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Abstract

To date, most association rule mining algorithms
have assumed that the domains of items are either
discrete or, in a limited number of cases, hierarchical,
categorical or linear. This constrains the search for
interesting rules to those that satisfy the specified
quality metrics as independent values or as higher
level concepts of those values. However, in many
cases the determination of a single hierarchy is not
practicable and, for many datasets, an item’s value
may be taken from a domain that is more conve-
niently structured as a graph with weights indicating
semantic (or conceptual) distance. Research in the
development of algorithms that generate disjunctive
association rules has allowed the production of
rules such as Radios ∨ TV s → Cables. In many
cases there is little semantic relationship between
the disjunctive terms and arguably less readable
rules such as Radios ∨ Tuesday → Cables can
result. This paper describes two association rule
mining algorithms, SemGrAMG and SemGrAMP ,
that accommodate conceptual distance information
contained in a semantic graph. The SemGrAM
algorithms permit the discovery of rules that include
an association between sets of cognate groups of
item values. The paper discusses the algorithms, the
design decisions made during their development and
some experimental results.

Keywords: Association Mining, SemGrAM,
SemGrAMG, SemGrAMP , Disjunctive Rules, Seman-
tic Graphs.

1 Introduction

Current association rule mining algorithms make a
number of assumptions about the domains over which
items are defined. In early work, the domains were
assumed to be binary – the existence (or not) of an
item in a transaction (Agrawal et al. 1993). This
was extended to handle discrete domains (often by
simply qualifying the item with the attribute name)
and hierarchical domains (Han & Fu 1999, Lu 1997,
Shen & Shen 1998, Suk & Park 1999). Categorical
and linear domains have also been accommodated
(Lent et al. 1997, Gray & Orlowska 1998) as have
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fuzzy data (Kuok et al. 1998), spatial data (Kop-
erski & Han 1995) and temporal data (Roddick &
Spiliopoulou 2002). Ignoring such domain structure
constrains the search and may result in missed rules
– assuming discrete values, for example, means that
item values must satisfy the quality metrics as inde-
pendent values. To our knowledge, a single algorithm
capable of handling more than one type of domain
structure has not been developed.

The accommodation of hierarchies allows higher
level concepts of those values through predefined or
dynamically generated concept trees. For example,
rules such as

Sunday,Coffee → Croissant

may be found where

Coffee ⊇ {Cappuccino, Latte,Macchiato}
Unfortunately, this may convey the impression that
Latte contributes to the rule when it may not. More-
over, in many cases the determination of a single hi-
erarchy is not possible. Indeed, for many datasets,
hierarchies may be imposed when it would be more
appropriate to define the domain over a graph with
weights indicating semantic (or conceptual) distance
(see Figure 1). Apart from those domains that lend
themselves to graph representation, directed graphs
have the advantage that they subsume other domain
structures.

Disjunctive association rule generation algorithms
(Nanavati et al. 2001) aim to create rules that include
disjunctive combinations of terms such as:

Sunday ∨ Tuesday, Macchiato → Croissant

Disjunctive rules are flexible in that no domain knowl-
edge is required and perform well in many domains,
particularly where Zipf’s Law is evident such as in
market basket data. However, often the rules pro-
duced contain disjunctions between unrelated terms,
for example:

Sunday ∨Water,Macchiato → Croissant

This mixing of concepts can reduce the readability
of the results. Moreover, the disjunctive rule gen-
eration techniques outlined to date might combine
two items, such as Sunday and Tuesday and omit
Monday which might, for this dataset, just fall short
of the metrics specified – that is, the semantic prox-
imity of items is not taken into account when the
disjunctive sets are formed.

One associated issue for data mining is the prob-
lem of scaling effects which occur particular for spa-
tial and temporal data but can occur more perva-
sively. Essentially, many analyses are sensitive to the
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length, interval, area, volume or metric over which a
variable is distributed. Often termed the Modifiable
Areal Unit Problem (MAUP), or the Ecological Fal-
lacy, it is an important characteristic in many prob-
lems (Openshaw 1983). Put simply, the granularity
chosen for data collection determines which spatial
or other phenomena can be identified. If spatial data
are aggregated then the larger the unit of aggregation
the more likely attributes will be correlated. More-
over, by aggregating into different groups you can get
different results. Importantly for data mining, at-
tributes which exist in the data at one level of sup-
port can vanish at coarser or finer scales, or other
orientations. Thus the development of an algorithm
capable of aggregating data at the level of significance
is important.

In this paper we propose two algorithms1, Sem-
GrAMG and SemGrAMP , that are able to use concep-
tual distance information, contained in one or more
semantic graphs, within an association rule mining
system to produce association rules with a new type
of item grouping. The algorithms dynamically join el-
ementary items into composite itemgroups within the
itemsets. The itemgroup thus formed represents a
disjunctive aggregation of a number of items that are
similar, as determined by the semantic graph. The
increased support of itemgroups, and that of the re-
sulting itemset, can be calculated to find association
rules from the itemset. In effect, itemgroups allow for
specialised disjunctions of similar items in a single as-
sociation – a particular form of disjunctive rule (cf.
(Nanavati et al. 2001)). For example:

[Tuesday, Wednesday], Cappuccino → Croissant

In SemGrAM, more than one semantic graph can be
used. In order to disambiguate the reason for an item-
group’s construction, where there is need, the graph
is noted. For example,

[Adelaide, California]Weather → Wine

or

[Montana, Idaho]Proximity → BlackBear

The advantages of such an approach include the fol-
lowing:

• A finer granularity of the items able to be in-
cluded in the source data set without loss of
succinctness in the resulting rule. Unlike pre-
supplied hierarchies, the items included in an
itemgroup are determined dynamically and thus
can be constructed to include only items that
contribute to the rule in a meaningful way,

• The ability to adopt different sets of concep-
tual distances for different tasks over the same
dataset,

• The capture of itemsets that are otherwise below
threshold but nevertheless contain useful infor-
mation when items are joined,

• The ability to incorporate domains that are
more complex than those already accommo-
dated. That is, to capture semantics of trees, cir-
cular lists, and so on as a result of the subsuming
semantics of graphs. Moreover, there is the abil-
ity to accommodate multiple domain structures
such as lists of trees,

1Where there is no necessity to distinguish between SemGrAMG

and SemGrAMP we simply refer to them as SemGrAM.

• Its use in text mining to consolidate terms with
similar meaning but differing representation (qv.
(Mooney et al. 2006)), and

• The clustering of rules with spatial attributes
within them (accommodating some of the advan-
tages of the work of Lent et al. (1997)).

Figure 1 shows some examples of semantic graphs
that present domain knowledge. Using the Stock De-
scription graph (Figure 1(a)), consider a set of results
containing one itemset that includes ottoman and a
second including sofa with the remainder of the item-
set in common. If both itemsets fall below the support
threshold we can use the information in the seman-
tic graph to determine that an ottoman is similar to
a sofa and create a new itemgroup – [sofa, ottoman]
– as an abstraction of the two similar items. The
new itemset incorporating the itemgroup will have a
higher support, possibly meeting the support thresh-
old. That itemset, and any resulting rules, effectively
captures information about a concept made from the
itemgroup formed by a joining the two items.

2 Related Work

This approach differs from previous research. For ex-
ample, the work of Srikant & Agrawal (1997) uses an
unweighted is-a (directed acyclic graph) hierarchy. In
this work we allow the use of weighted graphs and
remove the acyclic condition. The difference is sig-
nificant and results not only in a different algorithm
being needed but also in rules possessing a different
semantic structure.

Multi-level association rule algorithm research
(Han & Fu 1999, Shen & Shen 1998, Ong et al. 2001)
also differs from that outlined here. Han and Fu,
for example, develop a top-down approach using a
priori supplied hierarchies. While our approach re-
quires the semantic graph to be supplied, the item-
groups discussed here are developed dynamically and,
significantly, for SemGrAMG may differ from rule to
rule. There is further discussion of related work in
Section 2. Informally, the process we adopt is the
aggregation of items into itemgroups in cases where
two or more k-itemsets do not possess the required
support by themselves but where all the items in the
itemsets are either identical or pairwise conceptually
similar. This is discussed in detail in Section 3.3.

The idea of grouping association rules has been
explored previously. For example, Lent et al. clus-
ter association rules to find more general associations
(Lent et al. 1997). Their system provides for associa-
tion rules that contain quantitative attributes which
are clustered, as a individual points, on a two di-
mensional plane. The plane is constructed from the
quantitative linear attributes found in the rules with
the clusters representing the groups of rules. The re-
search presented in this paper clusters both categori-
cal and non-categorical attributes within the itemsets
and thus the work of Lent et al. is complementary to
this work.

An algorithm for creating disjunctive association
rules has been presented by Nanavati et al. (2001).
Their work inspects itemsets creating generalised dis-
junctions without using semantic graphs. As such,
their work is on the one hand more flexible (as no
graph is needed) but may also be too general as it
produces rules without reference to the conceptual
distance between items, and thus may group dissimi-
lar items.

Mining with level wise abstraction (Han & Fu
1999, Ceglar et al. 2005) is also similar in that the
rules that are created contain items that are an ab-
straction of lower level items. The level wise approach
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Figure 1: Situations in which graphs are used can be common.

requires a hierarchy containing the items as leaf nodes
and adjusts the support threshold for the level of ab-
straction of the component items. The research pre-
sented here uses a semantic graph to combine items
dynamically, so that they rise to meet an unchanging
support threshold. Hierarchies are, of course, spe-
cial cases of semantic graphs and some of the ideas
presented by Han, Fu and others are applicable here
also.

In other work, Han et al. (1997) present a sys-
tem that constructs a hypergraph based on the con-
fidence of association rules, then clusters the items
by partitioning the graph. Further research by Guha
et al. (1999) indicates that the algorithm breaks
down in certain cases. Guha et al. present the
ROCK algorithm for clustering transactions. The
links counting algorithm they present could have been
used to generate the distance matrix presentation for
the SemGrAM algorithm discussed later.

In terms of other higher order algorithms, Kosters
et al. (1999) describe a system that clusters transac-
tions based on the association rules generated from
them. It takes the rules with the highest support,
using the antecedents as the clusters for the transac-
tions, to create a hierarchical clustering scheme for
the data set. Similarly, Ertöz et al. (2002, 2003)
present a nearest shared neighbour approach to clus-
tering documents which is based on an algorithm by
Jarvis & Patrick (1973).

Finally, Mazlack & Coppock (2002) present re-
search into data preparation techniques involving the
partitioning of the values of the input data set to help
produce better results. The ideas presented focus on
attributes with qualitative values and the best meth-
ods of partitioning those values globally. The work
presented here partitions categorical attributes into
new items that best suit the generation of new re-
sults for each subset of itemsets, although it should
be noted that the granularity of partitioning of non-
categorical attributes influences the results of the
algorithm presented here.

3 Algorithm Design and Description

3.1 Semantic Graphs

The advantage of graphs is that they subsume
all other structures including lists and trees with
weighted uni-directional graphs being the most gen-
eral. Importantly, although they are not used widely,
semantic graphs are not uncommon – WordNet (Fell-
baum 1998, Budanitsky & Hirst 2000), Roget’s The-
saurus (Jarmasz 2003), colour chart comparisons
(CMYK / RBG / websafe / proprietary descriptions
...), geographic features, and so on provide a substan-
tial resource and are readily available. Importantly,
many such resources are not readily accommodated
in a hierarchy and thus multi-level association rule
mining solutions cannot be employed.

In addition, the MAUP (discussed earlier in Sec-
tion 1) is accommodated by allowing graphs of differ-
ent scales to be used with a fixed support threshold.
That is, regardless of the granularity, rules with the
predefined interest level will be reported.

For the purposes of this work graphs are assigned
to a family with those in the same family able to
be combined when creating an itemgroup. For exam-
ple, consider the three semantic graphs – html colours,
colour descriptions and geographic markers. A node in
the html colour graph, say xFFA500, is comparable to
the description orange and thus distances in the two
graphs are aggregative. Such graphs are considered
to be in the same family. Values in the third, geo-
graphic markers, are not comparable and would thus
be placed in a different family.

In SemGrAM we allow graphs to be combined
within each family as long as the edge weights can
be normalised. In practice, we assume all graphs to
be in different families unless two points of contact
are specified between two graphs. Using these two
points, the relativities between the weights used in
each graph can be checked against the value of the
traversal threshold τ (discussed in the next section).
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3.2 Terminology

The input dataset consists of a finite number of trans-
actions each containing a subset of the finite number
of items S,

S = {i1, i2, . . . , in}
Each item ij is provided either as a simple value (eg.
Blue) or as an attribute.value pair (eg. Colour.Blue).
If the former is used, the prefix can be used to de-
termine which families of graphs are appropriate for
that item. In SemGrAM, we correlate graph families
to attribute names through a simple list.

The input data is provided as transactions, with
each transaction Ti containing a variable number of
non-repeated items from S,

Tx = {ix1 , ix2 , . . . , ixq} : ∀ij ∈ S, q ≥ 1

Each transaction generally contains significantly
fewer items than are present in S, i.e. q � n.

An itemgroup Gi is a set of elementary items
[i1 . . . in]Γ grouped for the purposes of itemset forma-
tion by virtue of their proximity in semantic graph Γ.
The itemgroup Gi is then considered an atomic item
within any itemset Ij

2. Itemsets can consist of ei-
ther or both of elementary items or itemgroups, (i.e.
Ij = {i1 . . . im, G1 . . . Gn}) however, once grouped,
an itemgroup is treated as an atomic item for all
subsequent purposes with respect to that itemset.
Thus for the example above, the itemgroup [sofa,
ottoman]Stock might be contained within the itemset
{Green, [sofa, ottoman]Stock}. Note that the group-
ing of items [i1 . . . in] as an itemgroup in Ij does not
imply that they will be grouped in the same way in
some different itemset Ik.

A semantic graph Γi is defined as a weighted, di-
rectional graph. Formally, each graph is a 4-tuple

Γ = {S, E, τ,Φ}

where a subset of the items in S are represented by
nodes in the graph. The set of edges

E = {e1, e2, . . . , ek}

with each edge

e = {ix, iy, d} : ∀ij ∈ S, 0 ≤ d ≤ τ

between the nodes represents a semantic distance be-
tween the items in the context of that graph. Each
edge has a distance d representing the strength of the
relationship between the two items it connects, higher
values indicating a more distant or weaker relation-
ship and zero indicating a synonym3. Any edge with
a traversal distance greater than the maximum de-
fined traversal threshold τ is excluded from Γi. Each
graph is assigned to a family Φi.

Items omitted from the graph (or included with-
out a connecting edge) are assumed to be dissimilar
(i.e. to have infinite distance between them). The
traversal threshold τ is used to normalise distances
across multiple graphs, making the scale used in the
construction of the graph unimportant.

Semantic graphs are created either from expert
knowledge of the context from which input dataset
S is taken or are extracted from generally available
knowledge. In SemGrAM, the graphs are stored as a
dataset of triples < ix, iy, d >, from which transitive
distances are obtained recursively.

2For clarity we use square brackets for itemgroups and curly
brackets for itemsets. Where obvious, the suffix indicating the
graph is omitted.

3The semantic graph traversal concepts are explained in more
detail elsewhere (Roddick et al. 2003).

3.3 The SemGrAM Algorithms

While the ideas behind SemGrAM are common, this
section describes two distinct algorithms, SemGrAMG
and SemGrAMP and discusses some of the design de-
cisions. SemGrAMG is a flexible, but greedy algorithm
while SemGrAMP is more efficient but imposes some
constraints on the ruleset discovered. Specifically,

SemGrAMG operates in a greedy manner by aggre-
gating appropriate itemsets that have a sup-
port that falls just under the minimum support
threshold. As a result, SemGrAMG is able to use
the semantic information to combine itemsets in
different ways for different sets of rules. It is also
independent of the underlying itemset generation
algorithm.

SemGrAMP operates parsimoniously by amending
FP-Trees and is thus more efficient but results
in a ruleset where the same merger of items into
an itemgroup may appear in multiple rules. Sem-
GrAMP is at present based on the manipulation
of FP-Trees and thus tied to FPGrowth (Han
et al. 2000).

As for all association rule mining routines, the
SemGrAM algorithms mine transactions to find com-
mon and significant co-occurrences of items4. Associ-
ation rule mining routines typically utilise, inter alia,
a support metric σ, which indicates the frequency of
the co-occurrence of the items contained within each
itemset,

Ix = {ix1 , ix2 , . . . , ixm
| ∀i ∈ S, m ≥ 1}, σ

where m indicates the cardinality of the itemset. The
itemset can be viewed as an intersection of the items
it contains where the support indicates the strength
of the intersection.

SemGrAM uses three user defined support thresh-
olds.

1. The traditional support threshold (σ) that ap-
plies to all itemsets. If the support of any itemset
is less than this threshold then the itemset is not
used for rule production and thus not reported
in the final set of results.

2. A near support threshold (β) to partition item-
sets of low cardinality, with itemsets that have
support between σ and β termed near support
itemsets or nsi’s. The range of support values
between the normal and near support values is
termed the near support range5.

3. An itemgroup cohesion threshold (γ). When an
itemgroup is created the cohesion of the group is
assessed, and if below γ is removed from consid-
eration. Finding itemgroups is an optimisation
problem that balances the potential gain in sup-
port through grouping the items with the loss
of semantic precision (the cohesion) as items are
added. For example if an item was defined over
a graph of colour hues, red would be similar to
crimson and vermilion, and may be grouped if the
circumstances suggested it. If the itemset con-
taining this itemgroup was still unable to reach
the regular support, it may need to widen the se-
mantics of the itemgroup by using other higher
support items that were conceptually more dis-
tant. If pink, for example, had a high support

4For a full survey of association mining algorithms see the recent
survey by Ceglar & Roddick (2006).

5The concept of nsi’s has already been investigated for other
purposes in research into incremental association rule mining (Che-
ung et al. 1996, Rainsford et al. 1997, Kouris et al. 2003, Lee et al.
2005).
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it may be beneficial to include it in the item-
group to help the itemset reach the normal sup-
port threshold, but it would start to stretch the
semantic cohesion of the itemgroup; γ controls
this semantic spread.

The thresholds have been adopted because the cog-
nitive and computational complexity of merging low
cardinality itemsets can be high. β and γ thus en-
able the user to manage the scope of the additional
itemsets6.

3.3.1 SemGrAMG

The mining algorithm used as a base for SemGrAMG
could have been chosen from any of the existing algo-
rithms including, for example, Apriori (Agrawal et al.
1993), FPGrowth (Han et al. 2000) or Eclat (Zaki et al.
1997), as long as the algorithm is capable of support-
ing the multiple thresholds. In our implementation
(see Section 4) we use the FPGrowth algorithm.

Algorithm 3.1 SemGrAMG β-graph construction
1: Generate FP-tree
2: for each itemset Ij : β ≤ support(Ij) < σ do
3: add Ij node to β-graph;
4: for each item Ik ∈ β-graph do
5: if |Ij | = |Ik| and diff( Ij , Ik ) = 1 then
6: x, y = differing values
7: for each graph family Φi do
8: if graph Φi is applicable to both x and y then
9: weight = ∞
10: for each graph Γj ∈ Φi do

11: weight = min(weight,
dist(x,y,Γj)

τΓj
)

12: end for
13: if weight ≤ γ then
14: create edge ej,k between Ij between Ik in β-

graph labelled with weight
15: end if
16: end if
17: end for
18: end if
19: end for
20: end for

Broadly, SemGrAMG re-examines the nsi’s in con-
junction with information in the semantic graph with
a view to forming new itemsets that will meet the
normal support threshold. This is accomplished by
constructing a β-graph for all nsi’s in which the item-
sets are nodes and the edges indicate their similarity
according to a family of graphs as shown in Figure 2
and as outlined in Algorithm 3.1. Note that there
may be more than one edge between a pair of nodes
if more than one family of graphs is applicable.

The function diff in Algorithm 3.1 operates in the
same way as the confusion matrix of Oommen & Loke
(1995), Oommen & Zhang (1996)7 to examine two
same-length itemsets returning the number of differ-
ences between them. dist(x, y, Γi) returns the seman-
tic distance calculated (perhaps transitively) between
the two nodes x and y in Γi. Following the construc-
tion of the β-graph, SemGrAM recursively searches
the graph and combines the closest nodes.

In the current algorithm, once an itemset’s sup-
port reaches σ it is removed from further merges (see
Algorithm 3.2#13-15). This keeps the cohesion of
the itemgroups as tight as possible. If these lines are
omitted, the algorithm will produce more rules may
have higher support at the expense of items with less

6It is possible that the β and γ thresholds could be merged (for
example, the support for an itemset might be deprecated as the
cohesion decreases) but how this is achieved is large application
domain specific and we have chosen to retain the two independent
thresholds.

7Oommen uses a confusion matrix to determine the probability
of striking a wrong key on a keyboard, which can then be incorpo-
rated into an edit distance function.

Algorithm 3.2 SemGrAMG β-graph traversal
1: while edges left in β-graph do
2: for each edge ej,k between Ij between Ik in ascending order

of weight do
3: combine node Inew creating a new itemgroup containing

x and y
4: for each all other edges to Iother from Ij or Ik do
5: weight = average of weights from Iother to Ij and Iother

to Ik

6: if weight ≤ γ then
7: create new edge between Inew and Iother in β-graph

labelled with weight
8: end if
9: delete edge between Iother and Ij and Iother and Ik

10: end for
11: supp(Inew) = supp(Ij) + supp(Ik)− supp(Ij ∩ Ik)
12: if support(Inew) ≥ σ then
13: Remove all edges connected to Inew

14: end if
15: end for
16: end while

semantic precision. Finally, rule production is rela-
tively easy as given in Algorithm 3.3.

Algorithm 3.3 Rule Production
1: extract rules from FP-tree as per (Han et al. 2000)
2: for each nodes Ij in β-graph do
3: if support(Ij) ≥ σ then
4: extract rule
5: end if
6: end for

3.4 SemGrAMP

This version of SemGrAM was written to investigate
the utility of providing a more efficient algorithm at
the expense of some semantic flexibility. SemGrAMP
inspects the FP-Tree and merges branches that are
between σ and β (ie those that would result in nsi’s.
The effect of merging them in the FP-tree means that
the SemGrAMP runs more efficiently (in terms of both
time and space) that SemGrAMG as can be seen from
the experimental results. The algorithm is in two
parts - first the FP-tree is modified as outlined in
Algorithm 3.3. Second, rules are produced as per
(Han et al. 2000). The first part looks for sections
of the FP-tree such that can be merged.

Algorithm 3.4 SemGrAMP FP-tree traversal
1: recursively search the FP-Tree
2: if

(a) The weight of a node (in the context of what comes above
it) is greater than σ
(b) There are at least two children (n1 . . . ni) of that node such
that

i. they are within the threshold semantic distance γ (ie as
per Algorithm 3.1#7-17)

AND
ii. they have weights between σ and β then

3: Create a new item representing the itemgroup [n1 . . . ni]
4: Merge subtrees of those children using the new item as root
5: end if

SemGrAMP is considerably simpler, both to code
and execute but it should be noted that the same
merging of subtrees may result in the same itemgroup
being used in a number of rules.

4 Evaluation of Proof-of-Concept System

To demonstrate the concept, we implemented
SemGrAMG and SemGrAMP (and for comparison,
FPGrowth) in Java and ran experiments on a 1.5GHz
Mac PowerPC G4. This implementation has shown
it to be tractable and to reveal interesting rules that
would otherwise not be reported. Note that the
ability to dynamically create itemgroups means that
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Figure 2: Example β-graph. Note that the different graphs for Hue and Intensity means that < Red, Armchair,
$budget > cannot be put in the same itemgroup as < Teal, Armchair, $budget >.

items can be specified at a lower granularity (although
not without affecting performance).

A 487Kb, 10,000 transaction synthetic dataset was
constructed together with semantic graphs that cov-
ered 25%, 50%, 75% or 100% of the items listed. Re-
sults are shown in Figure 3. Two important points
to note are that the premium for handling semantic
graphs is currently up to 52% (although for a lower
coverage and a larger dataset the premium is more
reasonable at below 10%). This makes the concept
tractable although further efficiencies may be useful.
Secondly, the SemGrAM algorithms are linear in the
time taken to process each itemset regardless of input
file size. On all datasets tested, both SemGrAMG and
SemGrAMP have shown that they scale satisfactorily.
Moreover, as the dataset size increases, the cost per
itemset reduces. Finally, the effects of changes to the
itemgroup cohesion threshold (γ) can be large. As γ
increases the interconnection between items acceler-
ates showing the double jump phenomenon reported
elsewhere (Spencer 2001).

Currently we limit SemGrAMG to looking for item-
sets that vary by a single item. It can easily be
seen that there would be cases where itemsets are
similar but vary by more than a single item. In
principle, the algorithm could be modified to as-
sess the distances between a number of items in a
set of itemsets and find the combination of items
that creates the minimum distance. For example,
the itemsets < Blue, Armchair, $Budget > and <
Teal, Lounger, $Budget > in Figure 2 might be
considered mergable. The issues arise in recording
which items made the itemsets similar and making
judgments at to whether the itemgroups created make
sense semantically. There is, for example, a chance
that inappropriate inferences may result.

5 Conclusions and Further Research

This paper has outlined two new algorithms for ac-
commodating semantic graphs within association rule
mining. In so doing it not only accommodates
graph structured domains but also those for which
a weighted, directed graph can be used to simulate
other domain structures (such as lists and hierar-
chies). In some respects this work can thus be con-
sidered to subsume some earlier work in these areas.

The focus of the proof-of-concept implementation
was not on performance but on proving that that the
design decision were sound. Nevertheless, the imple-
mentation shows that even in this implementation,
the premium paid for the extra processing is not ex-
cessively high, even in the case of SemGrAMG. In
practice, one of the major advantages will be that
items can be specified at a lower granularity with
the algorithm selecting the most appropriate aggre-
gations.

Further work can be envisaged for the algorithm,
some of which is discussed in Section 4. In particular,
the work of Nanavati et al. (2001) is complimentary
to our work and it is possible that both ideas could
be combined in a single algorithm.

The algorithms are currently dependent on the
prior definition of the semantic graph. We have not
yet investigated automatic generation of the graph or
the use of functional (as opposed to enumerated) de-
scriptions of graphs. However, there is pre-existing
work in this area which could be utilised.

Since the overhead involved in the user’s compre-
hension of the rules produced can significantly out-
weigh variations in processing time, it would poten-
tially be useful to provide a good user-interface to the
system allowing the full exploration of results through
the semantic graph structure. For instance, if a re-
sult includes an itemgroup it could allow a one click
look-up of the items that are a part of that itemgroup
and show their contributions to the support of that
itemset. It should be able to display the semantic
graph clustering with varying levels of cohesion, pos-
sibly with varying clustering algorithms.

The system may also be applicable to the prob-
lem of clustering of association rules (cf. Lent et al.
(1997)). Specifically, if one of the items is a spatial
attribute, such as zip code, then we could potentially
generate clusters of rules.

On a broader level, semantic graphs have not been
accommodated in many areas of data mining to date
and a wider program of research could be considered
for which this research would be an example. In par-
ticular, sequential pattern mining (Agrawal & Srikant
1995, Srikant & Agrawal 1996) offers an opportunity
for enhancement.
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