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Abstract 

This paper presents a new algorithm for modelling 
the behaviour of dynamic video. The PDP (Projected 
Difference Pattern) is designed to perform simple 
spatiotemporal processing with a strong focus on 
efficiency of real-time implementation. In its simplest 
implementation, the algorithm is shown to be suitable 
for generating dynamic background models, motion 
characterisation, and motion detection. Sample 
analyses of test video are presented to support this 
work. 

1. Introduction 

Most existing techniques employed in video 
processing are either based on static image processing 
methodologies or on single-pixel stochastic modelling 
methodologies. More recently, spatiotemporal modelling 
methods have been reported in the literature [2-7]. A 
spatiotemporal model simultaneously accounts for both 
the appearance of a given pixel relative to its 
surroundings, and its behaviour over time. By the 
consideration of such information within a single 
framework, spatiotemporal approaches and algorithms 
are able to make fuller use of the inherent coherence of 
motion in video [8, 9] – something which image-based 
and pixel-based methods cannot do. There is incentive to 
consider spatiotemporal approaches over spatial or 
temporal approaches alone: Approaches based on static 
image processing cannot meaningfully account for 
localised changes without the aid of temporal 
information. Pixel-based models, conversely, cannot 
handle global changes without spatial information.  

Many video processing tasks require both spatial and 
temporal information to work upon, which is the 
rationale behind the development of the Projected 
Difference Pattern (PDP). The PDP by design offers 
metrics on local motion coherence and scene behaviour 

at every pixel. These metrics can be used to accomplish a 
number of result-driven goals. 

Background modelling is a popular method of 
detecting moving objects in video footage. The 
underlying principle is that if the behaviour of the 
background is known and can be monitored, then any 
area exhibiting new or unusual behaviour can be 
assumed to be foreground. This task is almost trivial in 
controlled environments where there is little image 
change, or well-known image change, but becomes 
considerably more complex where the video contains 
dynamic background elements [2] as in the case of 
outdoor video scenes. Modelling the behaviour of 
outdoor video is used as the application example 
throughout this paper.  

There is a significant body of work on modelling 
video background as an evolving static image. In this 
approach, large scale changes (especially those in 
lighting) are easily detected and accomodated. Parts of a 
representative short-term model are updated periodically 
to reflect the current appearance of the scene [10]. It is 
this class of models, which is most appropriate to video 
with large static regions. Such approaches are not well 
suited to video with continuous or frequent variations [2]. 
Sequences containing dynamic elements such as smoke, 
steam, fire, or rippling water – elements represented in 
the MIT Temporal Texture Database [1] - cannot be 
modelled well. 

Another popular approach is that of pixel-based 
algorithms [11, 12]. These approaches take advantage of 
the relative maturity of one-dimensional signal 
processing techniques by considering the changes 
occurring at each pixel as a function of time. Many of 
these approaches have been shown to be very effective in 
certain applications, notably in background detection, but 
by design they are poorly suited to sequences that exhibit 
large-scale changes. Temporal changes such as a change 
in illumination (very common in outdoor scenes) can be 
accounted for, but each pixel models the change 
independently. Spatial changes - such as of an object 
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moving through a scene – are similarly modelled 
independently. In both cases, potentially useful 
information is lost, and there is a performance cost in 
detecting the same changes multiple times. 

While static image approaches are based on a two-
dimensional spatial process, and stochastic pixel-based 
methods make use of one-dimensional temporal signal 
analysis, spatiotemporal analysis exploits the three-
dimensional relationship between each pixel and its 
surrounding neighbours in adjacent frames. 

Recent work by Doretto et al. in Dynamic Textures 
[6] has allowed them to not only segment scenes based 
on  consistent spatiotemporal properties [5], but also to 
go as far as synthesising new footage with different 
properties to the original [7]. Their algorithms however 
require pre-processing of the entire target sequence, and 
have significant computational requirements. The heart 
of the approach lies in a cross-correlation of the entire 
scene to see how the value of each pixel affects every 
other. Though accurate to the point of photorealism in 
highly self-correlated sequences, these algorithms are not 
well adapted to tasks such as background modelling. The 
main reason for this is that the training phase produces a 
model that is not easily updated or changed after being 
established. 

The PDP on the other hand can be updated on a 
frame-by-frame basis. Referring back to the example task 
of background subtraction:  the PDP allows an approach 
which detects changes in the behaviour of the 
background. By ignoring appearance while preserving 
behaviour, the algorithm becomes largely illumination-
independent, but will still detect, for example a torch 
beam by the sharp shadow edge being cast. 

The size of the neighbourhood for consideration in 
the PDP is parameterised, as is the length of the 
behaviour history. In the implementation presented in 
this paper, the PDP presents the following metrics:  
Local optical flow (both direction and magnitude), 
confidence of the optical flow metric, and a measure of 
how consistent the optical flow has been over the last N
frames (a support measure of the behaviour). Efficiency 
of implementation is an important consideration, with a 
view to running the algorithm in real-time for simple 
applications. 

Section 2 of this paper outlines the concepts that 
form the basis of the PDP algorithm, and establishes the 
parameters. Section 3 describes the operation of the 
algorithm. Section 4 establishes the value of the PDP as a 
descriptive model by demonstrating video compression 
and synthesis. Section 5 of this paper contains some 
sample analyses of footage using the PDP, and Section 6 
covers some simple extensions with a view to the 
possible applications of the PDP.

2. Related Concepts 

The PDP is an original algorithm, with properties 
selected to best extract data from “difficult” footage. 
With outdoor footage a target of concern, the algorithm 
specifically needs to be tolerant of overlaid information, 
noise, warping, illumination changes, and poor contrast. 
The performance needs to be general and robust. 

To have practical application in the chosen example 
of background modelling, the algorithm must either 
predict future frames of a sequence (for comparison with 
actual incoming data), or output a measure of how well 
the incoming data matches the previous frames, i.e., 
detect changes. 

The origin of the PDP approach is a simplified 
model of the Human Visual System (HVS) [13, 14], 
which is a notably good performer at many vision tasks. 
There has been much work into emulating the HVS in 
neural networks (e.g. [14]), but little has been 
accomplished with practical application to video 
processing. The core of the processing performed by the 
PDP is analogous to the task performed by the first few 
neuron layers of the human visual cortex for the 
detection of linear motion [13]. 

The core process within the PDP is similarly akin to 
a simple optical flow algorithm. Whereas many more-
advanced optical flow algorithms take care not to assume 
perfect translation between frames, the core of the PDP 
does make this assumption in order to highlight 
discontinuities; the validity of the assumption can be 
measured, to form one of the algorithm outputs. A major 
concern in optical flow algorithms is the merging of flow 
data into a coherent optical flow field [15, 16]. This is an 
unnecessary computational step in the processing done 
by the PDP unless the optical flow is a desired result – 
instead, a measure of optical flow consistency is given. 

The relationship of this work to Dynamic Textures 
[5-7] is limited to the important concept of internal 
correlation. The work of Doretto et al. establishes the 
limits of what can be synthesised, by performing full 
autocorrelation across each pixel in the sequence. A 
model of the appearance of the current frame allows 
successive frames to be generated based on the 
correlation data. While Dynamic Textures looks for 
correlations across the entire image, the PDP is localised. 
Where Dynamic Textures utilises matrix multiplication, 
the PDP is integer-based. The core of the algorithm 
makes use of only addition and subtraction. The PDP 
correlates successive frames of a sequence to extract only 
the immediate optical flow. Doretto et al obtain a more 
sophisticated and flexible ARMA model of the scene 
behaviour, but this carries a steep computational cost. 
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The strengths of the PDP can be compared to those 
of the well-known LBP (Local Binary Pattern [17]). 
The LBP algorithm is used on static images, and is 
used primarily in texture analysis. The principle 
strength of this analysis technique is its simplicity, and 
its reliance on nothing more than inter-pixel relations – 
absolute values are unimportant. The PDP exhibits 
these two strengths also. Where the LBP is localised 
within a single frame, however, the PDP projects into 
the next frame. Where the LBP simplifies its 
surroundings to a binary code, the PDP uses the full 
difference pattern. Thus the Projected Difference 
Pattern is used to give an estimate of the local optical 
flow, analogous to how the LBP can be used to 
estimate local image gradient. 

3. Algorithm Description 

The core PDP process is what makes the algorithm 
efficient enough to process video data in real-time. 

A fixed region (minimum of 3×3) around a pixel is 
differenced with the corresponding pixel in the next 
frame, and the position of the smallest difference in the 
region is assumed to be the correct optical flow vector. 
This “projected autocorrelation” (same region, projected 
in time) is the basis for many optical flow algorithms 
[15] – usually referred to as “Region Matching”. The key 
to the stability of the algorithm is that unreliable data is 
cancelled out over multiple frames. Performing the same 
operation over several frame transitions and summing the 
difference data eliminates coincidental minima.  

The confidence measure of a flow direction is taken 
directly from the value of the minimum difference in the 
difference pattern. A low minimum value represents a 
high confidence that the vector returned is a valid choice, 
while a high value indicates a relatively even spread 
across the differenced region; hence no clear direction of 
optical flow. In the results presented in this paper, there 
was no scaling of the confidence data to account for 
contrast, as the contrast was sufficiently even across the 
sample sequences. Regions of high contrast generate 
larger minima than regions of low contrast, and thus 
possess poorer confidence measures. In exchange for a 
performance loss, the confidence minima can be scaled 
by the total value of all the grey-level differences stored 
in the difference pattern. 

To calculate the support, or “expectedness” of each 
returned vector, a history is kept of previous vector 
choices. If the most recent frame transition analysis 
returns the same vector as in the last n analyses, then the 
incoming frame is highly supported. If the most recent 
vector has not been previously chosen, then the new data 
is poorly supported, and the data is likely to be novel. 

The result shown in Figure 1 is based on a single 
transition. Prediction noise decreases harmonically with 
the addition of successive frames of data. The best 
prediction results are obtained for simple first-order 
linear motion, without necessitating the computational 
complexity of Dynamic Textures [6].  

The algorithm very deliberately avoids all higher 
levels of abstraction for speed of processing and greater 
robustness. 

4. Sequence Synthesis / Compression 
Example 

The model obtained by the PDP can be used for 
iterative generation of new frames. In operation, 
successive pixels are generated iteratively from each 
other in branching structures back to those parts of the 
image where new data is being synthesised - usually at 
the image border. There, the vector usually turns upon 
the originating pixel. Unless this pixel is in some way 
fuelled with new data, generation of successive frames 
will eventually begin to generate the same image – the 
simulation grows stale. Use of the PDP to generate a 
flow map and iteratively generate frames can be applied 
directly for background subtraction via differencing 
between the expected and the obtained data.  
Importantly, compression highlights the effectiveness of 
a model in representing the original data; that the data 
can be replaced by application of the model, shows that 
the model captures the data well.

To generate the sequence in Figure 2 (from 
“smoke_sub” in the MIT Temporal Texture Database 
[1]), only 17% of the original data was required. Though 
certainly “lossy” as a compression method, this shows 
how the PDP can allow data compression - in this case 
83% - of the original data. The sequence was generated 
iteratively with a single model based on the analysis of 

     Frame 1              Frame 2                 PDP

Figure 1. Algorithm Example. The first two 
frames are taken from the smoke_sub sequence. 
The last frame shows the difference between the 
active area of the first frame, and the mid pixel of 

next (projected) frame. Note that motion is 
approximately 2 pixels to the right. The PDP 
shows the darkest pixel (least difference) two 

pixels to the right of the mid pixel.
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the entire 150 frames, which were later synthesised from 
the remaining 17% using the model data, and the first 
entire frame. If the sequence is analysed in multiples of 
fewer frames, then the effective compression ratio 
generally falls, but the generated sequence more closely 
matches the original sequence. 

The two graphs shown in Figure 3 demonstrate how 
this effective compression – a good measure of model 
suitability and performance – varies with analysis length 
for the smoke_sub sequence. The lower graph shows the 
performance of the PDP. The upper graph was generated 
by the same process and fuelled with the same data, only 
all vectors were set to 0 before generation.  This 
represents the equivalent performance of a static-update 
model as mentioned in Section 1 for modelling the scene.  
Low reproduction error can be gained at the cost of 
compression with the lowest point on both graphs 
showing the average result of 75 syntheses running over 
2 frames each.  Better compression is gained at the cost 
of representation of the data, right up to one synthesis 
running over the entire 150 frames of the original 
sequence.  The highest point on the lower graph shows 
the performance of the PDP for Figure 2(b), above. The 
data required for the first frame at the start of each 

synthesis run is included in the compression factor.  The 
original data “seeding” the synthesis is excluded from the 
RMS error calculation. The reason for the effective loss 
in compression for longer syntheses relates to the dataset 
used; a very stable scene might be synthesized accurately 
indefinitely, whereas a scene with more complex motion 
may require shorter analyses to prevent the build-up of 
incremental errors.  As the synthesis length increases, the 
longer-term changes in the scene require more of the 
original data to be present in order to be represented.  
The low compression at lower synthesis lengths is related 
to the number of entire frames of data required to start 
each synthesis. 

5. Analysis Example 

Both Figures 4 and 5 were generated with a locale of 
5x5 pixels, and a history of 50 frames for analysis. These 
settings allow for the modelling of optical flow with a 
velocity of up to 2 pixels per second, and will adapt to 
new behaviour within 25 frames. 

Starting with the smoke_sub sequence as analysed in 
Section 4, Figure 4(a) shows frame 54, at which point the 
smoke at the upper left has just begun to billow out 
turbulently. It can be seen in Figure 4(b), that there is a 
constant direction of flow around the top right of the 
image, and this is reflected in the colouring of the vector 
map. Around the turbulent area, however, there are many 
competing directions, and specifically the bright patch at 
mid-left is the result of an anticlockwise flow in the 

RMS Error vs Data Compression
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Figure 3. The compression / error trade-off for 
the smoke_sub sequence, comparing the 

performance of the PDP (lower graph) and a 
repeating static-image (reaches to top) 

(a) (b)

(c) 

Figure 2. Synthesis Process. (a) The last frame of 
the original 150-frame “smoke_sub” sequence [1]. 

(b) The last frame of the sequence. (c) Branch map 
showing flow paths and originator pixels in white 

(17% coverage)
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(a) 

(b)

(c) 

(d)
Figure 4. (a) Frame 54 of the Smoke
sequence. (b) Colour-Coded vector map of
optical flow. (c) Confidence. (d) Support.

(a) 

(b)

(c) 

(d)
Figure 5. (a) Frame 54 of the Walk-away
sequence. (b) Colour-Coded vector map of
optical flow. (c) Confidence. (d) Support.
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smoke. Of most interest is Figure 4(c) - the Confidence 
data, where it can be seen that the sequence is being  
confidently modelled across all but the turbulent region. 
This matches the expectation in Figures 2 and 3 that the 
sequence behaviour is captured well. Figure 4(d) shows 
immediately that the behaviour of the entire central 
swathe has been consistent over the last 50 frames, and 
that the smoke is turbulent and changing only at its 
outside edges. Notably there is an area moving across the 
bottom right corner which has been highlighted in (d) but 
not (c). This can be interpreted as a recent change in the 
flow direction, which is nonetheless well modelled.  
The same set of analyses is shown in Figure 5, but the 
walk-away sequence contains solid moving objects - the 
people. There has been no additional processing on the 
vector map.– note the coherence of the people against the 
background. Although the algorithm is set to a 50 frame 
history, only the pixels whose behaviour has changed in 
the last frame are highlighted in the support and 
confidence figures –bar the trails visible in Figures 5(c) 
and 5(d). When the history length is set below 
approximately 15 frames, the default behaviour of a pixel 
adapts to the person walking through it by the time the 
person leaves. Instead of the entire person being clearly 
highlighted in the support measure, we instead see those 
entry and exit trails which so plague pixel-based 
approaches [11, 12]. The trade-off for history length is 
shown clearly here – a longer history gives more stable 
results, but is less tolerant of gradual change. This is a 
well-known problem in background detection algorithms, 
and a matter normally left to implementation trials. Note 
that depending on the motion to be detected, there is a 
very short bootstrapping period for this algorithm. 

The calculation and rendering of the support and 
confidence data can be performed iteratively. Hence, 
there is no significant performance penalty for a longer 
history, just a data storage penalty - either iterative 
changes must be saved to be eventually removed, or all 
frames must be saved and then the changes 
recalculated. There is however a direct trade-off 
between the other parameter, the size of the pixel 
locale, and performance. The order of the PDP 
algorithm is M×L where M is the number of pixels to 
process, and L is the size of the locale in pixels. The 
locale does not need to be square, but where it is, the 
processing time grows by the square of the locale 
width. As the locale grows smaller, fewer available 
predictor pixels are examined and the noise in the 
support and confidence maps grows. As the locale 
grows larger, more predicting values are searched, and 
the implementation approaches that of the Dynamic 
Texture [6]. 

6. Simple Extension of Application 

The PDP was designed to be easily extended to 
more complex behaviours. Some simple extensions to 
the algorithm behaviour have been presented here. The 
use of the PDP as a background subtraction algorithm 
has already been covered in Section 2, and its use for 
data compression is covered in Section 3. 

For a simple first-order sequence like the 
smoke_sub sequence in Section 4, there is no direct 
need to use the original data when synthesising. With 
an appropriate self-generating model for the values of 
the originator pixels, any first-order sequence can be 
generated continuously and maintain the appearance 
and behaviour of the original. This would allow simple 
sequence extension, or artificial sequence synthesis. 

7. Summary 

The PDP offers a solid basis for developing 
algorithms with spatiotemporal performance 
requirements. Though simple and efficient, it can be 
directly adapted to achieve several common video 
processing tasks, and can be used to extract valuable 
information about a sequence. The algorithm has been 
shown to perform robustly with highly temporal data, 
and importantly it gives a direct measure of its own 
suitability to given data. It is easily extended and can 
be built upon to arbitrary complexity within the same 
structural framework. 
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