, Engineering Honours Project,
School of Computer Science, Engineering and Mathematics, Flinders
University of South Australia, 2008.

[9] OpenCV-2.0.0.0. Accessed on 2nd February 2010 at:
http://sourceforge.net/projects/opencvlibrary/,

[10] R. Hess, 2006. ‘SIFT Implementation’, Accessed on 30th October
2009: http://web.engr.oregonstate.edu/~hess/.

[11] D. G. Lowe, 1999. ‘Object recognition from local scale-invariant
features’. In Computer Vision, 1999. The Proceedings of the Seventh
IEEE International Conference on, vol. 2, pp. 1150-1157 vol.2.

[12] D. G. Lowe, 2004. ‘Distinctive image features from scale-invariant
keypoints’. International Journal of Computer Vision 60:91-110.

[13] B. D. Lucas & T. Kanade, 1981. ‘An Iterative Image Registration
Technique with an Application to Stereo Vision’. In IJCAI’81 pp. 674-
679.

[14] Illustrations in Wikipedia articles on colour spaces. Accessed on 2nd
February 2010 through
http://en.wikipedia.org/wiki/List_of_color_spaces_and_their_uses,
http://en.wikipedia.org/wiki/YCbCr and
http://en.wikipedia.org/wiki/HSL_and_HSV.

[15] Wetherill, J, 2007. ‘Comparing Java 3D with jMonkey Engine’, Sun
Microsystems, Accessed on 29th September 2009 at: http:
//blogs.sun.com/john/entry/comparing_java_3d_with_jmonkeyengine.

[16] WikiBooks, ‘Blender 3D: Noob to Pro/UV Map Basics’, WikiBooks,
Accessed viewed 25th September 2009 at: http:
//en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/UV_Map_Basics

[17] D.M.W.Powers, "Lateral Interaction Behaviour Derived from
Neural Packing Considerations", DCS Report No 8317,
Department of Computer Science, University of NSW.

[18] T. W. Lewis (2000), "Audio Visual Speech Recognition:
Extraction, Recognition and Integration", Flinders University,

[19] T. Lindeberg, 1994. ‘Scale-Space Theory in Computer Vision’.
Kluwer Academic Publishers Royal Institute of Technology,
Stockholm, Sweden.

[20] T. Lindeberg, 1998. ‘Feature Detection with Automatic Scale
Selection’. International Journal of Computer Vision 30(2):79-116.

TABLE I
PROPERTIES OF OBJECT RECOGNITION SYSTEMS USED

 Viola Jones Haarlike SIFT, SURF Colour Histogram Analysis
Performance
Training time and
requirements

100-1000+ hand annotated
images, many many hours

One picture. A few seconds. ~20 pictures taken ‘on line.’
5 minutes or less.

Processing speed 67 milliseconds per frame 680 milliseconds per frame 32ms per frame
Recognition accuracy Depends on training set Good for detailed objects Good for simple coloured objects,

occasionally misclassifies.
Location accuracy Untested Very accurate Generally accurate and consistent.

Small amount of ‘wobble’.
Can the system recognize objects distorted by:
Translation Yes Yes Yes
Scaling Yes Yes Yes
In plane rotation No Yes No
3D rotation No Up to ~30 degrees by affine

transform
No

Obscuring No Yes. System returns correct
location despite obscuring of
object.

No. Apparent ‘scale’ of object is
reduced to visible portion, offsetting
position and increasing apparent
distance.

Limitations
Mistaken objects Depends on training set. Significant feature matching –

e.g. writing or symbols.
Predominant matching colours

Limitations Training time, cannot
distinguish rotation.

Slow, some objects do not
generate good features, cannot
distinguish out-of-plane
rotation.

Colours matching between objects,
cannot determine rotation, results
skewed by obscured portions.

