
DASH: Localising Dynamic Programming for Order of Magnitude Faster,
Accurate Sequence Alignment

Paul Gardner-Stephen, Greg Knowles,
Embedded Systems Laboratory,

School of Informatics & Engineering, Flinders University,
GPO BOX 2100, Adelaide 5001, AUSTRALIA

gardners@infoeng.flinders.edu.au gknowles@infoeng.flinders.edu.au

Abstract

In this paper we present our genomic and proteomic se-
quence alignment algorithm, DASH, which results in order
of magnitude speed improvement when compared to NCBI-
BLAST 2.2.6[1], with superior sensitivity.

Dynamic programming (DP) is the predominant con-
tributor to search time for algorithms such as BLAST and
FastA/P[2]. Improving the efficiency of DP provides an
opportunity to increase sensitivity, or significantly reduce
search times and help offset the effects of the continuing ex-
ponential growth in database sizes.

Specifically, for nucleotide searching we have demon-
strated an order of magnitude speed improvement with sig-
nificantly improved sensitivity, or alternatively moderate
speed up with further sensitivity gains, depending on the pa-
rameters selected. Smith-Waterman[3] complete DP is used
as the sensitivity benchmark. Similar speed and sensitivity
results are presented for protein searching.

Since our algorithm is highly parallel, we have devel-
oped dedicated hardware which we will present in a com-
panion paper[4], and a distributed version of our software
(DDASH), which we expect to provide linear speedup on a
cluster.

1. Introduction

Much has been published regarding genomic and pro-
teomic searching. An over-simplified summary could be
that a number of algorithm developments, such as FastA/P,
NCBI-BLAST (BLAST) versions 1[5] and 2, FLASH[6]
and CAFE[7], have progressively resulted in speed im-
provements of around three to four orders of magnitude over
a complete search algorithm, such as Smith-Waterman. In
general, each successive speed improvement has been at the
expense of sensitivity. This process has been largely driven

by database size (and hence search time) increasing faster
than Moore’s Law (which relates to the rate of increase in
computational power over time). This successive replace-
ment of search algorithms with faster and less sensitive ones
has serious consequences for biologists. It is recognised that
relatively few biologists have a good understanding of what
is likely to be omitted by a particular search algorithm [8].

1.1. The DASH Algorithm

We have developed the Diagonal Aggregating Search
Heuristic (DASH) algorithm[9] with this dilemma in mind.
This has culminated in a three stage algorithm. First, non-
gapped alignments (diagonals) are identified with the aid
of an indexed version of the database. Second, these diag-
onals are aggregated where possible by performing global
DP alignment of the regions between them. Finally, DP is
performed at each end of the aggregated diagonals. This
process, and the regions of DP are illustrated in figure 1,
where the products of each stage are appropriately num-
bered. The reduction in DP load can clearly be seen in that
the bands around the non-gapped alignments are not evalu-
ated.

Query sequence filtering in DASH is performed by ex-
cluding from the first stage those k-tuples which occur ex-
cessively often. This frequency information is stored in,
and pertains to each division of the database. This results
in a localised filtering algorithm, which takes into account
localised sequence frequency aberrations in the database,
without penalising the sensitivity of the entire search. A sec-
ond effect is to allow extension of alignments over excluded
regions, since neither the query or subject sequences are al-
tered. Hence DP is able to cover any sequence segments
which have been filtered.

To reduce the incidence of outrageously scored low com-
plexity sequences, DASH scores nucleotide alignments in-
volving approximate matches (e.g. N vs G) differentially to
exact matches (e.g. G vs G).

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Flinders Academic Commons

https://core.ac.uk/display/14934127?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

1

1
2

2

3

3

Figure 1. Illustration of DASH algorithm and Dy-
namic Programming Zones

Program BProgram A Reference

1
3
2
5
7
4
6

1
2
3
4
5
6
7

1
2
3
4
6
7
8

Figure 2. Example of User Satisfaction Sensitivity
Measure

1.2. Measuring Sensitivity From a User’s Perspec-
tive

We have developed a sensitivity metric which is designed
to mimic the satisfaction of biologists actually using an
on-line search facility. We consider the optimal alignments
returned by Smith-Waterman as our benchmark. Only the
most significant alignment against any given sequence of
the database is considered, since that determines the rela-
tive rank of the alignment in the results. From the top, it
is tested whether they occur perfectly in the results of the
program being scrutinised. As soon as an omission, or par-
tial omission is identified, testing stops. The rank reached
is recorded as the sensitivity score. Thus we measure the
rank above which we trust that the algorithm has not omit-
ted an alignment. This is illustrated in figure 2. Program
A omits part of the fourth alignment of the reference re-
sults, and thus scores three. Program B omits the entirety of
the fifth alignment, and so scores four. The order of align-
ments is not considered.

We also use an alternative metric, to demonstrate that the

performance of DASH is not dependent on a single mea-
sure. Here the benchmark is the twenty five most statisti-
cally significant alignments obtained by Smith-Waterman.
We measure the percentage coverage by each program
against this benchmark. In this way, we assess both com-
plete and partial matches.

2. Results

To verify the DASH algorithm, we performed a compar-
ison of both speed and sensitivity, using Smith-Waterman
as a benchmark. Two hundred random complete sequences
were selected from a draft of the Human Genome[10] for
nucleotide, and the same number from genpept[11] for pro-
tein. The Smith-Waterman results were obtained using the
seqaln[12] program, our DDASH distribution framework,
and approximately 300 CPU days of the APAC and SAPAC
super computer facilities. BLAST 2.2.6 results were also
obtained for comparison. In all cases, the databases were
loaded completely into RAM.

It is clear that for both protein and nucleotide searching
DASH is capable of searching an order of magnitude faster
than BLAST, while actually improving sensitivity (table 1
and figures 3, 4, 5 and 6, modes 1 and 2). For the DASH
modes which approach the run time of BLAST (i.e. modes
3 and 4), even greater improvements in sensitivity are ob-
served. Figure 7 shows the sensitivity of BLAST and DASH
using the alternative metric, demonstrating that the perfor-
mance of DASH is not dependent on a single measure.

BLAST frequently misses alignments as soon as the
first or second rank, particularly for certain classes of nu-
cleotide searches. This is in part due to the query sequence
filtering employed by BLAST in its default mode of op-
eration. When the filtering excludes significant portions
of the query sequence BLAST tends to fragment align-
ments which would cover those regions. In light of this, we
also considered the 130 cases where BLAST did not filter.
BLAST then achieves considerably higher scores (median
of 10 versus 2, and mean 19.17 versus 12.11).

DASH in contrast, pushes the median scores beyond the
twentieth to twenty-fifth ranks. This represents a marked
improvement over existing sequence filtering algorithms,
such as [13] - [17].

Finally, figure 8 reveals that the speedup of DASH over
BLAST depends on the query sequence length. Investiga-
tion reveals that this is related to a large static time compo-
nent (around 7 seconds for nucleotide). It is our understand-
ing that a large fraction of searches submitted fall into the
sub 500 residue size range, suggesting that typical speed
up in a production environment will be much more than
ten times. A similar relationship exists for protein, how-
ever with greater variability due to the increased DP load
involved.

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

Program Min Med. Mean Max.

BLAST-N 7.48 9.40 9.79 21.19
DASH-N 1 0.20 0.82 0.93 4.95
BLAST-P 0.01 21.76 25.23 138.70
DASH-P 1 0.01 1.99 3.22 23.93

Table 1. Summary Statistics for DASH mode 1 and
BLAST Run Time (seconds)

Blast 2.2.6 mode 1 mode 2 mode 3 mode 4

DASH−P Mode

R
un

 ti
m

e
in

 s
ec

on
ds

0.5

2

5

20

100

200

50

10

1

Figure 3. Speed Comparison for Protein

BlastN 2.2.6 mode 1 mode 2 mode 3 mode 4

DASH−N Mode

R
un

 ti
m

e
in

 s
ec

on
ds

0.1

0.5

10

50

100

5

1

Figure 4. Speed Comparison for Nucleotide

BlastP 2.2.6 mode 1 mode 2 mode 3 mode 4

DASH−P Mode

R
an

k
of

 F
irs

t S
ea

rc
h

O
m

is
si

on

0

20

40

60

80

100

Figure 5. Sensitivity Comparison for Protein

BlastN 2.2.6 mode 1 mode 2 mode 3 mode 4

R
an

k
of

 F
irs

t S
ea

rc
h

O
m

is
si

on

0

20

40

60

80

100

DASH−N Mode

Figure 6. Sensitivity Comparison for Nucleotide

BlastN 2.2.6 mode 1 mode 2 mode 3 mode 4

DASH−N Mode

20

40

60

80

100

Figure 7. % Coverage of Top 25 Smith-Waterman
Hits for Nucleotide

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

500 1000 1500 2000 2500 3000 3500

0
10

20
30

40

Query Sequence Length

S
pe

ed
−

up
 o

fD
as

hN
 o

ve
r

B
la

st
N

Figure 8. Query Sequence Length Versus Speedup
of DASH-N over BLAST-N

3. Conclusions & Future Directions

In the light of these results, we conclude that DASH is
faster than BLAST by an order of magnitude. DASH simul-
taneously offers greatly improved sensitivity for nucleotide
and, significantly improved sensitivity for protein search-
ing. The localised query filtering regime does not suffer
from the problems introduced by existing popular filtering
algorithms.

We also plan to continue work on our distributed version
(DDASH). This environment has been designed to utilise
heterogeneous computing nodes connected by commodity
networks. This applies to distributed networks of UNIX,
Linux, Windows, MacOS-X as well as dedicated clusters.
We plan continue to refining our already light weight com-
munication protocol, to further reduce latency induced over-
heads. We expect to obtain near linear speed up with num-
ber of processors. This is an area for future research.

4. Acknowledgements

We wish to acknowledge the support of the Australian
Co-Operative Research Centre for Sensor, Signal and Infor-
mation Processing (CSSIP) Firmware for Genomics project,
and the Australian and South Australian Partnerships for
Advanced Computing (APAC & SAPAC).

References

[1] S. F. Altschol et al, “Gapped BLAST and PSI-BLAST: a
new generation of protein database search programs,” Nu-
cleic Acids Res, vol. 25, pp. 3389-3402, 1997.

[2] W. R. Pearson, “Rapid and sensitive sequence comparison
with FASTP and FASTA,” Methods in Enzymology, vol. 183,
pp. 63-98, 1990.

[3] T.F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” The Journal of Molecular Biology,
No. 147(1), pp. 195-197, March 1981.

[4] G. Knowles, and P. M. Gardner-Stephen, “A new hard-
ware architecture for genomic and proteomic sequence
alignments,” presented at 3rd IEEE Computational Systems
Bioinformatics Conference, Stanford, USA, 2004.

[5] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. and
Lipman, “Basic local alignment search tool” The Journal of
Molecular Biology, vol. 215, pp. 403-410, 1990.

[6] A. Califano and I. Rigoutsos, “FLASH: A fast look-up algo-
rithm for string homology,” in International Conference on
Intelligent Systems for Molecular Biology, 1993, pp. 56-64.

[7] H. E. Williams J. Zobel, “Indexing and retrieval for genomic
databases,” IEEE Transactions on Knowledge and Data En-
gineering archive, vol. 14, Issue 1, pp. 63 - 78, January 2002.

[8] F. Galisson, “The FASTA and BLAST programs,” July 2000,
http://bioweb.pasteur.fr/seqanal/blast/blast_fasta-uk.ps

[9] P. M. Gardner-Stephen and G. Knowles, "DASH: A New
High Speed Genomic Search and Alignment Tool," in 4th
International Conference on Mathematics and Computers in
Biology and Chemistry, 2003, vol. 1, pp. 121-127.

[10] National Centre for Biotechnology Information,
“Human Genome, Working Draft,” June 2002,
ftp://ftp.ncbi.nih.gov/repository/UniGene/Hs.seq.all.gz.

[11] National Centre for Biotechnology Informa-
tion, “Protein translations of GenBank CDEs,”
ftp://www.ncbi.nih.gov/.../genpept.fsa.

[12] P. Hardy and M. Waterman, “The Sequence Align-
ment Software Library at USC,” 1997, http://www-
hto.usc.edu/software/seqaln/.

[13] H. E. Williams, “Effective Query Filtering For Fast Homol-
ogy Searching," in 4th Pacific Symposium on Biocomputing,
1999, pp. 214-225.

[14] J. C. Wootton and S. Federhen, “Statistics of local complex-
ity in amino acid sequences and sequence databases,” Com-
puters in Chemistry, vol. 17, pp. 149-163, 1993.

[15] J. C. Wootton and S. Federhen, “Analysis of composition-
ally biased regions in sequence databases,” Methods in En-
zymology, vol. 266, pp. 554-571, 1996.

[16] J. M. Hancock and J. S. Armstrong, “SIMPLE34: an im-
proved and enhanced implementation for VAX and Sun com-
puters of the SIMPLE algorithm for analysis of clustered
repetitive motifs in nucleotide sequences,” Comput Appl
Biosci, vol. 10, pp. 67-70, 1994.

[17] J-M. Claverie and D. J. States, “Information enhancement
methods in large scale sequence analysis,” Computers in
Chemistry, vol. 17, pp. 191-201, 1993.

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

	footer1:

