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Abstract

Image segmentation based on minimum spanning trees
(MST) is used to identify the pectoral muscle in screening
mammograms. The segmentation found using the MST is
used to initialise an active contour for finding an anatom-
ically reasonable estimate of the boundary of the pectoral
muscle. The error is reported in terms of the number of in-
correctly assigned pixels. Out of 83 images, 25 images have
error rates less than 5 percent and 56 images have error
rates less than 10 percent. The nature of the errors encoun-
tered indicates that the accuracy of computer algorithms for
this task is approaching its practical limit.

1. Introduction

Several different methods have been explored for using
graph theory ideas to improve image segmentation [1], [5],
[6], [8], [3]. Methods based on graph theory are appeal-
ing because of their potential to incorporate global image
information into the segmentation process. These methods
work best if the regions forming the intended segmentation
are well defined in terms of intensity or other derived im-
age property. In many images, physical objects appear as
regions in the image that are not uniform with respect to a
well defined property. In x-ray images, for example, ob-
jects of interest may be of non-uniform thickness or den-
sity or may be partially obscured by other objects. In such
cases, the object of interest may be viewed as comprising a
number of regions each of which is relatively uniform with

respect to intensity.

In this study, a graph theoretical method based on min-
imum spanning trees (MST) [1] is used to recognise the
pectoral muscle in screening mammograms. Finding the
pectoral muscle is important for automatic image registra-
tion and because some automatic processes for detection of
anomalies associated with breast cancer are designed to be-
have differently in the region of the pectoral muscle than in
the breast region.

The densest part of the pectoral muscle is often the
brightest object in medio-lateral oblique view mammo-
grams. However, in many cases, the muscle varies in thick-
ness and, in its entirety, is not restricted to an exclusive
range of intensity values (Figure 1). Segmentation based
on MST alone results in anatomically unrealistic represen-
tation of the pectoral muscle in many mammograms. By in-
corporating geometric information, the segmentation is ad-
justed to arrive at a largely correct delineation of the pec-
toral muscle. The remaining error lies in the detail of the
boundary of the region identified. The detail is subsequently
corrected by using the initial segmentation to initialise an
active contour.

The MST algorithm is explained in Section 2 and the
active contour adapted for this study is presented in Section
3. The data are described in Section 4 followed by results
in Section 5 and discussion in Section 6.
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Figure 1. The pectoral muscle is the large,
bright triangular region in the upper right cor-
ner of the left image (image mdb099) and
the upper left corner of the right image (im-
age mdb090). Although the pectoral mus-
cle is clear in both these cases, the inten-
sity of the pectoral muscle in the right image
varies greatly and much of the muscle is not
as bright as large parts of the breast region.

2. Image segmentation using MST

2.1 The MST algorithm

The MST process starts with a graph, G = (V, E), where
the set of vertices, V , is the set of pixels in the image to be
segmented and the set of edges is

E = {(vi, vj) : ‖vi − vj‖ ≤ d} (1)

where ‖ · ‖ denotes a suitable norm. The set E determines
the level of connectivity to be considered. If d = 1 and
the norm is ‖w‖1 = maxk |wk|, where wk indicates the
k-th component of w, then every vertex is connected to its
immediate eight neighbours. With this norm and d = 2,
every vertex is connected to its immediate 24 neighbours.

The method proceeds by constructing a new graph, H =
(V, F ), with F ⊂ E in such a way that the (connected)
components of H correspond to the desired segmentation
of the image. Initially, F = ∅. This means there are no
edges and so each vertex in V (each pixel in the image) is a
separate component. In subsequent iterations, the elements
from E are considered one at a time for inclusion in F .

The criteria for inclusion depend on weights assigned to
edges according to the weight function

w ((vi, vj)) =
{ |I(vi) − I(vj)| , (vi, vj) ∈ E

∞, otherwise (2)

where I (vi) represents the image intensity (or other image
property) at the vertex vi.

The steps of the algorithm are as follows [1]

1. Sort elements of E by edge weight to form a sequence
e1, e2, . . . , em with w(ei) ≤ w(ej) for i ≤ j.

2. Set H0 = (V, F 0) where F 0 = ∅.

3. Repeat step 4 for q = 1, ..., m, where m = |E|.
4. Construct Hq = (V, F q) given Hq−1 = (V, F q−1)

as follows. Let vi and vj denote vertices connected
by the q-th edge in the ordering, i.e. eq = (vi, vj).
If vi and vj are in disjoint components of Hq−1 and
w (eq) is small compared to the internal variation of
both components, set F q = F q−1 ∪ {eq}. Otherwise,
set F q = F q−1.

5. Return H = Hm.

To understand these steps, formal definitions are needed
for components, as well as internal and external variation.

The graph C = (V ′, F ′) is called a connected compo-
nent of H = (V, F ) if V ′ ⊂ V , F ′ ⊂ F , and for all
vi, vj ∈ V ′, there exists a sequence of vertices vk, k =
1, 2, . . . , n such that v1 = vi, vn = vj , and (vk, vk−1) ∈ F ′

for k = 2, 3, . . . , n. In other words, its possible to visit all
the vertices in V ′ by following edges in F ′.

The internal variation of a component C ⊂ H is defined
as the maximum weight edge in any minimum spanning tree
of C. Hence,

Int(C) = max
e∈MST (C)

w(e), (3)

where MST (C) stands for a minimum spanning tree of C.
The minimum internal variation for components C1 and C2

is defined by

MInt (C1, C2) = min (Int (C1) + τ (C1) ,

Int (C2) + τ (C2)) , (4)

where the threshold function τ is given by

τ(C) =
k

|V ′| . (5)

Here k is a positive integer, and |V ′| is the number of ver-
tices in V ′, where C = (V ′, F ′).

Finally, the external variation between components
C1 = (V ′

1 , F ′
1) and C2 = (V ′

2 , F ′
2) is defined as

Ext (C1, C2) = min
vi∈V1,Vj∈V2

w ((vi, vj)) . (6)

Thus in step 4, edge eq = (vi, vj) is included in F q if and
only if vi ∈ V ′

1 , vj ∈ V ′
2 , V1 ∩ V2 = ∅, and

Ext (C1, C2) ≤ MInt (C1, C2) . (7)
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The constant k in the definition of τ controls the degree of
similarity between the components and hence the number
of components (and average size) found.

2.2 Preprocessing and cropping

Before applying the MST algorithm, the images were au-
tomatically cropped to a rectangle just large enough to con-
tain the general region of the pectoral muscle. Cropping
is expedient because the MST algorithm is computationally
intensive and because removing competing bright compo-
nents from consideration simplifies the processing.

In the rest of the paper, processing step will be described
for left breast images, meaning that the pectoral muscle ap-
pears in upper left corner of the image.

For the data used in the study (Section 4), images did
not appear flush with the left side of the film edge. To find
the left edge of the image (and hence the left edge of the
region containing the pectoral muscle), a simple threshold
was set at 100 (image intensity range 0 to 255). To find the
right edge of the region containing the pectoral muscle, the
top row of the image was inspected for intensity changes
consistent with the right edge of the pectoral muscle. The
top row was used because the pectoral muscle is most dis-
tinct at the top of the mammogram and because the pectoral
muscle is oriented so that the the top row provides the right
most extent of the pectoral muscle in the image. In the top
row, an interval of length at least two was considered con-
sistent if the intensity difference between consecutive pixels
was less than two (allowing ramps and noise, but not large
jumps). The intensity of a consistent interval was taken to
be the intensity the left most member of the interval. The
left most consistent interval with intensity less than a thresh-
old was taken to signal the right edge of the cropped regions
containing the pectoral muscle. For a given threshold, there
may or may not exist a consistent interval with satisfying
this condition. Accordingly, increasing values of the thresh-
old were tested starting from 120 until a value was found
for which such jumps existed. The lowest such threshold
was used. The vertical extent of the cropped region was de-
termined analogously. This simple scheme was designed to
take advantage of the fact that the pectoral muscle boundary
is distinct near the top of MLO view mammograms.

The cropped image was subsampled (4 × 4 → 1) and
smoothed using a one-dimensional Gaussian filter with σ =
0.5 and oriented at an angle θ = −π

4 to match, roughly, the
expected angle of the pectoral muscle boundary.

2.3 Implementation of MST

Implementation of the MST algorithm requires setting
E in equation (1) to establish the level of connectivity and
choosing the parameter k in equation (5). In the experi-

ments described below, the radius in the definition of E
was set to d = 2, and the norm was the maximum norm,
‖ · ‖max. Thus every vertex was connected to its immediate
24 neighbours. The value of k was set to 300. Values for
these parameters were found empirically.

The algorithm described above segmented the image into
a number of components. The largest component that over-
lapped the 10×10 square flush with the top of the image
but centered left to right was used to determine the pectoral
muscle boundary. In most cases, the resulting component
corresponded, roughly, to the whole pectoral muscle area.
In a few cases, the selected component covered 80 percent
or more of the cropped image. These cases were detected
automatically and were addressed by running the segmenta-
tion algorithm a second time with d = 1 instead of d = 2 in
the definition of E. This naturally results in a smaller num-
ber of components merging during the segmentation pro-
cess and consequently produces a finer segmentation. In
some cases, the resulting component still exceeded 80 per-
cent of the cropped image. These cases (about 5 percent
of the images) were also detected automatically and were
treated as described below.

The errors leading to overly large pectoral muscle com-
ponents stem from the fact that the lower part of the pec-
toral muscle is often poorly defined in the image. If other
dense tissue appears near the lower part of the pectoral
muscle, then the two components may fuse (Figure 2). In
these cases, the preliminary components showed character-
istic “fjords” corresponding to the portions of the pectoral
muscle boundary where the boundary was strong (Figure
2). The following steps were used to separate the pectoral
muscle portion of this component from the breast region.
Starting at the top of the image, the first row intersecting
the preliminary component was searched left to right for the
first “break point”, meaning the first pixel within the com-
ponent such that the next two pixels fell outside the compo-
nent. This pixel corresponded either to the right edge of the
component or to the left edge of the fjord. In subsequent
rows, the break point was defined as in the first row, except
that it was restricted to be no farther to the right than the
break point of the previous row. In this way, an anatomi-
cally reasonable extension of the pectoral muscle is found
in places where the boundary is weak (Figure 2).

3 Active contours

The MST method provided estimates of the pectoral
muscles that corresponded well to the true pectoral muscle
in terms of location and general shape. However, bound-
aries were ragged and generally appeared somewhat to the
left of the visually apparent boundary (Figure 3). To im-
prove the detail of the segmentation, the boundaries found
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Figure 2. On the left is a close-up view of the
pectoral muscle in image mdb118. The cen-
ter image shows the component associated
with the pectoral muscle (black region). This
component has fused with the component as-
sociated with the natural dense tissue in the
breast. The image on the right shows the re-
sult of adjusting the pectoral muscle bound-
ary by requiring that the boundary point in
each row appears in the same column or to
the left of the boundary point in the row im-
mediately above.

by MST were used to initialise a local segmentation method
based on active contours.

The algorithm for implementing active contours will
be described as it applies to the left breast. Let V =
v1, v2, ..., vN denote the set of pixels forming the current
pectoral muscle boundary. Let (xi, yi) denote the coordi-
nates of vi, i = 1, 2, ..., N . The adaptive deformable con-
tour model works by moving the boundary through the spa-
tial domain of the image to minimise a measure of energy
based on the following formulas.

Ei = αEin,i + βEex,i, (8)

where α, β are two weights controlling the internal and ex-
ternal energies Ein,i and Eex,i. The internal and external
energies are given by

Ein,i = a1V
′(vi) + a2V

′′(vi)
Eex,i = − |Ix(vi)| / max

I
(Ix),

where V ′(vi) and V ′′(vi) are the first and second derivatives
of the contour V at vi, I is the image, and

Ix =
∂I

∂x
. (9)

Figure 3. On the left is the boundary drawn by
the MST algorithm without further process-
ing. On the right is the boundary after us-
ing active contours to adjust the position and
smoothness. The image is mdb118, the same
as in Figure 2.

The weights a1 and a2 are used to control the relative contri-
butions of V ′(vi) and V ′′(vi) and were fixed for this study
at a1 = 1 and a2 = 2.

The internal energy serves to reduce the curvature of the
contour. This is important since the pectoral muscle has a
general smooth straight shape. The external energy drives
the contour toward strong edges in the image. This is im-
portant since the pectoral muscle generally appears much
brighter in the image than other tissue.

The snake is an open curve that only moves horizontally
in the image. This simplification takes advantage of prior
information regarding the general appearance and location
of the pectoral muscle in the image. The advantages are a
reduction of complexity and the convenience of using row
numbers as a fixed index for points at which the snake is
evaluated.

At every point vi, the energies are computed on the
asymmetric neighbourhood

Ωi = [(xi − 5, yi), . . . , (xi + 3, yi)]. (10)

Asymmetric neighbourhoods are used since the initial pec-
toral muscle boundary usually appears closer to the chest
wall than the true boundary.

The weights for internal and external energy, α and β,
are adjusted automatically as follows.

α = |xi − xi−1| + |xi+1 − xi| − 2 ∗ d

β = exp((max
Ωi

|Ix| − min
Ωi

|Ix|)/meanΩi |Ix|)
d = (x1 − xN )/N.
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The parameter α measures the local deviation of the
slope from the global average slope. When this value is
small, the external forces are allowed to dominate in order
to push the snake toward boundary. When α is large, the in-
ternal forces dominate to straighten the snake. Similarly, β
forces the snake to converge to the boundary quickly when
the snake as far away, but favours local straightening of the
snake over the rate at which it approaches the boundary
when it is close. As a result the snake attains an anatom-
ically realistic local shape as it moves toward the boundary.

The elements of Ωi will be denoted by ej , j = 1, 2, .., 9,
and the internal and external energies at these points will be
denoted by Ej

in,i and Ej
ex,i respectively. Thus

Ej
in,i = a1V

′
(ej) + a2V

′′
(ej)

Ej
ex,i = − |Ix(ej)| / max

I
(Ix),

where V
′
(ej) and V

′′
(ej) are the derivatives along the

curve obtained by replacing vi by ej .
To allow comparison between the different energy terms,

it is necessary to rescale them to the range [0, 1].

Êj
in,i =

Ej
in,i − Emin

in,i

Emax
in,i − Emin

in,i

,

Êj
ex,i =

Ej
ex,i − Emin

ex,i

Emax
ex,i − Emin

ex,i

,

where the superscripts min and max denote the minimum
and maximum of the respective quantities over the domain
Ωi. Thus the contour is driven to minimise

Êi = αÊin,i + βÊex,i. (11)

The energy of the contour is minimised iteratively. Each
iteration consists of minimising Êi for i = 1, . . . , N con-
secutively. At a given step, the point vi will be replaced to
the point ej , if

Êj
i = min Êk

i , k = 1, 2, ..., 9. (12)

In this study the number of iteration was fixed at 30 al-
though experiments showed that a stable contour was gen-
erally reached in fewer than 8 iterations.

4 Database

In order to compare the MST method with other methods
in the literature, 84 images were obtained from the Mini-
MIAS database of mammographic images [7]. More specif-
ically, the same images were selected as those used in the
study on identifying the pectoral muscle conducted by Fer-
rari, et al. [2]. The spatial resolution of these images is

200μm and depth resolution is 8 bit. The images in the
database are 1024 × 1024 pixels in size. For this study, the
images were further subsampled to 256 × 256 pixels.

In the work by Ferrari, et al. [2], boundaries found by the
algorithm were compared to boundaries drawn by a radiol-
ogist. The coordinates of the lines drawn by the radiologist
in that study were kindly provided by R. M. Rangayyan so
that our results could be compared to the same standard.

5 Results

One of the files containing the coordinates of the pectoral
muscle boundary drawn by the radiologist had an error and
could not be used in the study. In two of the images the
pectoral muscle was essentially missing in the image (Fig-
ure 4). Accordingly, the results presented here are base on
81 images rather than 84.

Figure 4. Unlike most MLO view mammo-
grams (Figure 1) the pectoral muscle is es-
sentially absent in these two images (mdb109
on the left and mdb098 on the right).

For each image, the number of pixels predicted to form
part of the pectoral muscle by the algorithm but that fell out-
side the pectoral muscle region determined by the radiolo-
gist was recorded. This number was normalised by the total
number of pixels in the pectoral muscle region determined
by the radiologist to obtain the false positive (FP) score for
the image (Table 1). Similarly, the number of pixels pre-
dicted by the algorithm to lie outside the pectoral muscle
but were found by the radiologist to lie within the pectoral
muscle were used to compute false negative (FN) score for
the image. This method of reporting the results was chosen
to allow direct comparison with results obtained by Ferrari
et al. [2] and by the authors in a previous study [4]
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Table 1. Comparison of pectoral muscle de-
tection using MST with other methods re-
ported in the literature using a common set
of images. The results quoted for the Hough
transform method and a method based Ga-
bor wavelets were obtained by Ferrari et al.
[2]. The results for adaptive pyramids (AP)
are from previous work by the authors [4].
The columns labeled FP and NF list the av-
erage FP and NF scores computed over all
the images in the study with the exception
noted at the beginning of this section. The
column labeled < 5 lists the number of im-
ages in the study with less than 5 percent
total error (FP+FN). Similarly, the columns la-
beled 5-10 and > 10 list the number of images
with total error in the ranges 5 to 10 percent
and greater than 10 percent, respectively.

Methods FP FN < 5 5-10 > 10
Hough 1.98 25.19 10 8 66
Gabor 0.58 5.77 45 22 17

AP 3.23 5.73 50 18 15
MST 1.64 12.03 25 31 25

6 Discussion

Table 1 shows that, in terms of assigning percentages of
pixels correctly to the pectoral muscle, the MST algorithm
does not perform quite as well as either the method based
on Gabor wavelets or or the method based on adaptive pyra-
mids. Graph theory based methods are computationally in-
tensive and are therefor in their infancy compared to the
multi-resolution filters on which the Gabor method is based.
The version of the MST algorithm described here is in some
sense quite primitive and it is likely that improvements can
be made. For example, only image intensities have been
used to measure the within and between variation of clus-
ters. The method lends itself to including other criteria such
as texture measures, shape, position, etc. These extension
have not been explored.

Although improvements are clearly possible, from a
practical point of view, the MST, Gabor wavelet, and AP al-
gorithms are all able to determine the pectoral muscle close
to what can reasonably be expected from any such scheme.
The pectoral muscle boundary found by the MST algorithm
in most cases agrees very well with the boundary drawn by
the radiologist (Figure 5). There are two reasons why the er-
ror encountered in these cases can be viewed as negligible.
In the first place, while the radiologist drawn boundaries

provide the best available gold standard, they are subjec-
tive. The visible boundary in the image represents the outer
extent of a rounded surface, surrounded by soft tissue. As
a result, the boundary is, in principle, not sharp at the pixel
by pixel level. The notion of a correct boundary at this res-
olution is artificial. In the second place, the level and dis-
tribution of error along the boundary seen in the examples
of Figure 5 will have little or no adverse effect on image
registration or region based image analysis which are the
ultimate objectives that motivate delineation of the pectoral
muscle.

Figure 5. The solid lines show the region of
the mammogram defined by the frame of the
image and the radiologists drawn boundaries
of the pectoral muscle. The dashed lines
show the boundaries found by the MST al-
gorithm followed by active contours. On the
left is the result for image mdb099 and the
result for image mdb090 appears in the cen-
tre. These are the same images as in Fig-
ure 1. The appearance of the pectoral muscle
in image mdb099 (left) is without complica-
tions. Most MLO views are of this type. The
pectoral muscle in image mdb090 (centre) is
complicated by an anomaly near the top of the
image (Figure 1). This bright spot resulted in
the top portion of the predicted boundary be-
ing shifted to the right. On the right is image
mdb118, the example of Figure 2. Despite the
appearance of bright breast tissue near the
pectoral muscle and the complication illus-
trated in Figure 2, the final result is accept-
able.

Another pitfall in determining the pectoral muscle is the
presence of false boundaries within the pectoral muscle
(Figure 6). Depending on severity of such lines and the
relative intensities on either side, the MST algorithm may
or may not identify the correct boundary. In cases where
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the MST algorithm adopts a false internal structure as the
boundary of the pectoral muscle, the final error is substan-
tial. A large amount of the error reported in Table 1 stems
from a small number of images.

Figure 6. Examples of images showing
boundary-like structures within the pectoral
muscle region. The grey lines are the bound-
aries found by MST followed by active con-
tours. The predicted boundary is accept-
able in the left image (image mdb123) but the
boundary in the right image (image mdb039)
follows the false internal structure near the
top of the image.
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