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Abstract 

 
Cache access latency and efficient usage of on-chip 

capacity are critical factors that affect the 
performance of the chip multiprocessor (CMP) 
architecture. In this paper, we propose a SPS2 cache 
architecture and cache coherence protocol for 
snooping-based CMP, in which each processor has 
both private and shared L2 cache to balance latency 
and capacity. Our protocol is expressed in a new state 
graph form, through which we prove our protocol by 
formal verification method. Simulation experiments 
shows that the SPS2 structure outperforms private L2 
and shared L2 structure. 
 
1. Introduction 
 

Nearly all existing Chip multiprocessor (CMP) 
systems use a shared-memory architecture. One of the 
most important design issues in shared-memory 
multiprocessors is the implementation of an efficient 
on-chip cache architecture and associated cache 
coherence protocol that allows optimal system 
performance. Some CMP systems employ private L2 
caches [1][2] to attain fast average cache access 
latency by placing data close to the requesting 
processor. To prevent replication and improve the 
CMP's performance, IBM Power 4 [3] and Sun 
Niagara [4] use shared L2 caches to maximize the on-
chip capacity. Recently, several hybrid L2 
organizations have been proposed to reduce access 
latency through a compromise between the low latency 
of private L2 and the low off-chip access rate of shared 
L2. For instance, Adaptive Selective Replication 
scheme [5], and Cooperative Caching [6] are mainly 
based on either private L2 or shared L2. These 
schemes represent significant modifications to the 
coherence protocol based on standard cache 
architecture, and are more complex to realize. 
Furthermore, no formal verification of the modified 
cache coherence protocols is available. We propose an 
alternative L2 cache architecture, in which each 

processor has Split Private and Shared L2 (SPS2), and 
the corresponding cache coherence protocol is referred 
to as the SPS2 protocol. This scheme makes efficient 
use of on-chip L2 capacity and has low average access 
latency. Its functional correctness is then proven 
through formal verification method. 
 
2. Cache Architecture 
 

A traditional bus-based shared-memory multi-
processor has either private L1s and private L2s, or 
private L1s and a shared L2. We refer to these two 
structures as L2P and L2S, respectively. Both schemes 
have their advantages and disadvantages. L2P 
architecture has fast L2 hit latency but can suffer from 
large amounts of replicated shared data copies which 
reduce on-chip capacity and increase the off-chip 
access rate. Conversely, the L2S architecture reduces 
the off-chip access rates for large shared working 
datasets by avoiding wasting cache space on replicated 
copies.  

In this paper, we propose a new scheme, SPS2, to 
organize the placement of data. All data items are 
categorised into one of two classes depending on 
whether the data is shared or exclusive. 
Correspondingly, the L2 cache hardware organization 
of each processor is also divided into two parts, private 
and shared L2. In this paper, we define a node as an 
entity comprising a single processor and three caches, 
private L1 (PL1), private L2 (PL2) and shared L2 
(SL2). The proposed scheme places exclusive data in 
the PL2 and shared data in the SL2 cache. This 
arrangement provides fast cache accesses for unique 
data from the PL2. It also allows large amounts of data 
to be shared between several processors without 
replication of the data and thus makes better use of the 
available SL2 cache capacity.  

The proposed SPS2 cache scheme is shown in 
Figure 1. SL2 is a multi-banked multi-port cache that 
could be accessed by all the processors directly over 
the bus. Data in PL1 and PL2 are exclusive, but PL1 
and SL2 could be inclusive. Unlike the unified L2 
cache structure, the SPS2 system with its split private 
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and shared L2 caches can be flexibly and individually 
designed according to demand. First, PL2 could be 
designed as a direct-mapped cache to provide fast 
access and low power, while SL2 could be designed as 
a set-associative cache to reduce conflict. Second, PL2 
and SL2 do not have to match each other in size, and 
they could have different replacement policies. In 
addition, SPS2 reduces access latency and contention 
between shared data and private data. It imposes a low 
L2 hit latency because most of the private data should 
be found in the local PL2. Shared data will be placed in 
SL2 which collectively provide high storage capacity 
to help reduce off-chip access.  
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PL2 SL2

CPU core
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PL2 SL2

CPU core
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PL2 SL2
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Figure 1. SPS2 cache architecture 
 

3. Description of Coherence Protocol 
 

The protocol employed in SPS2 is based on the 
MOSI (Modified, Owned, Shared, Invalid) protocol 
and is changed to incorporate six states (M1, M2, O, S1, 
S2, I). Subscript 1 or 2 indicates whether the block has 
been accessed by 1 processor or by 2 or more 
processors. Data contained in PL1 and PL2 may have 
all six possible states (M1, M2, O, S1, S2, I), while data 
contained in SL2 has only four states (M2, O, S2, I). 
The SPS2 protocol uses the write-invalidate policy on 
write-back caches. To keep consistency and coherency 
between the three different caches, the cache coherence 
protocol should also be modified accordingly. 

 
3.1. Coherence Protocol Procedure 
 

The protocol behaves as follows. Initially, any data 
entry in the three caches (PL1, PL2 and SL2) should be 
Invalid (I). When node i makes a read access for an 
instruction or data block at a given address, PL1i will 
be searched first. Since PL1i is empty, then PL2i and 
SL2 will be searched next. Again, neither PL2i nor SL2 
will have the requested data, so a GetS message will be 
sent on the bus. Since all the caches in all the 
processors are initially invalid, the memory will put the 
data on the bus, and PL1i will store the data and change 
their states from I to S1. If this block is evicted, it will 

be put in SL2. If another node j requires this same data 
shortly after, the data will be copied from SL2 to PL1j 
without needing to fetch the data from memory, and 
the state in node i will be changed from S1 to S2. If a 
read request finds the data in the local PL1i, then no 
bus transaction is needed and data will be supplied to 
the processor directly. 

When node i needs to make a write access and a 
write miss is detected because the data block is not 
present in PL1i, PL2i, and SL2, a GetX message will be 
sent on the bus to fetch data from the other nodes or 
memory and place the requested data in the recently 
vacated slot. All the other nodes will check their own 
PL1 and PL2 caches for the requested data. If none of 
the other nodes have valid data, then the memory will 
send data to PL1i and its state will be changed to M1. 
However, if any node, for example j, finds valid data 
(M1, M2 or O) with same address as the requested data, 
the contents will be sent to PL1i and all the caches 
(including j and excluding i) should invalidate data 
with the same address. Once the data is placed in PL1i 
and updated, its state will be changed to M2. Since the 
SPS2 scheme employs a write-back policy, modified 
data will not be written back to memory until it is 
replaced. If the write operation finds the data block in 
PL1i or PL2i with state M1 or M2 (implying a write hit), 
then the write hit process will proceed with no bus 
transactions involved.  

Suppose that after node i executes a write 
command, another node j needs to read data from same 
address. Therefore a GetS message will be placed on 
the bus requesting the other nodes to send back the 
data. Node i will check its own PL1i and PL2i, and find 
the requested data block with state M1 or M2 in PL1i. 
The modified data will then be placed on the bus and 
stored in PL1j. The cache state in PL1i will be changed 
from M1 or M2 to O and that in PL1j will be set to S2.  

If no free slot is available in any of the caches, then 
the existing data block will need to be swapped out and 
replaced with the new block. The old data block in PL1 
will be evicted to PL2, if its state is M1 or S1. Data with 
state S2, M2 or O in PL1 will be relocated to SL2. Data 
with state M1 evicted from PL2 and data with state M2 
or O in SL2 will be returned to memory. If the state of 
the data in PL1, PL2 and SL2 is S1 or S2, indicating it 
is shared data, then the data will simply be invalidated. 

 
3.2   State graph of SPS2 cache protocol 
 

To maintain data consistency between caches and 
memory, each node is equipped with a finite-state 
controller that reacts to the read and write requests. 
The following section illustrates how the SPS2 
protocol works using a state machine description as 
shown in Figure 2. 
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Each node in the SPS2 architecture has three caches 
(PL1, PL2, and SL2), each of which has its own state 
representation. A single vector {XY} represents the 
state of a single cache block in a node. Since PL1 and 
PL2 are exclusive, one variable X indicates the state of 
a PL1or PL2 cache block with six possible states (I, S1, 
S2, M1, M2, O). Y indicates the state of a SL2 cache 
block, which has only four states (I, S2, M2, O). 
Therefore, for each node a cache block could have up 
to 6×4=24 different states, although some of these 
states are unreachable. Excluding the set of invalid 
states, there are only twelve possible states, i.e., II, IS2, 
IM2, IO, S1I, S2I, S2S2, S2O, M1I, M2I, OI, and OS2. II 
is the initial state of each data block.  

Our coherence protocol requires three different sets 
of commands. All the transition arcs in Figure 2(a) 
correspond to access commands issued by a local 
processor. These commands are labelled as read, write. 
The arcs in Figure 2(b) represent transfer related 
commands, e.g., replacement commands rep2 (issued 
when PL2 needs room) and repS (issued when SL2 
needs room) and transfer command P_SL2 (data is 
transferred from PL1 or PL2 to SL2). All the arcs in 
Figure 2(c) correspond to commands issued by other 
processors via the snooping bus. They include GetS 
and GetX.  

As shown in Figure 2, the cache state of any node 
will change to the next state according to its current 
state and the received command. 

 
4. Formal Verification of Cache Coherence 
Protocol 
 

Cache coherence is a critical requirement for correct 
behaviour of a memory system. The goal of a formal 
protocol verification procedure is to prove that it 
adheres to a given specification. The cache protocol 
verification procedure includes checking for data 
consistency, incomplete protocol specification, and 
absence of deadlock and livelock. Using formal 
verification in the early stage of the design process is 
helpful in finding consistency problems and 
eliminating them before committing to hardware. In 
this section, HyTech [7] and DMC [8], two 
abstraction-level model checkers, are used to verify the 
SPS2 cache coherence protocol. 

II

S1I S2I IS2 S2S2

IM2 M1I M2I

IO S2O OI OS2

read
write   

 
(a) Commands from processor 

II

S1I S2I IS2 S2S2

IM2 M1I M2I

IO S2O OI OS2

P_SL2
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repS  

(b) Commands for transfer 

II

S1I S2I IS2 S2S2

IM2 M1I M2I

IO S2O OI OS2

GetS
GetX

 
(c) Commands on bus  

Figure 2. State transition graph for the SPS2 cache 
protocol 

 
The first step is to define the SPS2 protocol using a 

finite-state machine model. According to [9], we limit 
ourselves to consider protocols controlling single 
memory blocks and single cache blocks although the 
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procedure could be easily extended to encompass the 
whole memory and cache system. 

Similar with [9], we could use EFSM (extended 
finite-state machine) to model parameterized cache 
coherence protocol. The behaviour of the system is 
modelled as the global machine MG = <QG,∑G,F,δG> 
which is associated with protocol P, where QG ={s1, ..., 
sn}. si is the possible states of cache blocks in one 

node. 1

k
G ii== ∪Σ Σ , F =<f1,...,fk> ,δG: Im(F)×QG×

∑G→QG. We model MG via an EFSM with only one 
location and n data variables <x1, ..., xn> (denoted as x) 
ranging over the set of positive integers. For simplicity, 
location could be omitted, hence the EFSM-states are 
tuples of natural numbers <c1,...,cn> (denoted as c) 
where ni denotes the number of nodes in states si∈Q 
during a run of MG. Transitions are represented via a 
collection of guarded linear transformations defined 
over the vector of variables <x1, ..., xn> (denoted as x) 
and <x1', ..., xn'> (denoted as x'), where xi and xi' denote 
the number of nodes in state si, respectively, before and 
after the occurrence of an event. Transitions have the 
form G(x)→ T(x,x'), where G(x) is the guard and 
T(x,x') is the transformation. The transformation 
T(x,x') is defined as x'=M• x+c where M is an n×n-
matrix with unit vectors as columns. Since the number 
of nodes is an invariant of the system, we require the 
transformation to satisfy the condition x1+...+ xn= 
x1'+...+xn'.  

The following gives an informal definition of how 
the transitions of a cache coherence protocol can be 
modelled via guarded transformations. 

 Internal action. Caches in a node move from state 
s1 to state s2: x1'=x1-1, x2'=x2+1with the proviso that 
x1≥1 is part of G(x). For example, a read miss 
makes the state of a node move from IS2 to S2S2.  

 Synchronization. Two nodes synchronize on a 
signal: a node N1 in state s1 changes to state s2, and 
another node N2 in state s3 changes to state s4. This 
is modelled as x1'=x1-1, x2'=x2+1, x3'=x3-1, x4'=x4+1, 
with the proviso that x1≥1, x3≥1 is part of G(x). 
For instance, a read miss may not only make a node 
change from II to S2I, but also make another node 
change from M1I to OI. 

 Re-allocation. The state of all nodes C1,...,Ck is a 
constant numberλ of nodes whose state changes to 
Cz for z>k and to state Ci for i>k: x1'=0,..., xk'=0, 
xi'=x1+...+xk-λ, xz'=λ. This feature can be used to 
model bus invalidation signals. If a node has state 
OI, and the data had been written back to memory, 
then the state will change from OI to II and, at the 
same time, all the other nodes need to be changed 
to II if they have state S1I or S2I.  

Some of the transition rules are listed in Figure 3. 
Because SPS2 protocol has twelve possible states (II, 
IS2, IM2, IO, S1I, S2I, S2S2, S2O, M1I, M2I, OI, OS2), 
we use these twelve variables of integer type to 
indicate twelve states respectively. In Figure 3, Rule r1 
corresponds to a read hit event: If in PL1 or PL2 there 
exists a valid data with state S1, S2, O, M1, or M2, then 
the read operation can get data directly with no bus 
transaction needed. Rules r2 - r7 correspond to read 
miss events. For the sake of brevity, other events (such 
as write hit, write miss, replacement, etc.) are omitted 
in Figure 3.  

Figure 3. SPS2 protocol description in Hytech  

As described before, caches in our SL2 protocol 
could have six possible states (I, S1, S2, M1, M2, O) for 
each block. Mk (k=1 or 2) indicates that the cache has 
the latest and sole copy, so all copies in the other 
caches should be invalid. The occurrence, for example, 
of two or more copies of a data block, which are 
labelled as M and O or S in another node, is 
inconsistent. Possible sources of data inconsistency are 
outlined below.  

(i) MkI >= 1& OS2 >= 1. This indicates that data is 
inconsistent if a node with state MkI coexists with other 
cache blocks in other nodes with state OS2. If one node 
has state MkI, which means this node has exclusive 
modified data, the no other node should have a valid 
copy. This is contradicted by another block which is 
labelled with OS2. In addition, since the state of one 
node is OS2 then all the corresponding states of the 
other nodes could only be IS2 or S2S2. Since SL2 is a 
common shared cache, then the state of SL2 should be 
coherent.  

(ii) OS2 >= 2. If more than one node has state OS2 
for the same block, then data integrity will not hold, 
because it is impossible for two or more nodes to own 
the same block of data. 

(iii) IS2 >= 1 & S2O >= 1. If one node has state IS2, 
then SL2 has shared data, and all the other caches 
should have same state in SL2. However, another node 
has state S2O, thus implying that SL2 has owned data, 
which conflicts with the first node state IS2. 

In order to verify data consistency all possible 
sources of data inconsistency must first be defined. As 

(r1) S1I+S2I+S2S2+OI+M1I+M2I+OS2+S2O≥1→__ 
(r2) II≥1, MkI=0, OI=0 → II'=II-II-1, S1I'=S1I+1 
(r3) II≥1, MkI≥1 → II'=II-1, S2I'=S2I+1, MkI'=MkI-1, OI'=OI+1 
(r4) II≥1, OI≥1 → II'=II-1, S2I'=S2I+1 
(r5) IS2≥1 → IS2'=IS2-1, S2S2'=S2S2+1 
(r6) IM2≥1 → M2I'=M2I+1, IM2'=IM2-1 
(r7) IO≥1 → S2O'=S2O+1, IO'=IO-1 
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proven in [9], whenever both the guards of a given 
EFSM and the target states are represented via 
constraints, a symbolic reachability algorithm always 
terminates. In this way we automatically verify the 
properties of our SPS2 protocol using the HyTech and 
DMC tool. 
 
5. Simulation analysis 
 

To evaluate the performance, we employ GEMS 
SLICC (Specification Language Including Cache 
Coherence) [10] to describe three different cache 
coherence protocols (L2S, L2P, and SPS2). GEMS is 
based on Simics [11], a full-system functional 
simulator. The above three protocols are modified 
versions of the MOSI SMP broadcast protocol from 
GEMS. The simulated processor is the UltraSPARC-
IV which has a 64 byte wide, 64 Kbyte, L1 cache. In 
L2S, all processors share one 4 MB, 8-way, 4 port 
SRAM with 18 cycles latency. For L2P, each processor 
has a private 1 MB, 4-way, 1 port SRAM with 6 cycles 
latency. In our SPS2, each processor has a private 0.5 
MB, 4-way, 1 port SRAM with 5 cycles latency, while 
at same time four processors share one 2 MB, 8-way, 4 
port SRAM with 12 cycles latency. We assume 4GB 
memory is shared with 200 cycles latency.  

TABLE 1.  SPLASH2 applications and input parameters 

Benchmark Input parameters 
LU(non-contig.) 512×512 matrix, B=16 
LU(contig.) 512×512 matrix, B=16 
FFT 256K data points 
radix 2M keys 
water(spatial) 512 molecules 
water(nsquared) 512 molecules 
ocean(contig.) 258×258 grid 
barnes 16384 particles 
cholesky Tk29.O 

 
A set of scientific application benchmarks from the 

SPLASH-2 suite [12]: radix, FFT, LU, cholesky, 
ocean, barnes and water are used to evaluate the cache 
strategies. The PARMACS macros must be installed in 
order to run these benchmarks. The main parameters of 
these benchmarks are listed in Table 1. These input 
parameters enable the applications to run for a long 
time. To minimise the start-up overhead caused by 
filling the cache, collection of statistics is delayed after 
the initialisation period. Since our target applications 
are specifically focused on supporting large matrix 
manipulations and mathematical operations as used for 
control algorithms, we have not simulated commercial 
benchmarks, like apache, OLTP etc.   

We have realized and evaluated three different L2 
cache architectures, L2P, L2S, and SPS2, and 
compared their characteristics using three different 

metrics: runtime, off-chip-access, and bus-traffic. The 
results are shown in Figures 3 – 5. The horizontal axis 
shows 9 benchmarks, as well as the average. The three 
metrics are normalized with respect to the L2S 
architecture. 

As shown in Figure 4, SPS2 undoubtedly needs the 
smallest runtime and has the best performance among 
the three architectures. This is because much of the 
data is kept in the local PL2, which allows fast access. 
When private data overflows from PL2, it will be 
transferred to SL2 if SL2 still has available space. The 
transfer is handled using P_SL2 command. Therefore, 
SPS2 is much faster because it does not need to make 
as many off-chip accesses to memory. Data shared by 
several processors are put in the centrally located SL2 
allowing all processors faster access time than the L2S 
structure. Accesses to SL2 are faster because of its 
relatively small size and short bus. SPS2 achieve an 
average 10.6% and 3% reduction in runtimes versus 
L2S and L2P cache schemes. SPS2 attain better 
performance for benchmarks LUN, LUC, FFT, RAD, 
WAN, OCE, and CHO. For benchmark CHO, L2P and 
SPS2 schemes consume only 37% of the runtime 
required for L2S. However, for WAS, SPS2 is slower 
than L2P and L2P, and SPS2 is also slower than L2S 
for BAR. 

0. 4

0. 6

0. 8

1

1. 2

1. 4

LUN LUC FFT RAD WAS WAN OCE BAR CHO AVE

L2P
L2S
SPS2

Figure 4 Comparison of runtimes for the three 
architectures 

 
According to Figure 5, for all benchmarks, L2P 

performs worse than L2S and SPS2 in terms of off-
chip accesses. Since the L2P scheme suffers from 
reduced capacity due to the need to store multiple 
copies of shared data, it will require more accesses to 
off-chip memory. For BAR, L2P requires 16.5 times 
more off-chip accesses than L2S. In most benchmarks, 
the results indicate that, SPS2 imposes only a bit more 
off-chip accesses than L2S, and certainly much less 
than L2P. However, benchmarks WAN and BAR work 
better with SPS2 because they experience less off-chip 
access, 14% and 5% respectively, than with L2S. On 
average, SPS2 has only 23% more off-chip access than 
L2S. The reason is that, in our SPS2, PL2 and SL2 are 
set-associative and separately located on the silicon die. 
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Consequently it is not always possible to access all of 
the storage space in either cache.  
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Figure 5 Comparison of off-chip access for the three 

architectures 
 
For shared memory multiprocessor systems, bus 

traffic reflects the usage of the bus, which increasingly 
becomes a bottleneck as the number of processors 
increases. From Figure 6, it can be seen that L2S has 
the highest bus traffic throughput while L2P consumes 
less because most private data could be found locally 
so less bus transactions are needed. Although the SPS2 
protocol employs additional operations such as 
P2_to_SL2, SPS2 still has the lowest bus traffic. 
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Figure 6 Comparison of bus traffic for the three 
architectures 

6. Conclusion 
 

To balance latency and capacity of CMP cache 
structure, we propose a new cache architecture SPS2 
with split private and shared L2 caches. We also 
propose a corresponding SPS2 cache coherence 
protocol which is described by means of new state 
transition graphs in which each node has two states to 
indicate the states of private L1 or private L2, and 
shared L2 respectively. Using the state transition 
graphs, the functional correctness of coherence 
protocol is proven. The use of formal design 
verification methods helps identify coherence 
problems in the early stage, and provide assurance of 

the correctness of the protocol before commencing on 
the hardware development. By comparing SPS2 with 
L2P and L2S using critical metrics and relevant 
benchmarks, it can be seen that SPS2 performs better 
than the other two cache architectures with respect to 
runtime and bus traffic. Off-chip accesses for SPS2 are 
also much less than for L2P, but slightly more than for 
L2S. 
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