
A Signature-Based Indexing Method for
Efficient Content-Based Retrieval of Relative

Temporal Patterns
Edi Winarko and John F. Roddick, Member, IEEE Computer Society

Abstract—A number of algorithms have been proposed for the discovery of temporal patterns. However, since the number of

generated patterns can be large, selecting which patterns to analyze can be nontrivial. There is thus a need for algorithms and tools

that can assist in the selection of discovered patterns so that subsequent analysis can be performed in an efficient and, ideally,

interactive manner. In this paper, we propose a signature-based indexing method to optimize the storage and retrieval of a large

collection of relative temporal patterns.

Index Terms—Content-based data mining queries, organizing temporal patterns, signature-based indexing methods.

Ç

1 INTRODUCTION

MANY rule discovery algorithms in data mining gen-
erate a large number of patterns/rules, sometimes

even exceeding the size of the underlying database, with
only a small fraction being of interest to the user [1]. It is
generally understood that interpreting the discovered
patterns/rules to gain insight into the domain is an
important phase in the knowledge discovery process.
However, when there are a large number of generated
rules, identifying and analyzing those that are interesting
becomes difficult. For example, providing the user with a
list of association rules ranked by their confidence and
support might not be a good way of organizing the set of
rules as this method would overwhelm the user and not all
rules with high confidence and support are necessarily
interesting for a variety of reasons [2].

Therefore, to be useful, a data mining system must
manage the generated rules by offering flexible tools for
rule selection. In the case of association rule mining, several
approaches for the postprocessing of discovered association
rules have been discussed. One approach is to group
“similar” rules [3], [4], [5], [6], which works well for a
moderate number of rules. However, for a larger number of
rules it produces too many clusters. A more flexible
approach is to allow the identification of rules that are of
special importance to the user through templates or data
mining queries. This approach can complement the rule-
grouping approach and has been used to specify interesting
and uninteresting classes of rules (for both association and

episodic rules) [7]. The importance of data mining queries
has been highlighted by the introduction of the inductive
database concept, which allows the user to both query the
data and query patterns, rules, and models extracted from
these data.

To this end, several query languages with data mining
extensions have been proposed, such as Mine-Rule [8],
DMQL [9], and OLE DB [10]. These languages are designed
to generate the rules from the data rather than allow queries
over the discovered rules. However, the data mining query
language MSQL can be used not only for rule generation
but also for rule querying (using a SelectRules operator)
[11]. In addition, Rule-QL has been proposed for querying
multiple sets of association rules and utilizes efficient
algorithms for processing the queries [12].

While most previous studies are focused on the post-
processing of association rules, this paper deals with the
postprocessing of temporal patterns [13], [14], [15], an area
in which little research to date has been conducted. In
particular, we address the problem of efficiently retrieving
subsets of a large collection of previously discovered
temporal patterns [16], [17]. When processing queries on a
small database of temporal patterns, sequential scanning of
the patterns followed by straightforward computations of
query conditions is adequate. However, as the database
grows, this procedure can be too slow, and indexes should
be built to speed up the queries. The problem is to
determine what types of indexes are suitable for improving
the speed of queries involving the content of temporal
patterns.

This paper focuses on supporting content-based queries
of temporal patterns, as opposed to point- or range-based
queries. One example is the subpattern query: Given a set of
patterns D and a query pattern q, find the temporal patterns
in D that contain q. For example, we may wish to study
further the behavior of a group of rules for which a
particular pattern q is already known to be a component. To
address this form of query, a signature-based indexing

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008 825

. E. Winarko is with Gadjah Mada University, Yogyakarta, Indonesia.
E-mail: edwin@ugm.ac.id.

. J.F. Roddick is with the School of Informatics and Engineering, Flinders
University, PO Box 2100, Adelaide, SA 5001, South Australia.
E-mail: roddick@infoeng.flinders.edu.au.

Manuscript received 7 Apr. 2007; revised 24 Oct. 2007; accepted 6 Dec. 2007;
published online 11 Jan. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDE-2007-04-0135.
Digital Object Identifier no. 10.1109/TKDE.2008.20.

1041-4347/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Flinders Academic Commons

https://core.ac.uk/display/14934002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

method is proposed that can speed up content-based
queries on temporal patterns.

The rest of the paper is organized as follows: Section 2
gives an overview of related work, with the problem
described in detail in Section 3. In Section 4, we describe the
indexing and retrieval of temporal patterns using the
signature-based index. Section 5 presents the result of our
experiments. A conclusion and discussion of future works
are given in Section 6.

2 RELATED WORK

The temporal patterns described in this paper consist of two
components: a set of states and a set of relationships
between those states that represent the order of states
within the pattern. In order to retrieve such patterns
efficiently, any indexing method should deal with both
temporal concepts—states and state relationships.

The problem of indexing has been studied in depth in the
database literature, (for example, B+ trees [18], R trees [19],
etc.). However, studies on set-based indexes that support
queries on set-valued attributes (i.e., attributes that are sets
of items) are limited [20], [21], [22]. Ishikawa et al. [21]
apply the signature file technique to support the processing
of queries involving set-valued attributes in OODBs. Two
signature file organizations are considered: the sequential
signature file and the bit-slice file.

The bit-slice approach still needs to examine every
signature in the file but only a part of it. In order to avoid
reading every signature in the signature file, the hier-
archical file organization uses several levels of signatures.
The higher levels perform coarse filtering before the
signatures on the lower levels are consulted. Examples of
the hierarchical file organization include the S-tree [23]
and the SG-tree [24], [25]. The partitioned file organization
approach avoids reading every signature by grouping the
signatures into several partitions such that all signatures
in a given partition possess the same component part,
called the signature key. The signature key used is usually
a substring of the signature. By partitioning the signa-
tures, some of the partitions need not to be searched
during the execution of a query so that the number of
accesses can be reduced [26], [27], [28].

Helmer and Moerkotte [20] study the performance of
four index structures for set-valued attributes (sequential
signature files, signature trees, extensible signature hashing,
and inverted lists). The indexes are evaluated on three
forms of set-valued queries—equality queries, subset queries,
and superset queries. It was observed that the inverted file
index structure outperformed other index structures for
subset and superset queries with respect to query proces-
sing time.

Morzy and Zakrzewicz [22] generalize the problem of
association rule and item set retrieval as a subset search
problem. Two types of queries are examined: first, the
retrieval of item sets that contain a given subset of items
and, second, the retrieval of rules that contain a given
subset of items in their antecedent or consequent. In order
to speed up the query processing, a group bitmap index is
proposed in which the group bitmap key represents a set of
items in the database.

These set-based indexing methods do not consider the
order of items within the sets, as is required in the case of
the indexing and retrieval of sequential patterns. To
overcome this limitation, new indexing techniques have
been proposed [29], [30], [31], the general idea of which is to
convert the sequential patterns into equivalent sets that
accommodate the ordering of the items. After that, set-
based indexing methods [29] can be applied to the
equivalent sets. A partitioning technique is proposed to
divide large equivalent sets into a collection of smaller
subsets so that the probability of collision is reduced.

3 PRELIMINARIES

3.1 Problem Description

Definition 1 (state sequence). LetS denote the set of all possible
states. A state s 2 S that holds during a period of time ½b; fÞ is
denoted as ðb; s; fÞ, where b is the start time, and f is the end
time. The ðb; s; fÞ triple is termed a state interval. A state
sequence on S is a series of triples defining state intervals
ðb1; s1; f1Þ; ðb2; s2; f2Þ; . . . ; ðbn; sn; fnÞh i, where bi � biþ1, and
bi < fi.

Definition 2 (temporal pattern). Given n state intervals
ðbi; si; fiÞ, 1 � i � n, a temporal pattern of size n is defined
by a pair ðs;MÞ, where s : f1; . . . ; ng ! S maps index i to the
corresponding state, and M is an n� n matrix whose elements
M½i; j� denote the relationship between intervals ½bi; fiÞ and
½bj; fjÞ. The size of a temporal pattern � is the number of
intervals in the pattern, denoted as dimð�Þ. If the size of � is n,
then � is called an n-pattern.

If the state intervals within the state sequences have
been ordered in increasing index according to their start
times, end times, and states, the resulting temporal
patterns are considered normalized, and only seven out
of 13 Allen relationships [32] are required, namely, before
ðbÞ, meets ðmÞ, overlaps ðoÞ, is-finished-by ðfiÞ, contains ðcÞ,
equals ð¼Þ, and starts ðsÞ.1 For the rest of this paper, let
Rel ¼ f¼; c; fi; s;o;m;bg be the set of these seven
relationships. A normalized temporal pattern does not
contain temporal extensions because it has been ab-
stracted from the state intervals in a specific state
sequence. Fig. 1 shows four normalized temporal patterns
defined over a set of states S ¼ fA;B;C;Dg and a set of
interval relations Rel.

Definition 3 (subpattern). A temporal pattern � ¼ ðs�;M�Þ
is a subpattern of � ¼ ðs�;M�Þ, denoted � v �, if
dimðs�;M�Þ � dimðs�;M�Þ and there is an injective
mapping � : f1; . . . ; dimðs�;M�Þg ! f1; . . . ; dimðs�;M�Þg
such that

8i; j 2 f1; . . . ; dimðs�;M�Þg :

s�ðiÞ ¼ s�ð�ðiÞÞ ^M�½i; j� ¼M�½�ðiÞ; �ðjÞ�:

Informally, it can be stated that a pattern � is a
subpattern of � if � can be obtained from � by removing
intervals. As an example, consider the patterns in Fig. 1; p1

is a subpattern of p3, but it is not a subpattern of p4. We can

826 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

1. See [17] for a more in-depth discussion of these concepts.

obtain p1 from p3 by removing interval state D; on the other

hand, removing interval states C and D from p4 would not

result in p1.

Definition 4 (content-based queries). Let D be a temporal

pattern database and q be a query pattern. The four forms of

content-based queries that this research supports include the

following:

1. Subpattern queries. Find those patterns in D that
contain q.

2. Superpattern queries. Find those patterns in D that
are a subpattern of q.

3. Equality queries. Find those patterns in D equal to q.
4. K-nearest subpattern queries. Find the k most

similar patterns in D to q.

Superpattern queries are useful when searching for the

characteristic parts of a large pattern, while k-nearest

subpattern queries limit the number of patterns generated

by subpattern or superpattern queries.
The problem of content-based retrieval of temporal

patterns can be formally defined as follows:

Given a database D of discovered temporal patterns, describe a
processing technique that allows the user to find efficiently
temporal patterns in D that satisfy the content-based queries
above.

3.2 Temporal Pattern Similarity

To answer k-nearest subpattern queries, a suitable measure

of similarity among temporal patterns needs to be defined.

To do so, three properties must be considered:

1. Temporal patterns are variable-length objects that
cannot be represented in a k-dimensional metric
space.

2. Each pattern contains a list of states.
3. Each pattern contains a set of state relationships.

To our knowledge, no similarity measures have been

defined for temporal patterns. The closest are the similarity

measures proposed by Xiao et al. [33] that measure the

similarity of a Web user’s access logs. Each user’s log is a

sequence of pages accessed by the user, which contains

information about the pages, the order of pages accessed,

and the elapsed time between two page accesses. In our

work, some aspects of the similarity measures defined by

Xiao et al. [33] have been adopted and extended to temporal

patterns.
The similarity measure is defined based on the measure

known in the literature as the Jaccard coefficient of two sets,

which expresses the fraction of elements common to both

sets. The Jaccard coefficient is not a metric.2 Nevertheless, a

distance function can be defined in terms of the similarity as

dðA;BÞ ¼ 1� simðA;BÞ, and it is easy to show that such a

distance function is indeed a metric.
Given two temporal patterns � and �, let S� and S�

denote a set of states in � and �, respectively. The similarity

between patterns � and � is defined as follows:

simð�; �Þ ¼ jScj þ jRcjffi
Ns
� þNr

�

� �
� Ns

� þNr
�

� �r : ð1Þ

In (1), jScj ¼ jS� \ S�j is the number of common states in

� and �, and jRcj represents the number of common

relationships. Ns
� represents the number of states (size) of �,

and Nr
� represents the number of relationships in �. For a

temporal pattern � of size n, Ns
� ¼ n, and Nr

� ¼
nðn�1Þ

2 . The

value of simð�; �Þ will be 1 if � ¼ � and will be 0 if they do

not have common states.
As an example, consider temporal patterns p2 and

p4 in Fig. 1. Sp2
¼ fA;Bg, and Sp4

¼ fA;B;C;Dg, so

jSp2
\ Sp4

j ðthe number of common statesÞ ¼ 2. The patterns

only have one common relationship, that is, the relation-

ship ðA before BÞ. The value of Ns
p2
¼ 2, Nr

p2
¼ 1, Ns

p4
¼ 4,

and Nr
p4
¼ 6. Therefore, the similarity between patterns

p2 and p4 can be computed as

simðp2; p4Þ ¼
2þ 1ffi

ð2þ 1Þ � ð4þ 6Þ
p � 0:548:

By using (1), the similarity matrix of the four temporal

patterns in Fig. 1 is

p1 p2 p3 p4

SIM ¼

p1

p2

p3

p4

1 0:667 0:707 0:365

0:667 1 0:471 0:548

0:707 0:471 1 0:516

0:365 0:548 0:516 1

2
6664

3
7775:

Let dðx; yÞ be a distance between temporal patterns x and

y defined as dðx; yÞ ¼ 1� simðx; yÞ. The distance function d

is a metric, because it has the following properties:

1. Nonnegative: dðx; yÞ � 0.
2. Symmetry: dðx; yÞ ¼ dðy; xÞ.
3. Identity: dðx; yÞ ¼ 0 if and only if (iff) x ¼ y.
4. Triangle inequality: dðx; yÞ � dðx; zÞ þ dðz; yÞ.

WINARKO AND RODDICK: A SIGNATURE-BASED INDEXING METHOD FOR EFFICIENT CONTENT-BASED RETRIEVAL OF RELATIVE... 827

Fig. 1. Example of temporal patterns.

2. Formally, a metric is a function mð:; :Þ that is nonnegative and
symmetric, has the property that mðx; yÞ ¼ 0 iff x ¼ y, and satisfies the
triangle inequality.

4 SIGNATURE-BASED INDEX FOR RETRIEVAL OF

TEMPORAL PATTERNS

This section first describes the method used to construct the

signature-based index from a collection of temporal

patterns and to answer a query using the index. In order

to facilitate this discussion, a brief overview of the use of

signature files in set retrieval is provided, and the new

terminologies used are introduced.

4.1 Signature Files

A signature is a bit pattern formed for a data object, which is

then stored in the signature file. Signature files were

originally proposed in the context of word retrieval in text

databases [34]. Recently, they have been used in a wider set

of applications, including office automation, hypertext

systems, relational and object-oriented databases, and data

mining [35].
This brief review of signature files focuses on their use in

facilitating the retrieval on set-valued attributes [20], [21],

[36]. Given that T and Q denote the target set and query set,

respectively, three commonly used set-valued queries are

1. Subset query ðT � QÞ. The target set is a superset of
the query set.

2. Superset query ðT 	 QÞ. The target set is a subset of
the query set.

3. Equality query ðT
 QÞ. The target set is equal to the
query set.

An initial target signature is generated for each target set

as follows: Each element in a target set is hashed to a bit

pattern termed an element signature. All element signatures

are of bit length F , and exactly b bits are set to “1,” where

b < F . F is termed the length of a signature, while b is

termed the weight of an element’s signature. A target

signature is obtained by the bitwise union of all element

signatures. The pairing of a target signature and an

identifier of the object containing that target set is stored

in the signature file.
In set retrieval using signature files, set-valued queries

are processed in the following way. A query signature is

generated from the query set Q (in the same way as the

target signature). During the next step, the filtering step, each

signature in the signature file is examined with the query

signature and becomes a drop (a candidate that may satisfy

the query) if it satisfies a predefined condition as follows:

1. T � Q : target signature ^ query signature ¼ query
signature.

2. T 	 Q : target signature ^ query signature ¼ target
signature.

3. T
 Q : query signature ¼ target signature.
In the next step, false-drop resolution, each candidate is

retrieved and examined to see if it actually satisfies the

query condition. Candidates that fail the test are termed

false drops, while successful candidates are termed actual

drops. False drops occur due to the collision of element

signatures and the superimposed coding method. False

drops affect the number of block accesses (I/O time), as

well as the processing time used to decide whether a target

set should be returned to the user. The main signature file
issue is therefore the proper control of false drops.

Kitagawa et al. [36] derived formulas to estimate the
probability of false drops. Given that Fd is the false-drop
probability, the value of Fd is minimized if the weight of
element signature ðmÞ adheres to the following formulas:

mopt ¼
F ln 2

jDtj
ðT � QÞ; ð2aÞ

mopt ¼
F ln 2

jDqj
ðT 	 QÞ; ð2bÞ

mopt ¼
F ln 2

jDtj
ðT
 QÞ; ð2cÞ

where jDtj and jDqj are the cardinality of the target set and
query set, respectively.

A number of approaches have been proposed in
signature file organizations. The sequential signature file
(SSF) method stores signature/reference pairs sequentially
in the signature file. SSF is easy to implement and requires
low storage space and update cost; however, during
retrieval, a full scan of the signature file is required. To
improve retrieval performance, the bit-slice signature file
(BSSF) method stores signatures in a columnwise manner
[21]. BSSF uses F bit-slice files, one for each bit position of
the set signatures. In retrieval, only a subset of the F bit-
slice files need to be scanned reducing the search cost.
However, the update cost is greater. For example, the
insertion of a new set of signatures requires up to F disk
accesses. More complex signature file organizations have
also been proposed, for example, S-trees [23], signature
trees [37], and extendible signature hashing [20]. In this
paper, we focus on SSF and BSSF.

4.2 Constructing Signature Files for Temporal
Patterns

The signature of a temporal pattern is created by converting
the temporal pattern into an equivalent set from which the
signature is then generated. The idea builds on previous
work [29], [30], [31] in which the signature of a sequential
pattern is generated by first converting the sequential
pattern into its equivalent set. Two functions are required to
create the equivalent set of a temporal pattern. The first
function is used to map a set of states in the pattern into a
set of integers, while the second maps the relationships
between states into integers. These two functions are
defined in the following:

Definition 5 (state mapping). Given a set of states S, a state
mapping function fðxÞ is a function that transforms a state
type x 2 S into an integer value, such that fðxÞ 6¼ fðyÞ for
x 6¼ y, where x, y 2 S.

Let a set of states S ¼ fA;B;C;Dg. An example of a simple
state mapping function fðxÞ can be defined as fðAÞ ¼ 1,
fðBÞ ¼ 2, fðCÞ ¼ 3, and fðDÞ ¼ 4. This function maps each
state into a unique value.

Definition 6 (relationship mapping). Given a set of states S
and a set of relations Rel, a relationship mapping gðx; y; rÞ

828 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

is a function that transforms a relationship ðx r yÞ into an
integer value, where x, y 2 S, and r 2 Rel.

It is desirable to have a unique mapping for each
relationship. However, designing such mapping is not
trivial. Therefore, it is sufficient to have a function g such
that gðx; y; rÞ 6¼ gðy; x; rÞ for any x, y 2 S, r 2 Rel. Consider a
function gðx; y; rÞ ¼ hðrÞ � fðxÞ þ fðyÞ, where f is a state
mapping function, and h is a function that maps r 2 Rel
into an integer. Let us define hðrÞ as hð¼Þ ¼ N , hðcÞ ¼ 2N ,
hðfiÞ ¼ 3N , hðsÞ ¼ 4N , hðoÞ ¼ 5N , hðmÞ ¼ 6N , a n d
hðbÞ ¼ 7N , where N is the number of states in S. Using
this definition of h, g will have the property that gðx; y; rÞ 6
¼ gðy; x; rÞ for any x, y 2 S and r 2 Rel. For example, if S ¼
fA;B;C;Dg and f is defined above, then

gðA;B;bÞ ¼ ð28� 1Þ þ 2 ¼ 30 and

gðB;A;bÞ ¼ ð28� 2Þ þ 1 ¼ 57;

which results in gðA;B;bÞ 6¼ gðB;A;bÞ.
Having defined mapping functions f and g, the

equivalent set of a temporal pattern can be defined using
these two functions.

Definition 7 (equivalent set). Given a temporal pattern p of
size k, Sp ¼ hs1; . . . ; ski is the list of states in p, and Mp is a
k� k matrix whose element Mp½i; j� denotes the relationship
between states si and sj in Sp. The equivalent set of p, EðpÞ, is
defined as

EðpÞ ¼
[k
i¼1

ffðsiÞg
 ![[k�1

i¼1

[k
j¼iþ1

fgðsi; sj; rÞg
 !

;

where r ¼Mp½i; j�.

For example, using the mapping functions f and g in the
previous example, the equivalent set of patterns p1 and p3

(Fig. 1) can be computed as follows:

Eðp1Þ ¼ fðfðAÞg [ffðBÞg [fðgðA;B; bÞg ¼ f1; 2; 30g;
Eðp3Þ ¼ fðfðAÞg [ffðBÞg [ffðDÞg [fðgðA;B; bÞg[

fðgðA;D; bÞg [fðgðB;D;mÞg
¼ f1; 2; 4; 30; 32; 52g:

Equivalent sets of the other temporal patterns are shown in
the second column of Table 1.

It can be observed that if a temporal pattern is a
subpattern of another pattern, then the equivalent set of
the first pattern is a subset of the second pattern’s
equivalent set. For example, p1 is a subpattern of p3;
therefore, Eðp1Þ 	 Eðp3Þ (Table 1). This property is for-
malized in the following.

Property 1. Given two temporal patterns p and q and the
corresponding equivalent sets EðpÞ and EðqÞ, the following
properties hold for any two temporal patterns and their
equivalent sets:

1. p w q! EðpÞ � EðqÞ.
2. p v q! EðpÞ 	 EðqÞ.
3. p ¼ q! EðpÞ ¼ EðqÞ.

Definition 8 (signature). The signature of an equivalent set E,
denoted sigðEÞ, is an F -bit binary number created by the
bitwise union of all element signatures in E. Each element
signature has an F -bit length, and m-bits are set to “1.”

For example, given F ¼ 8 and m ¼ 1, the signature of
element e 2 E is an 8-bit binary number that can be
computed by a hash function hashðeÞ ¼ 2ðemodF Þ. For the
set Eðp3Þ ¼ f1; 2; 4; 30; 32; 52g, its element signatures are

hashð1Þ ¼ 00000010; hashð2Þ ¼ 00000100;

hashð4Þ ¼ 00010000; hashð30Þ ¼ 01000000;

hashð32Þ ¼ 00000001;

and hashð52Þ ¼ 00010000. The signature of Eðp3Þ is com-
puted using the bitwise union of all these element
signatures, and the resulting signature is “01010111.” Using
the same method, the signatures of the other temporal
patterns are shown in the third column of Table 1.

Property 2. Given two equivalent sets EðpÞ and EðqÞ and their
corresponding signatures sigp and sigq, the signatures of
equivalent sets have the following properties:

1. EðpÞ � EðqÞ ! sigp ^ sigq ¼ sigq.
2. EðpÞ 	 EðqÞ ! sigp ^ sigq ¼ sigp.
3. EðpÞ ¼ EðqÞ ! sigp ¼ sigq.

Combining Properties 1 and 2, the relations between
temporal patterns and their signatures are expressed in the
following properties.

Property 3. Given two temporal patterns p and q and their
corresponding signatures sigp and sigq, these signatures have
the following properties:

1. p w q! sigp ^ sigq ¼ sigq.
2. p v q! sigp ^ sigq ¼ sigp.
3. p ¼ q! sigp ¼ sigq.

As an example, consider temporal patterns p1 and
p3, where p1 v p3. It can be seen in Table 1 that
sigp1

^ sigp3
¼ 01000110 ^ 01010111 ¼ 01000110, which is

the value of sigp1
.

Using these methods, the signature file of temporal
patterns in database D can be created as follows: For each
temporal pattern p 2 D, its equivalent set EðpÞ is calculated,
and then, its signature Ep is generated. This signature,
together with the temporal pattern identifier (pid), is
inserted into the signature file. The actual insertion depends
on the signature file organization. For example, for SSF, the
signature is appended to the end of the file, while for BSSF,
each signature bit is appended to the end of the
corresponding bit-slice file. Only the signatures are stored
in the signature file, while the equivalent sets are only to

WINARKO AND RODDICK: A SIGNATURE-BASED INDEXING METHOD FOR EFFICIENT CONTENT-BASED RETRIEVAL OF RELATIVE... 829

TABLE 1
Equivalent Sets and Signatures of Temporal Patterns

facilitate the computation of signatures. This procedure is
outlined in Algorithm 4.1.

Algorithm 4.1. Constructing a signature file of temporal

patterns

Input: A database D of temporal patterns
Output: SignatureFile

1: for each p 2 D do

2: EðpÞ ¼ Equivalent SetðpÞ
3: sigp ¼ SignatureðEðpÞÞ
4: Insert hsigp; pidpi into SignatureFile

5: end for

6: return SignatureFile

4.3 Answering Content-Based Queries Using the
Signature File

4.3.1 Subpattern Queries

Given a temporal pattern database D and a query pattern q,

the algorithm for evaluating subpattern queries is called
evaluateSubPatternðD; qÞ, which finds temporal patterns in

D that contain q. If the signatures are stored in SSF,

evaluateSubPatternðD; qÞ, as presented in Algorithm 4.2, is

used. The equivalent set EðqÞ of q is first calculated and,
then, a query signature sigq is formed. Each target signature

sigp in SSF is then examined against the query signature

sigq. If the target signature satisfies the search condition

sigp ^ sigq ¼ sigq (the first property in Property 3), the
corresponding temporal pattern becomes a drop, and its

identifier is added to the pattern ID (or PID) list. Then,

during false-drop verification, each drop is checked to
determine if it actually satisfies the query condition.

Algorithm 4.2. Pseudocode of evaluateSubPattern using

SSF

Input: Temporal pattern database D, a query pattern q

Output: AnswerSet

1: EðqÞ ¼ Equivalent SetðqÞ
2: sigq ¼ SignatureðEðqÞÞ
3: for each hsigp; pidpi 2 SSF do

4: if sigp ^ sigq ¼ sigq then

5: Add pidp into the PID list

6: end if

7: end for

8: for each pidp in the PID list do

9: Retrieve p from D
10: if p w q then

11: Add p into AnswerSet

12: end if

13: end for

14: return AnswerSet

On the other hand, if the signatures are stored in BSSF,

evaluateSubPatternðD; qÞ proceeds in a slightly different

way, and is shown in Algorithm 4.3. The search condition
sigp ^ sigq ¼ sigq cannot be used, since the target signature

sigp is scattered across bit-slice files. Instead, the bit slices

corresponding to the bit positions set to “1” in sigq are
retrieved and, then, a bitwise intersect (bitwise AND)

operation is performed on the retrieved bit slices. The

corresponding temporal pattern becomes a drop if the

resulting bit entry is equal to “1,” and its identifier is added

to the PID list. The false-drop resolution step is the same as

in SSF.

Algorithm 4.3. Pseudocode of evaluateSubPattern using

BSSF

Input: Temporal pattern database D, a query pattern q

Output: AnswerSet

1: EðqÞ ¼ Equivalent SetðqÞ
2: sigq ¼ SignatureðEðqÞÞ
3: Retrieve the bit slices corresponding to the bit position

set to “1” in sigq
4: Perform a bitwise intersect operation on the retrieved

bit slices

5: for each entry where “1” is set in the resulting intersect
bit slice do

6: Add the corresponding pidp into the PID list

7: end for

8: for each pidp in the PID list do

9: Retrieve p from D
10: if p w q then

11: Add p into AnswerSet

12: end if

13: end for

14: return AnswerSet

4.3.2 Superpattern Queries

Let evaluateSuperPatternðD; qÞ be the algorithm for evalu-

ating superpattern queries, that is, for finding temporal

patterns in D that are contained in q. If SSF is used, the

algorithm is similar to evaluateSubPattern in Algorithm 4.2

except the search condition sigp ^ sigq ¼ sigq (line 4) is

replaced with sigp ^ sigq ¼ sigp, and the query condition

p w q (line 10) is replaced with p v q.
If BSSF is used, the evaluateSubPattern retrieves bit

slices corresponding to the bit positions set to “0” in sigq
and performs a bitwise union (bitwise OR) operation on

them. The corresponding temporal pattern becomes a drop

if the resulting bit entry equals “0.” Each drop is then

validated with respect to the query condition p v q. The

pseudocode of evaluateSuperPattern on BSSF is shown in

Algorithm 4.4.

Algorithm 4.4. Pseudocode of evaluateSuperPattern using

BSSF

Input: Temporal pattern database D, a query pattern q

Output: AnswerSet

1: EðqÞ ¼ Equivalent SetðqÞ
2: sigq ¼ SignatureðEðqÞÞ
3: Retrieve the bit slices corresponding to the bit position

set to “0” in sigq
4: Perform a bitwise union operation on the retrieved bit

slices

5: for each entry where “0” is set in the resulting union bit
slice do

6: add the corresponding pidp into the PID list

7: end for

8: for each pidp in the PID list do

9: Retrieve p from D

830 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

10: if p v q then

11: Add p into AnswerSet

12: end if

13: end for

14: return AnswerSet

4.3.3 Equality Queries

Let evaluateEqualityðD; qÞ be the algorithm for processing
equality queries. Using SSF, the algorithm follows Algo-
rithm 4.2, except that the search condition sigp ^ sigq ¼ sigq
is replaced with sigp ¼ sigq, and the query condition p w q is
replaced with p ¼ q.

When BSSF is used, the algorithm requires access to all
bit-slice files, not only part of them. In order to decide if
sigp ¼ sigq, each bit of sigq must be compared with the
corresponding bit of sigp that is stored in different bit-slice
files. This is only possible by accessing all bit-slice files.

4.3.4 K-nearest Subpattern Queries

K-nearest queries are used to limit the number of patterns
generated by subpattern queries. Given that a subpattern
query generates n temporal patterns containing the query
pattern q, the k-nearest subpattern query is used to choose k
of n temporal patterns, where k < n, that are most similar to
q. Using SSF, the query can be processed by modifying
Algorithm 4.2 as follows: During false-drop resolution,
when a temporal pattern p becomes an actual drop, the
similarity between the query patterns q and p is calculated
using (1). The k patterns with the largest similarity
measures are recorded. The query can be processed using
BSSF by modifying Algorithm 4.3 in a similar way.

5 EXPERIMENTS

To assess the performance of the proposed methods, the
evaluateSubPattern, evaluateSuperPattern, and evaluateEqu-
ality were implemented on SSF and BSSF signature files. In
addition, sequential versions of the methods (SEQ) were
also implemented as baseline methods, which process
queries by sequentially retrieving the target pattern (with-
out using an index) from the database and comparing it
against the query pattern. All programs are written in Java
Language. The experiments were conducted on synthetic
data sets on a 1.3-GHz Intel Celeron PC with 384 Mbytes of
RAM running Windows XP Professional.

The following sections show the performance of
evaluateSubPattern and evaluateSuperPattern for proces-
sing subpattern and superpattern queries, respectively.
Update cost is not considered as it is assumed that the
index is only created once after frequent patterns have been
generated by a data mining process. Experimental para-
meters are listed in Table 2.

The temporal pattern database was generated using
ARMADA [17] from an interval sequence database Ds

containing 10,000 interval sequences ðjDsjÞ, with an average
length of 10 ðjCjÞ, and 100 different types of states ðNÞ.
Using the minimum support of 0.08 percent and the
maximum gap of 200, ARMADA generated a set of
106,409 frequent temporal patterns. A temporal pattern
database D is populated from this set of temporal patterns.

First, the size of temporal pattern t was determined

randomly from a Poisson distribution with a mean equal

to jT j. Then, a temporal pattern of size t is randomly picked

from the set of frequent temporal patterns and added to the

database D.
To guarantee that the evaluated queries do not return an

empty result set, query patterns were generated as follows:

For subpattern queries, the temporal pattern of size 5 with

the highest support in D was selected, then the states from

the pattern starting from the last state were individually

removed, resulting in a set of five queries. A similar method

was performed for superpattern queries by selecting a

temporal pattern of size 10 to generate a further set of five

queries.

5.1 Effect of Signature Size on the Number of False
Drops

This experiment observed how the size of the signature

affects the number of false drops in evaluateSubPattern and

evaluateSuperPattern. It also determined the optimal

parameters for each query type in the experimental

environment, particularly the values of F and m. As can

be seen from (2), the false-drop probability depends on F ,

m, and the cardinalities of the query set and target set. The

value of m was set to 1, and the value of F increased until

no further performance improvement could be perceived.

The size of the database jDj ¼ 50; 000, the average size of

temporal pattern jT j ¼ 5, and the number of states N ¼ 100.

The size of signature F was varied from 8 to 128 bits. The

number of false drops was measured.
Figs. 2a and 2b show the number of false drops for

evaluateSubPattern and evaluateSuperPattern, respectively.

The number of false drops is similar for both SSF and BSSF,

since it does not depend on the signature file structures. As

can be seen, the number of false drops consistently decreases

as the size of the signature increases, and the number of false

drops is also influenced by the size of the query pattern. For

evaluateSubPattern (Fig. 2a), the larger the query pattern, the

lower the number of false drops. Conversely, the larger the

query pattern, the higher the number of false drops for

evaluateSuperPattern (Fig. 2b). The best recorded perfor-

mance improvement were achieved with a signature size

between 16 and 32 bits, at which point the number of false

drops decreases significantly.

WINARKO AND RODDICK: A SIGNATURE-BASED INDEXING METHOD FOR EFFICIENT CONTENT-BASED RETRIEVAL OF RELATIVE... 831

TABLE 2
Parameters

5.2 Effect of Signature Size on Query Processing
Time

This experiment used the above data set to compare

the relative performance of evaluateSubPattern and

evaluateSuperPattern on SEQ, SSF, and BSSF. Each method

was run on each of the queries used in the previous

experiment. Fig. 3a shows the total time required by

evaluateSubPattern, while Fig. 3b shows the total time

required by evaluateSuperPattern.
The figures show that the query processing times of both

methods on SSF and BSSF are proportional with the number

of false drops from the previous experiments. Both methods

gain the best performance improvement when the size of

signature is between 16 and 32. Both methods perform

better on BSSF. For small values of F , the query processing

times of both methods are almost similar on SEQ, SSF, and

BSSF. This is because when F � 8, the number of false

drops becomes so high that when SSF and BSSF are used,

the algorithms have to retrieve almost all patterns in the

database during the verification step. Finally, both methods

show a marked improvement on SSF and BSSF over SEQ.

5.3 Effect of Database Size on the
Query Processing Time

In order to observe how the methods scale with respect to
the database size, five data sets were generated in which
jT j ¼ 5 and N ¼ 100. The size of database jDj was varied
from 10,000 to 100,000. Both methods were run on each data
set using two values of F (32 and 64 bits). Fig. 5a shows the
total time required by evaluateSubPattern on SEQ, SSF
32 bits, SSF 64 bits, BSSF 32 bits, and BSSF 64 bits to process
five queries. Fig. 5b shows the total time required by
evaluateSuperPattern to process the five queries.

In general, the processing times are proportional to the
database size. Both methods remain the slowest on SEQ but
show the fastest or the best scaling behavior on BSSF.

5.4 Experiments on Real Data

In addition to using synthetic data sets, we have also
performed a series of experiments on a real data set. The
data set is the ASL database created by the National Center
for Sign Language and Gesture Resources, Boston Uni-
versity, which is available online at http://www.bu.edu/
asllrp/. The Sign-Stream database used in this experiment
consists of a collection of 730 utterances, where each
utterance associates a segment of video with a detailed

832 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Fig. 2. Effect of signature size on the number of false drops. (a) evaluateSubPattern. (b) evaluateSuperPattern.

Fig. 3. Effect of signature size on query processing time. (a) evaluateSubPattern. (b) evaluateSuperPattern.

transcription. Every utterance can be considered as a state

sequence which contains a number of ASL gestural and

grammatical fields (e.g., eyebrow raise, head tilt forward,

whquestion), each one occurring over a time interval.
A temporal pattern database was generated by running

ARMADA on this interval sequence database and setting

the minimum support to 1 percent and the minimum gap

to 100. The resulting temporal pattern database contains

210,580 frequent temporal patterns, as summarized in

Table 3. The temporal pattern database was then used in
the experiments to compare the relative performance of
evaluateSubPattern and evaluateSuperPattern on SEQ,
SSF, and BSSF. Each method was run on each of the
queries used in the previous experiment.

Fig. 4a shows the total time required by evaluateSubPat-
tern, while Fig. 4b shows the total time required by
evaluateSuperPattern. The figures show that the query
processing times of both methods on SSF and BSSF decrease
with the increasing size of signatures. Both methods gain
the best performance improvement when the size of
signature is between 16 and 32. Both methods show a
marked improvement on SSF and BSSF over SEQ but
perform the best on BSSF.

6 CONCLUSION AND FUTURE WORK

The use of a signature-based index for content-based
retrieval of temporal patterns has been presented. The
signatures of temporal patterns are created by first convert-
ing temporal patterns into equivalent sets and then generat-
ing the signatures from the equivalent sets. The study
focused on the sequential and BSSF organizations, and a

WINARKO AND RODDICK: A SIGNATURE-BASED INDEXING METHOD FOR EFFICIENT CONTENT-BASED RETRIEVAL OF RELATIVE... 833

TABLE 3
Generated Temporal Patterns from the ASL Database

Fig. 4. Effect of signature size on query processing time (ASL database). (a) evaluateSubPattern. (b) evaluateSuperPattern.

Fig. 5. Effect of database size on query processing time. (a) evaluateSubPattern. (b) evaluateSuperPattern.

series of experiments compared the performance of both

signature files in processing subpattern and superpattern

queries.
In conclusion, the use of signature files improves the

performance of temporal pattern retrieval. The bit-slice

signature file performs better than the SSF and is a good

choice for content-based retrieval of temporal patterns. This

retrieval system is currently being combined with visuali-

zation techniques for monitoring the behavior of a single

pattern or a group of patterns over time.

ACKNOWLEDGMENTS

Edi Winarko worked on this research as part of his doctoral

study at Flinders University, South Australia.

REFERENCES

[1] T. Imielinski and A. Virmani, “Association Rules . . . and What’s
Next? Towards Second Generation Data Mining Systems,” Proc.
Second East European Symp. Advances in Databases and Information
Systems (ADBIS ’98), pp. 6-25, 1998.

[2] L. Geng and H.J. Hamilton, “Interestingness Measures for Data
Mining: A Survey,” ACM Computing Surveys, vol. 38, no. 3, 2006.

[3] H. Toivonen, M. Klemettinen, P. Ronkainen, K. Hatonen, and H.
Mannila, “Pruning and Grouping of Discovered Association
Rules,” Proc. ECML Workshop Statistics, Machine Learning, and
Knowledge Discovery in Databases, pp. 47-52, 1995.

[4] B. Lent, A.N. Swami, and J. Widom, “Clustering Association
Rules,” Proc. 13th Int’l Conf. Data Eng. (ICDE ’97), W.A. Gray and
P.-�A. Larson, eds., pp. 220-231, 1997.

[5] B. Liu, W. Hsu, and Y. Ma, “Pruning and Summarizing the
Discovered Associations,” Proc. ACM SIGKDD ’99, pp. 125-134,
1999.

[6] B. Liu, M. Hu, and W. Hsu, “Multi-Level Organization and
Summarization of the Discovered Rules,” Proc. ACM SIGKDD,
2000.

[7] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A.
Verkamo, “Finding Interesting Rules from Large Sets of Dis-
covered Association Rules,” Proc. Third Int’l Conf. Information and
Knowledge Management (CIKM ’94), N. Adam, B. Bhargava, and
Y. Yesha, eds., pp. 401-407, 1994.

[8] R. Meo, G. Psaila, and S. Ceri, “A New SQL-Like Operator for
Mining Association Rules,” Proc. 22nd Int’l Conf. Very Large Data
Bases (VLDB ’96), M.T. Vijayaramam, A. Buchmann, C. Mohan,
and L.N. Sarda, eds., pp. 122-133, 1996.

[9] J. Han, J.Y. Chiang, S. Chee, J. Chen, Q. Chen, S. Cheng, W. Gong,
M. Kamber, K. Koperski, G. Liu, Y. Lu, N. Stefanovic, L. Winstone,
B.B. Xia, O.R. Zaiane, S. Zhang, and H. Zhu, “DBMiner: A System
for Data Mining in Relational Databases and Data Warehouses,”
Proc. ACM SIGKDD, 1996.

[10] A. Netz, S. Chaudhuri, U.M. Fayyad, and J. Bernhardt, “Integrat-
ing Data Mining with SQL Databases: OLE DB for Data Mining,”
Proc. 17th Int’l Conf. Data Eng. (ICDE’01), pp. 379-387, 2001.

[11] T. Imielinski and A. Virmani, “MSQL: A Query Language for
Database Mining,” J. Data Mining and Knowledge Discovery, vol. 3,
no. 4, pp. 373-408, 1999.

[12] A. Tuzhilin and B. Liu, “Querying Multiple Sets of Discovered
Rules,” Proc. ACM SIGKDD ’02, pp. 52-60, 2002.

[13] C.M. Antunes and A.L. Oliveira, “Temporal Data Mining: An
Overview,” Proc. ACM SIGKDD Workshop Temporal Data Mining,
pp. 1-13, 2001.

[14] X. Chen and I. Petrounias, “A Framework for Temporal Data
Mining,” Proc. Ninth Int’l Conf. Database and Expert Systems
Applications (DEXA ’98), pp. 796-805, 1998.

[15] J.F. Roddick and M. Spiliopoulou, “A Survey of Temporal
Knowledge Discovery Paradigms and Methods,” IEEE Trans.
Knowledge and Data Eng., vol. 14, no. 4, pp. 750-767, Mar./Apr.
2002.

[16] F. Höppner, “Learning Temporal Rules from State Sequences,”
Proc. IJCAI Workshop Learning from Temporal and Spatial Data,
pp. 25-31, 2001.

[17] E. Winarko and J.F. Roddick, “ARMADA—An Algorithm for
Discovering Richer Relative Temporal Association Rules from
Interval-Based Data,” Data and Knowledge Eng., vol. 63, no. 1,
pp. 76-90, 2007.

[18] D. Comer, “The Ubiquitous B-Tree,” Computing Surveys, vol. 11,
no. 2, pp. 121-137, 1979.

[19] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching,” Proc. ACM SIGMOD ’84, pp. 47-57, 1984.

[20] S. Helmer and G. Moerkotte, “A Performance Study of Four Index
Structures for Set-Valued Attributes of Low Cardinality,” VLDB J.,
vol. 12, no. 3, pp. 244-261, 2003.

[21] Y. Ishikawa, H. Kitagawa, and N. Ohbo, “Evaluation of Signature
Files as Set Access Facilities in OODBs,” Proc. ACM SIGMOD ’93,
P. Buneman and S. Jajodia, eds., pp. 247-256, 1993.

[22] T. Morzy and M. Zakrzewicz, “Group Bitmap Index: A Structure
for Association Rules Retrieval,” Proc. ACM SIGKDD ’98,
R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro, eds., pp. 284-
288, 1998.

[23] U. Deppisch, “S-Tree: A Dynamic Balanced Signature Index for
Office Retrieval,” Proc. ACM SIGIR ’86, pp. 77-87, 1986.

[24] N. Mamoulis, D.W. Cheung, and W. Lian, “Similarity Search in
Sets and Categorical Data Using the Signature Tree,” Proc. 19th
Int’l Conf. Data Eng. (ICDE ’03), U. Dayal, K. Ramamritham, and
T. Vijayaraman, eds., pp. 75-86, 2003.

[25] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and
D.W. Cheung, “Mining, Indexing, and Querying Historical
Spatiotemporal Data,” Proc. ACM SIGKDD ’04, pp. 236-245, 2004.

[26] D.L. Lee and C.-W. Leng, “A Partitioned Signature File Structure
for Multiattribute and Text Retrieval,” Proc. Sixth Int’l Conf. Data
Eng. (ICDE ’90), pp. 389-397, 1990.

[27] F. Rabitti and P. Zezula, “A Dynamic Signature Technique for
Multimedia Databases,” Proc. ACM SIGIR ’90, J.-L. Vidick, ed.,
pp. 193-210, 1990.

[28] P. Zezula, F. Rabitti, and P. Tiberio, “Dynamic Partitioning of
Signature Files,” ACM Trans. Information Systems, vol. 9, no. 4,
pp. 336-367, 1991.

[29] T. Morzy, M. Wojciechowski, and M. Zakrzewicz, “Optimizing
Pattern Queries for Web Access Logs,” Proc. Fifth East European
Conf. Advances in Databases and Information Systems (ADBIS ’01),
pp. 141-154, 2001.

[30] A. Nanopoulos, M. Zakrzewicz, T. Morzy, and Y. Manolopoulos,
“Efficient Storage and Querying of Sequential Patterns in
Database Systems,” Information and Software Technology, vol. 45,
pp. 23-34, 2003.

[31] M. Zakrzewicz, “Sequential Index Structure for Content-Based
Retrieval,” Proc. Fifth Pacific-Asia Conf. Knowledge Discovery and
Data Mining (PAKDD ’01), pp. 306-311, 2001.

[32] J. Allen, “Maintaining Knowledge about Temporal Intervals,”
Comm. ACM, vol. 26, no. 11, pp. 832-843, 1983.

[33] J. Xiao, Y. Zhang, X. Jia, and T. Li, “Measuring Similarity of
Interests for Clustering Web-Users,” Proc. 12th Australasian
Database Conf. (ADC ’01), M. Orlowska and J. Roddick, eds.,
pp. 107-114, 2001.

[34] C. Faloutsos and S. Christodoulakis, “Signature Files: An Access
Method for Documents and Its Analytical Performance Evalua-
tion,” ACM Trans. Office Information Systems, vol. 2, no. 4, pp. 267-
288, 1984.

[35] Y. Chen, “On the General Signature Trees,” Proc. 16th Int’l Conf.
Database and Expert Systems Applications (DEXA ’05), pp. 207-219,
2005.

[36] H. Kitagawa, Y. Fukushima, Y. Ishikawa, and N. Ohbo, “Estima-
tion of False Drops in Set-Valued Object Retrieval with Signature
Files,” Proc. Fourth Int’l Conf. Foundations of Data Organization and
Algorithms (FODO ’93), pp. 146-163, 1993.

[37] Y. Chen, “Building Signature Trees into OODBs,” J. Information
Science and Eng., vol. 20, no. 2, pp. 275-304, 2004.

[38] J. Yang and M. Hu, “Trajpattern: Mining Sequential Patterns from
Imprecise Trajectories of Mobile Objects,” Proc. 10th Int’l Conf.
Extending Database Technology (EDBT ’06), pp. 664-681, 2006.

834 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Edi Winarko received the BSc degree in
statistics from Gadjahmada University, Indone-
sia, the MSc degree in computer science from
the School of Computing, Queen’s University,
Canada, and the PhD degree on the discovery
and retrieval of temporal rules in interval
sequence data from the School of Informatics
and Engineering, Flinders University, Australia.
He is currently with Gadjah Mada University,
Yogyakarta, Indonesia. His current interests

include temporal data mining, Web mining, and information retrieval.

John F. Roddick received the BSc(Eng)(Hons)
degree from Imperial College London, the MSc
degree from Deakin University, and the PhD
degree from La Trobe University. He is currently
the SACITT chair in information technology and
the head of the School of Informatics and
Engineering, Flinders University. He joined
Flinders University in 2000 after 10 years of
being with the University of South Australia and
five years of being with the University of

Tasmania. This was followed by 10 years of experience in the computing
industry as (progressively) a programmer, analyst, project leader, and
consultant. He has published more than 100 papers in a number of
areas of computing but specializes in the fields of data mining and
knowledge discovery, specifically in temporal and spatial data mining
and as applied to medical and health data, and conceptual modeling,
specifically in enhanced database systems semantics such as schema
evolution and temporal and spatial systems design and use. He is a
member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WINARKO AND RODDICK: A SIGNATURE-BASED INDEXING METHOD FOR EFFICIENT CONTENT-BASED RETRIEVAL OF RELATIVE... 835

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

