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Abstract

The detection of recurrent episodes in long strings of to-
kens has attracted some interest and a variety of useful
methods have been developed. The temporal relation-
ship between discovered episodes may also provide use-
ful knowledge of the phenomenon but as yet has received
little investigation. This paper discusses an approach
for finding such relationships through the proposal of
a robust and efficient search strategy and effective user
interface both of which are validated through experi-
ment.
Keywords: Temporal Sequence Mining.

1 Introduction and Related Work

While the mining of frequent episodes is an important
capability, the manner in which such episodes interact
can provide further useful knowledge in the search
for a description of the behaviour of a phenomenon.
For example, discovering a relationship between input
data which was hitherto thought to be independent
might lead to the discovery of physical correlations
between the environments within which the sensors
generating the input data operate. Moreover, any
temporal relationships might be used to predict future
values in the sensor providing the later input.

General association mining algorithms are used to
generate frequent itemsets from which intra-transaction
association rules are generated. The sequence min-
ing task is the discovery of inter-transaction associa-
tions – sequential patterns – across the same, or simi-
lar data. This problem was first addressed by Agrawal
and Srikant [2] for mining transactional databases. The
solution was based on extending the Apriori algorithm
[1] and introduced the AprioriAll, AprioriSome, and Dy-
namicSome algorithms. In order to address identified
shortcomings, notably the time between associated se-
quences, single transaction constraints and to a lesser
extent user-defined taxonomies, the GSP (Generalised
Sequential Patterns) algorithm [23] was developed. GSP

incorporated time constraints (minimum and maximum
gap between episodes), and sliding windows, and proved
to be more efficient than its predecessors.

Typically improvements in performance have come
about by employing a depth-first approach to the min-
ing, as opposed to the more traditional breadth-first ap-
proach, and it has been recognised by Yang et al. [25]
that these methods generally perform better when the
data is memory-resident and when the patterns are long.
As a result, algorithms based on a depth-first traversal
of the search space were introduced and there was an in-
creased focus on incorporating constraints into the min-
ing process. Among these algorithms are SPADE (Se-
quential PAttern Discovery using Equivalence classes)
[27] and its variant cSPADE (constrained SPADE) [26]
which relies on combinatorial properties and lattice
based search techniques and allow constraints to be
placed on the mined sequences, and the SPIRIT (Se-
quential Pattern mIning with Regular expressIon con-
sTraints) algorithm [11] using regular expression con-
straints. All of these algorithms use a candidate gener-
ation and prune method requiring multiple passes over
the data that has inherent problems with large datasets
and long sequences, and as a result pattern-growth al-
gorithms have appeared. PrefixSpan [21] being one rep-
resentative of this type of algorithm.

The ever increasing amount of data being collected
has also introduced the problems of how to handle
the addition of new data within an existing ruleset
and the possible non-relevance of older data, and in
association rule mining methods have been proposed
to deal with this [8]. With respect to these problems
sequence mining is no different and similar techniques
have also been developed [18, 20, 28].

The data used for sequence mining is not limited to
data stored in overtly temporal or longitudinally main-
tained datasets – examples include genome searching,
web logs, alarm data in telecommunications networks,
population health data etc. In such domains data can
be viewed as a series of events occurring at specific times



and therefore the problem becomes a search for collec-
tions of events (episodes) that occur frequently together.
Solving this problem requires a different approach, and
several types of algorithm have been proposed for differ-
ent domains. Manilla et al. [17] developed the WINEPI
algorithm and evaluated it on alarm detection data; reg-
ular expressions have been used to develop string match-
ing algorithms [3, 7] and in web mining [22]. In addition,
Yang et al. [25] developed a method that uses a compati-
bility matrix 1 in conjunction with a match metric (“ag-
gregated amount of occurrences”) to discover long se-
quential patterns within (primarily) gene sequence data.

The purpose of generating frequent sequences, irre-
spective of the method, is to be able to infer some rules,
and thus potential knowledge about behaviour. For ex-
ample, given the sequence A . . . B . . . C occurring in a
string multiple times, rules such as: token (or event)

A
before−→ B

before−→ C, can be expressed. It has been
argued by Padmanabhan et al. [19] that these types of
inference, and hence the temporal patterns, have limited
expressive power. For this reason mining for sequences
and the generation of rules based on first-order tempo-
ral logic (FOTL) [19], has extended the previous work
by Manilla et al. [16] to include inferences of the type
Since, Until, Next, Always, Sometimes, Before, After
and While, by searching the database for specific pat-
terns that satisfy a particular temporal logic formula.
One disadvantage to this approach is that no interme-
diate results are obtained and thus any mining for a
different temporal logic pattern must be conducted on
the complete database, incurring significant overhead.

Höppner et al. [13, 14] use a modified rule semantic,
J-Measure and rule specialisation to find temporal rules
from a set of frequent patterns in a state sequence. The
method described uses a windowing approach, similar
to that which is used to discover frequent episodes, and
then imposes Allen’s interval logic [4] to describe rules
that exist within these temporal patterns. Kam et al.
[15] deal with temporal data for events that last over a
period of time and introduce the concept of temporal
representation and foster the view that this can be used
to express relationships between interval based events,
also using Allen’s temporal logic.

This type of temporal inference is aligned with the
type of interactions we are mining, although in this pa-
per we are limiting the scope of our search to a sub-
set of Allen’s temporal relationships, and we propose a
method that is based on point relationships that may
exist within the frequent episodes, not between the fre-
quent episodes. We also take the approach of mining

1a conditional probability matrix that specifies the likelihood
of symbol substitution

the frequent episodes and incrementally mining the re-
sults, in situ, to obtain the interactions. By proceeding
in this manner we are able to save the intermediary re-
sults (frequent episodes) and the interactions in order
that both may be mined at a future time, using differ-
ent constraints, with a significantly reduced overhead.

This paper investigates the mining of temporal rela-
tionships within frequent episodes in a potentially very
long string of tokens. Sections 2 and 3 presents the prob-
lem formally and presents a methodology for solving it.
Since visualisation techniques have not been well exam-
ined, Section 4 discusses the user interface constructed
to view discovered interactions, and Section 5 discusses
our experiments using real-world data. Section 6 con-
cludes with some discussion of future work.

2 Frequent Episode Discovery

The problem of discovering interacting episodes is one
that consists of two distinct parts. First (phase 1),
the mining of the frequent episodes and second (phase
2), using the discovered frequent episodes as input for
the discovery of the interactions. However, since the
frequent episodes are available after each pass of the
input sequence, phase 2 can be performed in parallel.
Note that the two phases are sufficiently different, as
is the terminology used, and as such in this section we
define the sequence mining problem and the following
section defines the interacting episode mining problem.
Each section begins by defining the notation that will
be used and is followed by detailing the method and the
algorithms designed for the tasks.

Let the set of available input tokens (the alphabet),
denoted T , be defined as T = 〈t1, . . . , tk〉 | ti 6= tj , i 6=
j, 1 ≤ i, j ≤ k. A sequence S is then defined as a time
ordered (<) sequence of input tokens and is denoted
S = 〈s1, s2, . . . , sm〉 | si ∈ T, 1 ≤ i ≤ m. An episode,
denoted E, is a sequence of tokens, 〈sn, sn+1, . . . , sn+k〉,
where E ⊆ S. The time at which an event occurs can
either be inherent in the input data (as would be the
case with alarm detection data), or be implied from
the ordering of the input sequence. In the context of
our current work this ordering must be strictly less
than (<), that is the relationships being discovered
do not require the consideration of events that occur
simultaneously. Future work will address the case where
this constraint is relaxed.

The user defined lookahead, l (similar to Mannila
et al.’s window concept[17]), defines the maximum
length episode to be mined, where |E| ≤ l ≤ |S|.
A window, denoted w, is defined as the length of E,
where |E| ≤ l, at any point during the mining process.
Therefore the maximum number of windows, max win
is given by |S| − w + 1 and the frequency of E in S is



defined as the number of windows in which E appears.
The minimum frequency required for an episode to
be reported, min freq denoted δ, is calculated using a
support, σ (user defined), multiplied by max win at any
given point in the mining run. Calculating the minimum
frequency in this manner allows for potentially more
interesting longer episodes to be reported at a lower
threshold since there are fewer windows for longer
episodes.

The values for both the lookahead l and support
σ can be varied on each successive mining run, refer to
Section 4 for details. The tuning of support for different
datasets poses quite a challenge and often requires a
detailed knowledge of the domain so that the mining
does not produce either too many or too few results.

Thus the problem for this phase becomes: find all
episodes

Ei on {S | Ei ≤ l, freq(Ei) ≥ δ, δ = (|S| − w + 1)× σ}

The algorithm we use for finding the frequent
episodes, see Algorithm 2.1, is a breadth-first search of
the input sequence starting with single token episodes.
These are pruned according to min freq, δ, and added to
the set F1 of frequent episodes. The classic generation
of frequent k length episodes, where k ≥ 2, involves
the self-join of the frequent (k -1 episodes, subsequent
pruning in accordance with the anti-monotone Apriori
heuristic (downward closure principle)2 [1], and finally
frequency derivation through a scan the dataset. The
algorithm used is a modified version of the WINEPI
algorithm [17] for finding serial episodes, which uses a
combination of this principle (downward closure) and
a prefix lookup. In our case a similar technique is
used, but since only episodes that consist of contiguous
tokens are presently of interest, the window width can
be increased by one and then a check can be made to
see if the first k tokens of the (k+1) episode occur
in the current window. In order to minimize the
size of the candidate sets on subsequent passes of the
algorithm we take advantage of this and maintain a set
of the k -prefixes of frequent episodes which can then
be used to improve valid candidate generation. Thus
on each subsequent pass of the algorithm the window
width is increased by one and the first k tokens of the
generated (k+1) candidates are checked against the k -
prefixes and retained if there is a match. This candidate
pool is then pruned and those candidates that meet
the min freq requirements are stored in Fk+1. The
algorithm terminates when either the lookahead, l, is
reached or Fk+1 = ∅.

2if any length k pattern is not frequent in the database, then
its length (k+1) super-pattern can never be frequent

Algorithm 2.1 Main algorithm for finding frequent
episodes and frequent interactions
Input: a sequence S, of tokens t ∈ T , a lookahead l

and a support σ
Output: the collection F(S, l, σ) of frequent episodes

E and the collection Fr of frequent interactions.
1: find C1 := {α ∈ T | |α| = 1 } ;
2: i := 0 ; found := true
3: while i++ < l and found do
4: for j := 0; j < |S| − i + 1; j++ do
5: α := Sj , . . . , Si+j

6: δ := (|S| − |α|+ 1)× σ;
7: if i > 1 then
8: if αk ∈ Fk | αk = 〈t1 . . . ti−1〉 then
9: add α to Cj

10: end if
11: else
12: add α to Cj

13: end if
14: end for
15: found := Fi 6= ∅ where

Fi := { ∀ α ∈ Cj | frequency (α, S, l) ≥ δ }
/* prune */

16: if i > 2 and found then
17: findCurrentRelationships(F1..i, i)

/* Algorithm 3.1 & 3.2 */
18: end if
19: end while
20: Fr := pruneCandidateInteractions(Ir)

/* Algorithm 3.3 */
21: return F(S, l, σ) , Fr

3 Discovering Interacting Episodes

During the discovery of the frequent episodes (Algo-
rithm 2.1, line 16), the second phase, finding the inter-
actions that exist within them begins. Let an interac-
tion θ be a temporal relationship between sub-episodes
(ei, ej) | |ei|+ |ej | ≤ l, denoted θr(ei, ej) ∈ R, where R
is the set of temporal relationships as described by Allen
[4]. To allow for varying length interactions to be dis-
covered, or simply to minimise the interaction length, a
min interaction length, γ, can be supplied by the user,
and to allow for varying levels of support a user-defined
min interaction supp, ϕ, can also be supplied. The ex-
act nature of ϕ will be discussed later. Thus the problem
for this phase is: find all

θr(ei, ej) on {Ei | ei, ej ≥ γ , θr(ei, ej) ≥ ϕ }

The following two examples serve to illustrate the
nature of the problem.



Figure 1: Section of an input string showing varying window widths.

Example 1.

Given the frequent episodes E1, E2, E3 where:

E1 = 〈B,R, I, J,A, V, E〉,

E2 = 〈B, I, R,A, J, V, E〉, and

E3 = 〈B,R,A, I, J, V, E〉.

By inspection it can be seen that if e1 = 〈I, J〉 and
e2 = 〈B,R, A, V,E〉 then the temporal relationship IJ
during BRAVE exists.

A more complex example can be shown using the
frequent episodes from Figure 1 as a source for the
discovery of the interactions.

Example 2.

Given the following frequent episodes:

A1 = 〈G, L, A, T, I, N,R,E, E, K〉

B1 = 〈E,N, G,C,A, N, T,O,N,E, S,E, L, I, S, H〉

C1 = 〈G, E, F,R, E, R,M,A, N, N,C,H〉

C2 = 〈G, E, R,M,A, N, F,R, E, N,C,H〉

D1 = 〈L,D,U, T, C,H, A, T, I, N〉

D2 = 〈L,A,D,U, T, C, H, T, I, N〉

• Episodes A1, B1, D1, and D2 are all examples of
the during relation, denoted θd(e1, e2) – LATIN
during GREEK, CANTONESE during ENGLISH
and DUTCH during LATIN respectively,

• Episode C1 is an example of an overlap relation,
denoted θo(e1, e2) – GERMAN overlaps FRENCH,
and

• Episode C2 is an example of a meets relation,
denoted θm(e1, e2) – GERMAN meets FRENCH.

From our experience, while in simple examples, one
can easily detect the relationship, as the episodes get
longer or more numerous, this task becomes increasingly
difficult quite quickly. A further feature in the discovery
is the point at which embedded noise becomes part of
the dominant relationship. This depends on a number
of aspects:

• Whether the sub-episode is frequent in its own
right or whether it is only frequent with its noise.
For example, given the frequent episodes α1β α2

and β and the non-frequent episode α1α2 we
need to decide whether α1α2 is reportable and/or
whether α1β α2 is a separate reportable episode
from β.

• The decision of how to deal with common to-
kens within both a dominant and an embedded
sub-episode, as in DUTCH during LATIN in
Example 2.

• The decision of how to handle noise that interrupts
an episode at different locations. Given frequent
episodes α1α2α3, α1βα2α3 and α1α2βα3, and in-
frequent episodes α1α2α4βα3 and α1βα2α4α3, how
can it be recognised (simply) that α4 is noise and
that β is during α1α2α3?

The rest of this section demonstrates how we dis-
cover the interactions and deal with these problems.

3.1 Algorithms for Interaction Discovery
Time can be viewed as both discrete and linear in

nature and, with the exception of Allen [5], a logic of
intervals can be constructed using points rather than
from intervals themselves [12]. We also take this view in
our approach to discovering interactions and as such the
algorithm for discovering candidate interactions within
the discovered frequent episodes is based on the set of
point relationships, Figure 2, between two episodes a
and b.

i. a.start and b.start
ii. a.start and b.end
iii. a.end and b.start
iv. a.end and b.end

Figure 2: Point relationships

These relationships can be used to express the
complete set of Allen’s [4] temporal relations, those
of which are immediately relevant during, overlaps,
meets and their inverses, are summarised in Table 1.
To handle the remaining seven of Allen’s relationships
(starts, finishes, before and their inverses, and equal),



Endpoint
Relation Sym Example Conditions

Constraints

α meets β m
β is met by α mi

αααβββ α.start < β.start and α.end < β.start < < < <

α during β d ααα
β contains α di ββββββ

α.start > β.start and α.end < β.end > < > <

α overlaps β o ααα
β is overlapped by α oi βββ

α.start < β.start and α.end < β.end < < > <

Table 1: Temporal Relationship Summary

and the extensions of Freksa [10] who deals with semi-
intervals, requires a level of relaxation with respect to
the position one or more of the tokens. This may be
appropriate, for example, if data are from n polled
sensors and the presented position of a token can be
up to n− 1 places out of position with respect to actual
events.

Interaction candidate generation is com-
puted by searching for each Ek ∈ Fk in all
{Fk+n | n = 1, . . . , max len episode− 1 }. This
method will yield ei, the frequent Ek ∈ Fk, and ej , the
substring which remains after Ek has been removed
from the frequent Ek+n ∈ Fk+n. A determination
can then be made, using the four point relationships
(Figure 2) as to which temporal relationship they
satisfy, see Algorithms 3.1 and 3.2 below.

Algorithm 3.1 findCurrentRelationships
Input: a collection F(S, l, σ) of frequent episodes E

and the current iteration level of the main algo-
rithm, curr.

Output: the collection of candidate interactions Ir

1: for i := 0; i < curr − 1; i++ do
2: ei := Fi

3: for j := 0; j < Fcur.size; j++ do
4: ej := Fj

5: Ir := findAnyRelationships(ej , ei)
/* Algorithm 3.2 */

6: end for
7: end for
8: return Ir

The volume of candidates generated in this manner
can be high and therefore a suitable reporting threshold
needs to be applied. This threshold could be based on
a combination of a number of factors including:

• The combined episode length,

• The maximum number of possible combinations
that a sub-episode can occur within another
sub-episode,

Algorithm 3.2 findAnyRelationships
Input: an episode f and an episode p, |p| < |f |
Output: the temporal relationship θr(p, f − p) that

exists between p and f or, null if no relationship
exists.

1: if (f-p) = ∅ then
2: return null
3: else
4: find p.start, p.end, (f-p).start and (f-p).end
5: determine θr and add it to Ir

6: end if
7: return Ir

• Whether the frequency (count) of an interaction
expressed as a percentage of the total frequency of
the frequent episodes of length |ei|+ |ej | is greater
than a user defined support.

While the determination of appropriate reporting
thresholds is an area of ongoing research, for the pur-
poses of this investigation we have found that the last
criterion yielded satisfactory results, for both the syn-
thetic and the genome data used (see §5). Formally, to
be included in the frequent interactions,

Fri ←

 frequency r
n∑

k=0

frequency |rk|
≥ ϕ


where ϕ is the user defined min interaction supp. It
should be noted that this metric is highly dependent on
the number of frequent episodes that were discovered
and is therefore linked to the min support, δ, the setting
of which has already been discussed. The method
for performing this task is shown in Algorithm 3.3.
Moreover, we report only maximal interactions where,
given that an interaction is comprised of an antecedent
and a consequent, all subsets of the longest antecedent
and consequent are pruned.

As well as the relationships outlined in Table 1,



Enclosing Enclosed Combined

FR NF FR NF FR NF
Relationship Type

X X X During, Overlap, Meets

X X X not possible

X X X Participant

X X X not possible

X X X Container

X X X never reported

Table 2: Possible configurations of sub-episodes within a frequent
episode. FR: frequent, NF : non-frequent

Algorithm 3.3 pruneCandidateInteractions
Input: a list of candidate relationships, Ir and a

min interaction supp, ϕ
Output: a list of frequent relationships Fr , where
{θr(ei, ej) ∈ R | θr(ei, ej) ≥ ϕ}

1: for i := 0; i < Ir.size; i++ do
2: r := Ir(i)
3: r.supp := frequency r

n∑
k=0

frequency |rk|

4: if r.supp ≥ ϕ then
5: add r to Fr

6: end if
7: end for
8: return Fr

the questions raised in the previous section can also
be answered using this point based approach. The
source of common tokens within both a dominant and
an embedded sub-episode is handled directly by the
point based approach since the only interest is in the
start and end of the sub-episodes, and therefore the
method locates the first token that results in a match for
the sub-episode in question. Sub-episodes interrupting
at different locations satisfy one of the three classes
of relationship, θd, θo, or θm, and therefore yield the
same two sub-episodes, ei and ej , and as such the
count for that particular combination of sub-episodes
can be incremented. This will result in an increased
support and hence will indicate a stronger relationship.
In addition, since this method finds all relationships,
the problem of whether the sub-episode is frequent in
its own right or whether it is only frequent with its
noise can be handled by reporting in such a way as to
discriminate between those that are fully temporal, that
is both sub-episodes ei and ej are frequent, and those in
which either ei or ej are not frequent in their own right.
For the latter case we have defined relationships that
are either, container relationships, where the enclosing

sub-episode is not frequent, or participant relationships,
where the enclosed sub-episode is not frequent. This
leads to the possibilities outlined in Table 2.

4 User Interface

In order to facilitate algorithm use, and to view the re-
sults in a way that enables the user to more easily select
those episodes and interactions that are of most interest,
we have developed a graphical user interface. A common
problem identified with data mining routines is that the
amount of results produced can be large and difficult
to interpret, hence methods for constraining the output
have been implemented. We have also adopted the po-
sition that allowing the user to minimise the resultant
output is beneficial and therefore the user interface for
the INTeracting Episode Miner and viewer (INTEM),
Figure 4, enables the setting of all currently imple-
mented constraints (lookahead, episode support, inter-
action support and minimum interaction length). The
results of the mining run (frequent episodes) and the dis-
covered frequent interactions are then able to be viewed
in both text format and as a directed graph. The di-
rected graph not only allows the user to view the entire
sequence, but also shows the points at which interac-
tions take place. This feature is most useful when the
same sub-episode occurs at different points within the
discovered frequent episode. A brief description of the
interface and the way in which it can be used is given
below.

The interface is comprised of four main areas:

• The left panel, which contains a tab pane enables
the user to switch between viewing the results in a
text format or as a directed graph.

• The right panel houses the controls for; the
selection of input and output files, setting of the
lookahead, support (episode and interaction), con-
current mining of interactions and the minimum
sub-episode length. There is also a check box



Legend

Node Colour Description

Green Root Node for the interaction (E)

Blue Enclosing sub-episode (G, L, I, H)

Orange Enclosed sub-episode (C, A, T, O)

Purple Shared node of both enclosing and enclosed sub-episodes (N, S)

Edge Colour

Black Relationship between two Nodes and their supports

Gray The point(s) at which the enclosed sub-episode begins/ends

within the enclosing sub-episode

Figure 3: Screen shot of the INTEM application showing the interaction
CANTONESE during ENGLISH which was discovered in the DAT16-1200 file

enabling the support to be displayed/not displayed
on the graph.

• The centre panel houses two tree structures the
purpose of which is to enable selection of either a
frequent episode or an interaction and have the
graphical display reflect that selection.

• The bottom panel contains an area for displaying
program execution information.

Currently the application can be used in two modes:

Mode 1: For selection of an input file to mine. This
results in saved output files for the frequent
episodes, frequent interactions and a file that is
the backing for the graphical display.

Mode 2: For selection of previously generated output.
In this mode files from a previous mining session

are read in to the application so that interactions
may be viewed.

The flexibility offered by Mode 2 enables the visualisa-
tion to be decoupled from algorithms that produce the
episodes and interactions, therefore output files gener-
ated from different mining algorithms may be used as
long as they conform to the required input file specifica-
tions. The INTEM software, while functional, is still
being developed and therefore further research, depen-
dent on the application area, will be undertaken in order
to facilitate a greater range of user defined parameters
and interaction. It is intended that this process will be
undertaken in parallel with algorithmic developments in
this area.



5 Experimental Results

This section outlines the experiments we have run using
the INTEM software under different support levels
and a lookahead value of 60. All of the algorithms
and the user interface (see Section 4) were developed
using JavaTM (J2SDK 1.4.2) and the experiments were
conducted on a 1.2GHz Athlon PC with 512Mb of main
memory. Three of the four input files were synthetically
produced ASCII text files ranging in size from 200Kb
to 1.2Mb, the fourth was taken from the first 25,000
rows of the Human Genome. The set of tokens for the
synthetic files was taken from the upper-case alphabetic
characters, T = 〈A . . . Z, #, /〉, while the genome file
had the five characters T = 〈A,C, G, T,N〉. Table 3
summarises the nature of the files used.

File Size of Number of

Name Token Set Tokens

DAT7-200 28 199,384

DAT15-650 28 650,918

DAT16-1200 28 1,151,360

GEN-1200 5 1,178,371

Table 3: Experimental file specifications

The smallest file (DAT7-200) was used for algorith-
mic development, since we knew the composition and
what we expected to find. The remaining synthetic files
and the Genome file (GEN-1200) were mined after al-
gorithm completion. In common with many sequence
mining applications and because of the differences be-
tween the disk and bus speeds of various platforms, the
test algorithms were developed to be memory resident
and thus the time provided can be more readily com-
pared. An added time factor for reading the files should
be included to obtain the total time3 Figure 4(a) shows
the actual processing times, excluding any I/O, for the
mining of the episodes and the interactions concurrently.
The times displayed in Figure 4(a) are for the generation
of the frequent episodes shown in Figure 4(b).

The larger token set for the synthetic data files
produced fewer frequent episodes, by a factor of 8
against the genome data (Figure 4(b)), and as such
the support metric that was used for reporting the
frequent interactions (see §3.1 for details) was more
appropriate. Thus, in order to assess the algorithms
using the genome data a support level was chosen

3In our experiments, for the Genome Data, this was approx-

imately 4 seconds and proportionally quicker with the other
datasets. Note that since the algorithms run in-memory, read-

ing the input file only has to occur on the first run, after which
different lookahead distances and support levels can be supplied
without incurring this initial overhead.

where an excessive number of frequent episodes was
not going to be a major contributing factor. Since
the interactions are able to be mined independently of,
as well as concurrently with, episode production actual
processing times are able to be reported , Figure 5(a),
for the algorithms that have been developed. The times
displayed in Figure 5(a) are for the generation of the
frequent interactions shown in Figure 5(b). All of the
tests were run using a minimum sub-episode length of
one, which can be viewed as the worst case scenario
(most frequent interactions produced), and although the
results of constraining the minimum sub-episode length
are not shown here, it is apparent that this would reduce
both the processing time and the number of frequent
interactions produced.

6 Future Work

This paper discusses the development of a method for
mining relationships between interacting episodes based
on a subset of the temporal logic expressed by Allen [4]
and shows that the method is robust. However, related
research questions remain, including; the allowance of
noise in one or both of the sub-episodes, in order to
accommodate the full set of temporal relationships and
those that are based on the semi-intervals of Freksa
[10], the meaning and implications of the two newly
defined relationships (container and participant), and
the relevance of the methodology in different domains.
In answering these questions it may be necessary to
incorporate methods available in constrained pattern
mining research, or perhaps to extend those that are
applicable to the current environment.

The reporting of episodes and interactions are based
on frequency metrics, imposed as user-defined con-
straints, and while this produces valuable results it may
be necessary to alter this approach to cater for more
diverse data in different domains. For example, the re-
porting heuristic for interactions (see §3.1), while ade-
quate for some domain data, has proved to be lacking in
datasets that generate numerous frequent episodes, and
hence a different heuristic is required. Methods that are
not based solely on frequency metrics, for example, the
concept of information gain as discussed in [24], and
the use of string edit distance techniques [6, 9] applied
to the candidate episodes and interactions, both inde-
pendently and in concert may assist in overcoming the
problems associated with numerous frequent episodes,
and allow us to report interactions that are both fre-
quent and of interest.

Finally, the fact that our algorithms are memory
resident imposes a limitation on the size of the files
that we are able to process and while this may not
be a problem in some domains, a different strategy for



(a) Processing time as a function of support.

GEN-1200 uses the primary y-axis (left) for its values

(b) Number of frequent episodes as a function of support.

GEN-1200 uses the primary y-axis (left) for its values

Figure 4: Processing time and frequent episode production using a lookahead distance of 60
and varying levels of support

(a) Processing time as a function of support (b) Number of frequent interactions as a function of support

Figure 5: Execution time and frequent interaction production using frequent episodes mined
at a support of 0.0005 with varying levels of interaction support

dealing with the majority of real-world data sets will
be necessary. It is our belief that solving this problem
will also allow us to make progress toward processing
real-time data, thus expanding the application areas to
which our process is applicable.
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