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Abstract— Shared grammar evolution (SGE) is a novel

scheme for representing and evolving a population of variable-

length programs as a shared set of grammatical productions.

Productions that fail to contribute to selected solutions can

be retained for several generations beyond their last use. The

ensuing redundancy and its effects are assessed in this paper on

two circuit design tasks associated with random number gen-

eration: finding a recurrent circuit with maximum period, and

reproducing a De Bruijn counter from a set of seed/output pairs.

In both instances, increasing redundancy leads to significantly

higher success rates, outperforming comparable increases in

population size. The results support previous studies that have

shown that representational redundancy can be beneficial to

evolutionary search. However, redundancy promotes an increase

in further redundancy by encouraging the creation of large

offspring, the evaluation of which is computationally costly. This

observation should generalize to any unconstrained variable-

length representation and therefore represents a notable draw-

back of redundancy in evolution.

I. INTRODUCTION

Nature’s remarkable ability to adapt to cataclysmic

changes can be strongly attributed to its diversity. Diversity

is equally crucial to the success of artificial evolution. The

convergence towards an optimum inherently involves a loss

of diversity that can reduce search effectiveness and even stall

the process. A large population of solution candidates and a

high mutation rate are traditional remedies for this, but since

diversity is often contrary to fitness, it rarely survives under

selection pressure. Actively selecting towards a diversity

objective is one way of addressing this [1], [2], yet perhaps

the simplest answer is to just ‘hide’ the diversity. Having

a redundant representation can provide the necessary space

for this, which is a strategy that has already shown marked

potential in other studies (see Section III for more on this).

Shared Grammar Evolution (SGE) is a new technique for

evolving a globally shared repository of grammatical pro-

ductions from which solution candidates can be derived [3].

Diversity in the repository is essential here, because new

solutions can only be created if the necessary productions

already exist. The following study explores a simple scheme

of keeping productions available for several generations

beyond the elimination of the solutions they contributed to.

The resulting accumulation of redundancy may constitute

a valuable source of diversity, but may also drown out fit

building blocks. The viability of the scheme will therefore

be evaluated on two circuit design problems related to

pseudorandom number generation: determining a circuit that
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produces a maximum period output, and reverse-engineering

a specific circuit, the De Bruijn counter.

Section II introduces the SGE scheme, followed in sec-

tion III by a discussion of how redundancy may facilitate

evolvability in SGE . Sections IV and V address the chosen

problem tasks and experimental setup in detail, while the

final two sections analyze and summarize the results of the

experiment.

II. SHARED GRAMMAR EVOLUTION

Combining a grammar with evolution is nothing new;

it has been explored previously in two separate lines of

research. Firstly, a grammar may be suited as a model of a

development system, as reflected in the biological mapping

from genotype to phenotype. Lindenmayer systems [4] are

popular for this and have been used to optimize neural

networks and other designs [5], [6]. Evolution applies here

to a population of grammars; a single solution can be derived

from each. Alternatively and more commonly, grammars

are used as a means of syntactic constraint, with the most

studied example being Grammatical Evolution (GE) [7],

which evolves programs in a language generated by a user-

defined grammar. Other systems have taken this idea further

by automatically modifying the grammar to improve the

search as it progresses, either by learning [8] or evolving [9]

the grammar. Evolution applies here to a population of

solutions; new solutions are added by stochastically deriving

these from a grammar.

SGE constitutes a hybrid of these approaches. In SGE,

a user-defined ‘template grammar’ specifies the available

terminals and functions and any syntactic restrictions for

these. As with GE, initial solution candidates are derivations

from this template grammar. However, each derived solution

is then represented by another ‘individual grammar’ that is

specific to that solution and has no duplicate predecessors –

i.e., it is purely deterministic, unlike the template grammar.

Throughout subsequent generations, further solutions are

obtained by evaluating the effect of random changes to the

individual grammars of existing solutions. For our purposes

here, SGE will be used to construct programs and circuits as

tree data structures, as with genetic programming (GP) [10].

The successors (right-hand sides) of grammatical productions

in SGE therefore consist of a function terminal and one

or two nonterminal or variable terminal arguments to this

function (see Table I for details).

The SGE method is illustrated in Figure 1. A production is

first chosen from an existing solution’s individual grammar,

which consists of the productions that contribute to this

solution. A copy of this production is made and then modified

by replacing one of its terminals or nonterminals by an
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Fig. 1. Each generation of SGE consists of up to 8 main steps and involves the addition and removal of productions from a shared grammar set based on
the performance and size of the solutions to which they contribute. Production redundancy arises when non-contributing productions are retained (at step
7).

alternative – in the case of a terminal, this is from the original

template grammar; in the case of a nonterminal, it can be a

reference to any production of any other solution’s grammar

or the template grammar. A new solution is then derived

from the original solution’s grammar with the modified

production expressed in place of the original production.

Infinite recursion is prevented by associating each production

with a recursion limit value, which defines the maximum

recursion depth of a production calling itself; if the limit is

exceeded during derivation, the production is replaced by an

associated default terminal (see Table I).

If after evaluation on the objective function the new

solution is sufficiently fit to be selected into the next gen-

eration, then a new individual grammar is created for this

solution. Any production that needs to refer to any modified

productions is copied and modified accordingly. Unchanged

productions are not copied, but referenced directly, so it is

possible that any one production may contribute to several

other solutions. We therefore regard the global set of all pro-

ductions defining all solutions, i.e., all individual grammars,

as a shared grammar set. Depending on production reuse,

this shared grammar set may be considerably smaller than

the collective size of all solutions.

Previously explored benefits of SGE are performance ben-

efits from sharing subsolutions results between solutions [3]

and extending the grammar to more complex data structures

such as graphs [11]. A drawback of SGE is that cross-

referencing between productions can be extensive, leading

to rapid growth in solution size beyond what is necessary

for problem solving. This problem is to a lesser extent

also encountered in GP and known as bloat [12]. SGE

addresses it by employing a multi-objective evolutionary

algorithm (MOEA), based on the NSGA-II presented by

Deb et al. [13], to explicitly determine the trade-off between

program performance and size, an approach that has also

been successful for GP [1].

III. EVOLVABILITY

Evolvability is the capacity of an evolutionary system to

continuously produce and maintain potentially adaptive vari-

ants of solutions [14]. It necessitates that a balance is found

between exploitation, i.e., greedy search, and exploration,
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Fig. 2. Solutions constitute specific production sequences within the shared
grammar set. Without redundancy, new solutions must be defined either by
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With redundancy, the choice is extended to productions that do not presently
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parameter.

i.e., diversity in the population. Changes to population size,

mutation rates, and selection schemes have been the standard

way of addressing this. More recently, evolvability has been

linked to redundancy in the representation space – also

known as fitness neutrality, since changes to the redundant

representation have no impact on selection. Redundancy in

evolutionary computation has been the subject of several

studies, some of which determined that redundancy leads

to improve evolvability [15]–[21], while others did not [22],

[23]. The discrepancy has been blamed on a poor under-

standing of what redundancy means in this context [24].

Redundancy has been suggested to be beneficial only if it

does not actually code for any phenotypic trait, but instead

lies dormant in the representation [21]. Hidden variation may

thus accumulate as redundant code and, once revealed, fuel

the kind of rapid adaptation needed to escape from any

suboptima that have trapped the search [14].

In biological genetics, redundancy occurs either by nega-

tive linkage disequilibrium, where alleles of opposite effect

occur together and cancel each other out, or by canalization,

where the effects of alleles are reduced by down-regulation

of their expression. In the SGE framework, the former

would depend on whether the problem task makes it likely

for subprograms to cancel each other out, and therefore

would be difficult to vary independently. On the other hand,

canalization does not occur at all, because those productions

that are called are expressed and those that are not are

removed – but we can change this.

Simply not removing productions would lead to an accu-

mulation of potential building blocks that exist beyond the

selection constraints. Since such a grammar growth would

not be sustainable over many generations, we suggest that

productions are ultimately deleted, but with a delay of a

user-defined number of generations subsequent to their last

expression. This includes productions created for unfit solu-

tion candidates, so even a short delay leads to a substantial

build-up.

In SGE, minor changes to a production can lead to

substantial changes in the derived solution, as an entirely

different sequence of production calls might follow. The

called productions need to exist, however, and it is here

that redundant productions improve the diversity of possible

choices, potentially leading to more diverse and fitter solu-

tions. It is likewise conceivable that the redundancy, which

is not subject to selection, contains little that is useful for a

fit solution. Our experiment below is an attempt to clarify

this issue.

IV. PSEUDORANDOM NUMBER GENERATION

Random numbers are required for a wide range of impor-

tant applications such as data encryption and also play an

essential part in evolutionary algorithms. Random numbers

are typically obtained from pseudorandom number genera-

tors (PRNGs) implemented either in software or directly in

hardware. Since complex arithmetic operations are often not

feasible in hardware, it is desirable for PRNGs to be based on

hardware friendly operations, i.e., strictly Boolean operators.

As the problem task for evaluating the impact of redun-

dancy on SGE, we chose a circuit design problem closely

related to PRNGs. The pattern generated by a PRNG repeats

itself after a certain number of cycles, known as the period of

the generator. PRNGs with short periods are easy to predict,

so our objective is to design a circuit that produces the

maximum possible period – which is equal to the number

of distinct states of the circuit. For recurrent circuits with 4

or 8 binary variables, the maximum period would be 2
4

= 16

and 2
8

= 256, respectively.

A high period circuit is not the same as a PRNG, since

the state may still be easy to predict, e.g., in the case of

an incrementing circuit. Design of a PRNG would typically

involve evaluation of possible solutions against a rigorous

statistical test, such as the DIEHARD suite [25] (which we

intend to address in a later paper). Design of a high period

circuit still allows for a wide range of complex solutions

while also being inexpensive to evaluate.

Conversely, it is also possible to determine a specific

PRNG from a random sequence. This is a more challenging

problem, as it is unlikely to allow for more than one solution.

We chose a standard PRNG, the 4-bit De Bruijn counter

shown in Figure 3 (center), as the target for this. A perfect
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TABLE I

DEFAULT PARAMETERS FOR THE TWO MAIN PROBLEM TASKS.

4(8)-Register Maximum Period Circuit 4-bit De Bruijn Counter

Objective Design a recurrent Boolean circuit with 4 (8)
registers that produces the maximum possible
period

Design a recurrent Boolean circuit that function-
ally matches a De Bruijn Counter

Terminals AND, OR, XOR, NOT and a register for each binary variable (available as inputs and outputs of the program
defining the circuit); the default terminal for all functions is 0/FALSE

Fitness Case(s) No register state repeated for 16 cycles (256 for
8-register circuit), starting from zero seed

All 16 possible seeds (and resulting bit se-
quences) for the De Bruijn Counter

Simulation Simulation for 16 cycles (256 for 8-register
circuit)

Simulation for 20 cycles (16 + 4 to verify return
to initial seed)

Error Measure Number of cycles before state is repeated Proportion of incorrectly reproduced bits

Size Measure Number of expressed productions/terminals; solutions are invalid if consisting of more than 1000 terminals

Mutation A single production is selected for mutation and a single nonterminal or terminal of this production is replaced
by an alternative, at 33% chance from the template grammar, at 66% chance from the global grammar.
Additionally, there is a one in six chance that the recursion limit of a production is increased or decreased by
one.

Termination After 1000 generations.

Experiments 50 independent runs performed for each parameter setting (see text).

solution should match the output of the De Bruijn counter

for each possible initial state, or seed.

V. EXPERIMENTS

Redundancy in SGE is constituted by unused productions

within the shared grammar set. By default, productions

remain in the grammar for only the generation in which

they contribute to a solution candidate. If we keep the

productions until the end of the next generation, then we have

a redundant production retention (RR) of two generations.

We will increase this retention in powers of two up to 32

generations (marked as RR = 32), leading to large parts of

the shared grammar set being redundant.

Any observed changes in performance need not be due

to redundancy, however, but could instead be due to the

larger total number of productions. For comparison, we

hence also evaluate a doubling of the base population size

of 5 solutions to up to 160 solutions. A 5 solution shared

grammar set with a tolerance of 32 generations defines the

same number of solution candidates as a 160 solution shared

grammar set. While 155 of these were deselected previously

and are not competing in this generation, their contributing

(and now mostly redundant) productions are still available

for constructing new solution candidates. Unlike an increase

in the population size, maintaining redundant productions

should not substantially affect performance. However, we

noted an acute increase in very large solution candidates

with increased redundancy (see below), so parameter com-

binations were capped to a total number of solutions, actual

or implicit, of 160 per generation.

SGE is applied to the problems tasks described in the pre-

vious section, which include finding a high period recurrent

circuit with 4 or 8 binary registers and a recurrent circuit

that reproduces a 4-bit De Bruijn counter for all 16 possible

seeds. Available Boolean operators and default parameters

for evolution are listed in Table I. Since these problems are

concerned with PRNG design, it is worth noting that SGE

employs a Mersenne Twister [26] as its internal PRNG.

VI. RESULTS

Finding a recurrent circuit with maximum period output

is made difficult by the existence of a simple, suboptimal

solution: the Linear Feedback Shift Register (LFSR). The

LFSR shifts each of its N bits into adjacent registers, with

the first bit defined by the XOR of several of these bits, the

so-called ‘taps’, as illustrated in Figure 3 (left). The largest

state space possible for an LFSR is 2
N

− 1, which is one

cycle short of the maximum period. LFSRs are commonly

employed as basic hardware PRNGs, and in this sense SGE

is very effective at evolving a PRNG. 1047 out of 21×50 =

1050 runs found a 4-register solution with a maximum period

of 15 or 16. However, the 16-period circuit is more complex

than the LFSR, and with no intermediate solutions between

them, overcoming this complexity gap appears to be difficult.

The scalability of the maximum period problem is very poor

in this respect, as none of runs on the 8-register problem

generated any maximum period circuits, although there were

931/1050 LFSR designs.

The evolution of the 4-register circuit is considerably more

successful and informative, as seen in Table II (top). Several

maximum period circuits are found, the simplest example

of which is shown in Figure 3 (right). Given the choice

of permitted gates, this circuit is in fact simpler than the

De Bruijn counter (which is also a 2
N period circuit). Con-

versely, the results reported in Table II (bottom) suggest that

it is disproportionally harder to evolve a De Bruijn counter

directly, but this is also a more constrained task, as each

seed state is expected to produce a specific sequence of bits.

Even a valid De Bruijn counter may fail this task if it taps

the registers in the wrong order. SGE nevertheless manages

to succeed in several instances of correctly determining the

De Bruijn counter from the presented sequences, thereby
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TABLE II

TOP ROW OF EACH CELL RECORDS THE SUCCESS RATE OF THE EXPERIMENT, BOTTOM ROW SHOWS THE MEAN AND STANDARD DEVIATION OF THE

ERROR OF THE BEST SOLUTION. 8-REGISTER RESULTS ARE NOT SHOWN DUE TO CONSISTENT PREMATURE CONVERGENCE (SEE TEXT).

4-Register Maximum Period Circuit
Population

5 10 20 40 80 160

R
e
d

u
n

d
a
n

c
y

R
e
te

n
ti

o
n

1
2% 4% 12% 16% 40% 52%

1.04±0.45 0.98±0.25 0.88±0.33 0.84±0.37 0.60±0.49 0.48 ± 0.50

2
8% 26% 72% 88% 96%

0.92±0.27 0.74±0.44 0.28±0.45 0.12±0.33 0.04±0.20

4
38% 64% 92% 96%

0.62±0.49 0.36±0.48 0.08±0.27 0.04±0.20

8
54% 88% 96%

0.46±0.50 0.12±0.33 0.04±0.20

16
72% 92%

0.30±0.51 0.08±0.27

32
66%

0.34±0.48

4-Bit De Bruijn Counter
Population

5 10 20 40 80 160

R
e
d

u
n

d
a
n

c
y

R
e
te

n
ti

o
n

1
2% 2% 2% 0% 4% 4%

0.27±0.05 0.27±0.05 0.28±0.06 0.28±0.03 0.26±0.06 0.26 ± 0.05

2
4% 2% 8% 28% 36%

0.26±0.06 0.27±0.05 0.24±0.08 0.18±0.11 0.16±0.12

4
2% 4% 22% 28%

0.27±0.05 0.25±0.07 0.20±0.11 0.18±0.11

8
6% 8% 32%

0.25±0.08 0.23±0.07 0.17±0.12

16
4% 6%

0.27±0.07 0.21±0.10

32
12%

0.23±0.09

Fig. 3. Possible solutions to the problems. On the left, a Linear Feedback Shift Register (LFSR) with a period of only 15 cycles; in the center, the De
Bruijn Counter that must be specifically evolved in the second task; on the right, the simplest 16 cycle circuit found.
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Fig. 4. Generational statistics over all runs of all configurations for population size 20: Top row shows fraction of successful outcomes; bottom row
displays the mean number of productions in the shared grammar set at each generation.

confirming that it is indeed very feasible to reverse-engineer

a simple PRNG through evolution.

Across these two problem tasks we observe a trend of

performance improvements with increases in population size

and RR. This is particularly evident for the 4-register maxi-

mum period circuit, where increases in success rate correlate

with population size (p = 0.003 for RR = 1, Spearman

rank correlation) and RR (p = 0.017 for size 5). The

biggest improvements are observed for increases in RR, in

particular between having no redundancy and having some

redundancy, which is significant at p < 0.001 (according

to a two-tailed Z-test) for all sizes except 5. Results for

the De Bruijn circuit are more variable and substantial

improvements are only observed for large populations, high

redundancy, and, most notably, combinations thereof. For

example, redundancy needs to be increased to RR = 32 to

produce a significant difference (p < 0.05) at size 5, but only

to RR = 16 at size 10, RR = 4 at size 20, and RR = 2 at size

40 and beyond. A relationship clearly exists between the two

parameters, but it appears difficult to estimate an optimal RR

value or population size from this.

Figures 4 and 5 illustrate how various population statistics

change across generations. We note in Figure 4 (bottom)

that the creation of solutions at the start (via the template

grammar) leads to an early peak in the total number of

productions, which quickly abates and then slowly rises

again as better, larger solutions are discovered. Here, an RR

value of N produces an approximately N -fold increase in

the production total, although the number of productions

that are part of selected solutions would not be expected

to change. Yet Figure 5 (top) reveals that the presence of

redundancy causes large variations in the mean size of the

selected solutions. As selected means fit, we conclude that

large solutions – whose creation is facilitated by redundancy

– play a critical role in progressing evolution.

The drawback of exploring larger solutions is the com-

putational expense of evaluating these. Figure 5 (bottom)

demonstrates that the mean size of the evaluated solutions

(i.e., the offspring) is much larger than that of selected

solutions, particularly with increased RR values. Averaged
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Fig. 5. Generational statistics over all runs of all configurations for population size 20: Top row shows mean size of selected solutions (those that survived
beyond this generation); bottom row shows mean size of all offspring solutions.

across all generations, the size of evaluated solutions for

the minimum circuit task is about 1.3× the size of selected

solutions for RR = 1, 5.7× for RR = 2, 10.3× for RR = 4,

and 11.2× for RR = 8. On the De Bruijn task, it is 1.3× for

RR = 1, 2.8× for RR = 2, 3.7× for RR = 4, and 3.4× for RR

= 8. One would expect that with redundant productions not

being part of solutions, they need not be evaluated – and this

remains true. In practice, the use of large, redundant building

blocks in new solutions leads to a convergence slowdown

comparable to that experienced with a matching increase in

population size.

VII. CONCLUSIONS

Earlier studies have reported that redundancy can facilitate

evolutionary search, and this study further reinforces this

notion. Redundancy in SGE comprises productions that are

not contributing to any existing solution candidate and whose

deletion is postponed for some number of generations subse-

quent to their last expression. We have assessed the impact

of redundant productions on the evolutionary optimization

of simple circuits relating to hardware PRNG design, with

more advanced research in this domain intended in future.

Allowing for redundancy produces significant improvements

in the performance of evolved circuits, with a significant

correlation between this performance and the extent of re-

dundancy. A significant but lesser improvement is observed

when also boosting the population size.

An explanation of the success of redundancy, but also

its major downside, lies in the substantial variance in the

size of evaluated solutions. While redundant productions

are not directly exposed to the selection objective, they

are indirectly selected for their capacity at being used, i.e.,

being part of a solution candidate. This naturally encourages

formation of large, recursive building blocks composed of

many productions. Choosing one of these for a new solution

candidate may invoke most or all of the other productions

in this cluster, and larger clusters are more likely to have

one of their productions chosen. It is a problem to which all

variable-length representations are prone to a certain degree,

depending on their reuse and recursion of components.
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Consequently, while the production total does not rise

beyond what is expected, there is a considerable increase

in larger solution candidates. This appears to be in excess

of what is necessary to achieve fitness, because the solutions

ultimately selected are often smaller. The longer evaluation

times inevitably arising from this detract from the substantial

performance benefits of introducing redundancy. Redundant

productions facilitate bloat, even though they are not part

of any solutions - and hence not part of the bloat. Future

work therefore needs to look into establishing a finer balance

between encouraging redundancy in the representation yet

excluding it from the derived solutions. The objective is to

exploit redundancy to obtain building blocks of the right size

and shape to support an effective search strategy.
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