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Abstract 

This paper presents a novel eficienr nearest neighbor 
codeword search algorithm based on three elimination 
criteria in Hudamard transform ( H T )  domain. Before 
the search process, d l  codewords in the codebook are 
Hadamard-transformed and sorted in the ascending onfer 
of theirfirst elements. During the search process, we firstly 
perform the H T  on the input vector and calculate its 
variance and norm, and secondly exploit three eficient 
elimination criteria to find the nearest codeword to the input 
vector using the up down search mechanism near the initial 
bar-match codeword. Experimental results demonstrare the 
performance of the proposed algorithm is much better than 
that of most existing nearest neighbor codeword search 
algorithms, especially in the case of high dimension. 

1. Introduction 

Vector quantization (VQ) has been widely used in image 
compression and speech coding [l]. The basic idea of 
VQ is exploiting the statistical dependency among vector 
components to obtain a high compression ratio. The task 
of codeword search is to search the best match codeword 
cj = ( ~ ~ 1 ,  cjZ>. . . , Cjk) from the given codebook C = 
{CI,CZ,...,CN) for the input vector z = (Z~,XZ,...,Z~) 
such that the distortion between this codeword and the input 
vector is the smallest among all codewords, where N is 
the codehook size and k is the vector dimension. The most 
common measure of distortion between x and e, is the 
squared Euclidean distance, i.e., 

L 

vector. If the VQ system possesses large codebook size 
and high dimension, the computation load will be very 
high during the encoding process. To reduce the search 
complexity of the FS algorithm, many fast nearest neighbor 
codeword search algorithms have been presented. These 
algorithms can be grouped into three categories: spatial 
(or temporal) inequality based [2]-[7], pyramid structure 
based [8] and transform domain based [9]-[11]. The 
spatial (or temporal) inequality based algorithms eliminate 
unlikely codewords by utilizing the inequalities based on 
the characteristic values such as sum, mean, variance and 
LZ norm of the spatial or temporal vector. The pyramid 
structure-bawd algorithms reject impossible codewords 
by using the inequalities layer by layer. The transform 
domain-based algorithms efficiently perform the elimination 
criteria in wavelet or Hadamard transform. In this paper, we 
present a novel fast codeword search algorithm based on 
Hadamard transform with three elimination criteria, which 
are very efficient in the case of high dimension. 

2. Basic definitions and properties 

Before describing the proposed algorithm, we give some 
basic definitions and properties in advance. Let H, be the 
2" x 2" Hadamard square matrix with elements in the set 
{ I ,  -1). By assuming all of the following vectors are k- 
dimensional vectors and k = 2" (n > O), the following 
basic definitions can be introd e d  
Definition 1: H I  = ] and K+I = 

[ 2 -%,I. 
Definition 2 : The Hadamard-transformed vector X of 
the vector z is defined as: 

From the above equation, we can see that the full search X = H,z ( 2 )  
(FS) algorithm requires kN multiplications, (2k - l ) N  
additions and N - 1 comparisons to encode each input And the Hadamard-transformed codeword c, of the code- 
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word ci is defined as: 

Ci = H,ci (3) 

Definition 3 : The Hadamard-transformcd standard de- 
viation of vector X can he defined as: 

.=p (4) 

And the Hadamard-transformed standard deviation of the 
codeword C, can he defined as: 

k 

v,= I C ;  ( 5 )  11 1-2 

Definition 4 : The Hadamard-transformed norm of 
vector X can he defined as: 

IIXII = @ (6) 

And the Hadamard-transformed norm of the codeword C, 
can he defined as: 

(7) 

Note that compared with Equations 4, Equation 6 takes the 
first element of the vector X into account. Based on above 
definitions, we can get the following lemmas. 
Lemma 1 : The distortion between two spatial vectors and 
the distortion between the corresponding transformed vectors 
have the following relationship: 

d(X,  C,)  = k d ( z ,  c;) (8) 

Lemma 2 : The first element of X is equal to the sum of 
all components of x, i.e., 

XI = s, (9) 

Where S, denotes the sum of vector z. This equation can 
he derived from the fact that each element in the first row 
of H, has the same value ' 1 ' .  
Lemma 3 : The standard deviation of the transformed vector 
X and the norm of the transformed vector X have the 
following relationship: 

V Y  = ~llXIl2 - x,z (10) 

Based on Equations 4 and 6,  we can easily obtain Equa- 
tion 10. According to above definitions and lemmas, we can 
obtain the following three theorems: 
Theorem 1: 

Because (XI - C , I ) ~  is one of the summation items in 
C:=,(X! - C~I) ' ,  so above inequality is obviously tenable. 
Theorem 2 : 

(12) Iv, - Kl 5 Jm = J- 

V? + v,2 - 2YYK 5 C:=l(xl - C,r)2 

c:=, x.? + cl"=, c,i - 2VXK 
I E:=, x: + C L  c,: - Ck 1=1 2XlCiI 

-zvxv, I x: + e,: - E,"=, 2xf2,1 

- Z h K  I (XI - Ci,)* - c:=22x1c<I 

Proof: This inequality is equivalent to the following 
inequalities: 

U 

H 

* 
* 

Based on the Cauchy-Schwarz inequality 

JG 1=2 jz 1=2 2 ~ X I C i l ,  I=, 

we can get 
k k 

2VXK 2 2XIC,l =3 -2vxv, 5 - ZXlC,l 

2X1Ci1 

1=2 1=2 
k 

=+ -2VxK 5 (X, - Ci,)2 - 
1=2 

This completes the proof. 
Theorem 3 : 

HIXI1 - ilCil\l I d" = V Q G i  

llXIl2 + llCi11~ - 2IIXll ' IlCll 5 c:=,(Xl - Cid2 

CL' x,z + C L  C:l - 211XIl ' IlCiIl 
6 CL, x: +E:=, e,: - E:=, 2XIC,l 

211XlI ' IlC,ll 2 C:=12xLc,1 

(13) 

Proof: This inequality is equivalent to the following 
inequalities: 

e 
e 

e 
* @z JEZ 2 k XlCiI 

The last inequality is the Cauchy-Schwarz inequality. This 
completes the proof. 

3. Proposed algorithm 

From Lemma I, we know that the codeword that is closest 
to the input vector in the spatial domain is also closest 
to the input vector in the HT domain. Therefore we can 
find the corresponding hest codeword in the spatial domain 
by searching the hest codeword in the HT domain. From 
Definition 1, we know that the Hadamard transform based 
algorithms require the vector dimension to be the power of 
2, i.e., k = 2". From Definition 2, we can also see that no 
multiplication is required for the HT. 
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Before describing the proposed algorithm, we first intro- 
duce the HTPDS (Hadamard Transform bnsed on Partial 
Distance Search) presented in [IO]. It is well known that the 
energy of codewords can be compacted into few elements 
by HT, so PDS can LE efficiently used to reject unlikely 
codewords. Suppose each codeword c, is with dimension 
k = 2". Assume the "so far" smallest transform domain 
distortion is &in, if the first element C,, ofthe uninspected 
transformed codeword Ci is larger than MAXSUM = 
XI + or less than i\.IINSUi\.I = XI - G, 
then C, will not be the nearest codeword of X according to 
Theorem 1. Therefore, the distance calculation is necessary 
only for those transformed codewords whose first elements 
ranging from M I N S U M  to M A X S U M .  To perform the 
HTPDS algorithm, N Hadamard transformed codewords for 
all spatial codewords should be computed off-line and stored. 

From above, we can easily see that the HTPDS algorithm 
only use one characteristic value, i.e., the sum of the spatial 
vector or the first element of the transformed vector, so 
HTPDS can he viewed as the equal-average (or equal-sum) 
nearest neighbor search algorithm in Hadamard transform 
domain (HTENNS). To further improve the search effi- 
ciency of HTPDS algorithm, we also consider another two 
characteristic values, i.e., Hadamard transformed norm and 
variance, in the proposed HTEEENNS (Hadamard Trans- 
form based on Equal-average Equal-variance Equal-norm) 
algorithm. 

Based on Theorems 1 ,2  and 3, assume the "so far" small- 
est transform domain distortion is D,,,, three elimination 
criteria based on transformed vector X and codeword C, 
can be stated as follows: If 

91 2 XI + GT GI 5 X i  - & (14) 
Then d ( X ,  C,) 2 D,,,, and thus the codeword c, can be 
eliminated. If 

K 2 vx + 6 I4 5 vx - (15) 

Then d(X,C,) 2 D,:,, and thus the codeword ci can be 
eliminated. If 
11411 2 Ilxll + 6~ IlCtll 5 IlXll - a (16) 

Then d ( X ,  C,) 2 D,,,, and thus the codeword c, can he 
eliminated. 

With the above elimination criteria in hand, let 
dm(X,Ci) = c E l ( X ,  - Cir)2 denote the partial distance 
between X and C,, where 1 5 m 5 k, the proposed 
algorithm can be illustrated as follows: 
Off-line steps: 

1) HT is performed on all codewords ci to obtain trans- 
formed codewords C,. 

2) The transformed codewords C, are sorted in the as- 
cending order of their first elements. 

3) The standard deviation V, and norm lICill of each 
transformed codeword C, are also computed and 
stored in the ordered transformed codebook. 

On-line steps for each input vector x: 
I )  Pertorm HT on thc input vector x to obtain X, and 

then compute its standard deviation V y  and norm 

2) Obtain the tentative matching codeword C, whose 
index is calcaluated by p = arg m i n i / X I  - &I. 

3) Compute the squared Euclidean distortion Dmin = 
d(X,C,) for the initial matching codeword C,, and 
then calculate the square root SD,", = c. Set 
Smin = XI - SD,in, Sma, = Xi + SDmin, V mzn . - 
VY - SDmin, Vmaz = VY +SDmin, "in = llxll- 
SD,;,, N,,, = IlXll + SD,,,. Set U = 1. 

4) If p + U > N ( is the codebook size) or codewords 
from CP+% to CN have been deleted, go to step 5 .  
Otherwise check codeword Cp+u. This step includes 
four sub-steps as follows: 

IIXII. 

Step4.1: If C(,+,)I 2 s,,, or C(,+,)I 5 &in is 
satisfied, then codewords from Cptu to C, can 
he deleted, go to step 5.  Otherwise, go to step 4.2. 

Step4.2: If I/,+% 2 V,,, or VP+. 5 Vmir, is satisfied, 
then codeword C,+, can be deleted, go to step 5 .  
Otherwise, go to step 4.3. 

Step4.3: If llCp+ull 2 N,,, or llC,+ull 5 "in is 
satisfied, then codeword C,+, can he deleted, go  
to step 5 .  Otherwise, go to step 4.4. 

Step4.4: Using PDS to compute d"(X,C,+,) = 
C;"=,(Xl - C(,+u)i)2 from m = 1 to m = 
k, if d"(X,C,+,) 2 D,,,, then codeword 
C,+, can be deleted, go to step 5 .  Otherwisc, 
if d(X,C,+,) < Dmin. then update Dmin = 
d(X,C,+U),  SD"i" = G, s,,, = xi - 
SDmin, S m m  = XI + SD,in, Vmin = VY - 
SDmins Vmaz = VX + SDmin, Nmin = llxll - 
SD,i, and N,,, = JJXJJ + SD,;,, go to step 
5.  

5) If p - U < 1 or codeword from C1 to C,-" have 
been deleted, go to step 6. Otherwise check codeword 
Cp--. This step includes four sub-steps as follows: 

StepS.l: If C(p-ull 2 S,,, or Cfp-u)l 5 Smin is 
satisfied, then codewords from C1 to Cp-u can 
be deleted, go to step 6. Otherwise, go to step 
5.2. 

5 Vmin is satisfied, 
then codeword CP-" can be deleted, go to step 6. 
Otherwise, go to step 5.3. 

Step5.3: If llCp-ul[ 2 N,,, or ~ ~ C p - u ~ ~  5 N,;, is 
satisfied, then codeword C,-,, can be deleted, go 
to step 6. Otherwise, go to step 5.4. 

Step5.4: Using PDS [2] to compute d"(XICp-,) = 
C z , ( X i  - cfp-u)L)z from m = 1 to m = 
k, if d"(X,C,-,) 2 Dminr then codeword 
C,-" can he deleted, go to step 6. Otherwise, 
if d(X,C,-,) < Dmin, then update Dmin = 
d(X,Cp-u), SDmin = C', Smin = XI - 

Step52  If V,-" 2 V,,, or 
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SDmin, Smas Xi + SDmin, Vmin = V, - 
SDmin, vmaz = Vx + SDmin, Nmin = llxll - 
SD,i, and N,,, = IlXIl + SDmin, go to step 
6. 

6) Set U = U t 1. If p + U > N and p - ‘U. < 1 or all 
codewords have becn deleted, terminate the algorithm. 
Otherwise go to step 4. 

4. Experimental results 

We performed experiments on a Pentium-4 (2GHz) IBM- 
PC using two 512 x 512 monochrome images Lena and 
Baboon with 256 grey scales. Four codebooks of size 1024 
and dimensions (8 x 8 = 64 or 16 x 16 = 256) were 
designed using LBG algorithm [ I ]  with the Lena image 
as the training sct. The two images were used to test the 
effectiveness of the algorithms. The proposed algorithm 
( H T E E E N N S )  was compared to the FS (Full search), 
PDS (Partial Distortion Search) [2], ENNS(Equa1-average 
Nearest Neighbor Search) [3], EENNS(Equa1-average 
Equal-variance Nearest Neighbor Search) 141, EEENNS 
(Equal-average Equal-variance Equal-norm Nearest Neigh- 
bor Search) [6], SVEENNS(Sub-vector based Equal-average 
Equal-variance Nearest Neighbor Search) 171, NOS(Norm 
Ordered Search) [5], TNOS(Transform-damain-based Norm 
Ordered Search) [ I  I] and HTPDS (Hadamrd Transform 
domain Partial Distortion Search) [lo] algorithms in terms 
of the CPU time and the arithmetic complexity (the aver- 
age number of distance calculations per input vector) for 
different codebook sizes and vector dimensions as shown 
in Table I for Lena image and Table I1 for Baboon image. 
Because the Lena image is in the training set, while the 
Baboon image is a high-detail image outside the training set, 
the encoding time of Baboon image is much longer than that 
of the Lena image. 

TABLE I 
Comparisons of various fast search algorithm for 

Lena image in the training set. 

Perfamllnce 11 CPU 
Dimension )I 8 x  8 

FS II 17.916 

Codebuok size 
Performance 
Dimension 

17.926 
PDS [21 2.733 

ENNS [3] 0.43 I 
EENNS 141 

EEENNS 161 

ne(S1 I Con 
16x 16 I 8 x  8 
17.685 I 1024.00 

SVEENNS’IjI 11 
NOS [5l 1.262 

TNOS 1111 
HTPDS [ I O ]  

Pmposed HTEEENNS 0.231 

3.485 

3.024 
2.103 
4.537 
2.704 

3.184 

ne(s) 
16x 16 
17.194 
2.454 
0.59 
0.511 
0.49 
0.381 
1.032 
0.39 
0.321 
0.29 I 

- 

~ 

147.06 

117.27 
98.07 
272.58 
111.22 

122.68 

1 I 

HTPDS-[IO] 
Propaseed HTEEENNS 

Complexity 

17.71 

1.692 
1.422 

19.87 I 23.71 I 

From Tables I and 11, we can see that the proposed 
algorithm is superior to all other algorithms for both 
low-detail and high-detail images, especially in the case 

TABLE II 
Comparisons of various fast search algorithms for 

Baboon image outside the training set 

PDS 121 I/ 6.900 

2.133 111.65 I 92.63 1.963 

- XiIy  
16x 16 
1o?4.00 
315.28 
193.14 
185.05 
176.57 

331.33 
136.12 
136.17 
131.40 

130.33 

~ 

of high dimensionality. For Lena image encoding with the 
codebook of size 1024, the encoding time of proposed 
algorithm is only about 1.5 percent of the full search 
algorithm on average. 

5. Conclusions 

This paper presents a fast codeword search algorithm 
based on three inequalities in Hadamard transform domain 
denoted by Theorems 1 to 3. The algorithm can dramatically 
reduce the complexity in the case of high-dimensional image 
vector quantization. 
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