
CURIO : A Fast Outlier and Outlier Cluster Detection Algorithm
for Large Datasets∗

Aaron Ceglar, John F. Roddick and David M.W. Powers

School of Informatics and Engineering,
Flinders University,

PO Box 2100, Adelaide,
South Australia 5001.

Abstract

Outlier (or anomaly) detection is an important
problem for many domains, including fraud detec-
tion, risk analysis, network intrusion and medical
diagnosis, and the discovery of significant outliers is
becoming an integral aspect of data mining. This
paper presents CURIO, a novel algorithm that uses
quantisation and implied distance metrics to provide
a fast algorithm that is linear for the number of
objects and only requires two sequential scans of
disk resident datasets. CURIO includes a novel direct
quantisation technique and the explicit discovery
of outlier clusters. Moreover, a major attribute of
CURIO is its simplicity and economy with respect to
algorithm, memory footprint and data structures.

Keywords: Outlier, Anomaly Detection, Outlier
Clustering

1 Introduction

Outlier (or anomaly) detection is an important prob-
lem for many domains. Within medicine, for example,
it is commonly the exceptions that provide the insight
into a problem. Although rare events are by defini-
tion infrequent, their significance is high compared to
other events, making their detection important. Out-
lier detection is a mature field of research with its
origins in statistics (Markou & Singh 2003a). Cur-
rent techniques typically incorporate an explicit dis-
tance metric, which determines the degree to which
an object is classified as an outlier. A more contempo-
rary approach incorporates an implied distance met-
ric, which obviates the need for the pairwise compar-
ison of objects. This enables the efficient analysis of
very large (disk resident) datasets as memory resi-
dency of all objects for pairwise comparison is not re-
quired. This implied approach typically uses domain
space quantisation (Knorr & Ng 1998, Papadimitriou
et al. 2003, Chiu & Fu 2003, Chaudhary et al. 2002)
enabling distance comparisons to be made at a higher
level of abstraction and, as a result, obviates the need
to recall raw data for comparison purposes. CURIO
adopts this implied or abstract approach, proposing
a novel quantisation and object allocation technique
that enables both to be undertaken in a single direct
step.

∗We are indebted to the staff at PowerSolutions Pty Ltd with
whom this algorithm was developed and tested as part of the PKB
system funded, in part, by an AusIndustry START grant.

Copyright c©2007, Australian Computer Society, Inc. This
paper appeared at the Second International Workshop on Inte-
grating AI and Data Mining (AIDM 2007), Gold Coast, Aus-
tralia. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 84, Kok-Leong Ong, Wenyuan Li
and Junbin Gao, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

Through these principles and the use of dynamic
data structures, CURIO provides a novel algorithm
that discovers outliers in large disk resident datasets
in two sequential scans, which is comparable with cur-
rent best practice.

Importantly, there is an industry need to discover
not only outliers but also outlier clusters. For ex-
ample, in medicine, the investigation of what appear
to be anomalous groupings have frequently yielded
insight to a problem (Roddick et al. 2003). By clus-
tering similar (close) outliers and presenting cluster
characteristics it becomes easier for users to under-
stand the common traits of similar outliers, assisting
the identification of outlier causality. Although pro-
posed as an area of further work by Knorr (2002), the
realisation of this functionality is novel and enhances
the utility of the CURIO algorithm.

This paper is organized as follows. Section 2 dis-
cusses previous outlier discovery research. Section 3
introduces the theory behind CURIO and Section 4
presents the CURIO algorithm. Section 5 presents a
comparative discussion including experimental results
and also introduces the prototype. Finally, Section 6
presents a short conclusion and areas of further work.

2 Previous Work

Outlier detection algorithms are founded upon statis-
tical modeling techniques, either predictive or direct.
Predictive techniques use labelled training sets to cre-
ate an outlier data model (within which outliers fall)
for a domain, which is subsequently used to classify
new data objects. Direct techniques, which include
statistical, clustering, deviation, proximity and den-
sity based techniques, refer to those in which labelled
training sets are unavailable and therefore the classi-
fication of objects as outliers is implemented through
the specification of statistical heuristics. Although
typically more complex than predictive techniques,
direct methods are less constrained as discovery is
not dependent upon pre-defined models. This section
provides a summary of previous outlier detection re-
search with a focus upon direct methods. A recent,
comprehensive survey of outlier detection methodolo-
gies is presented by Hodge & Austin (2004).

Supervised neural networks and decision trees are
two common forms of predictive outlier analysis. Su-
pervised neural networks use the target class of the
labelled training set to drive the learning process, ad-
justing weights and thresholds to ensure that the net-
work can correctly predict the class of new unclassi-
fied objects. While neural networks adjust well to
unseen patterns and are capable of learning complex
class boundaries, the training set must be traversed
many times to allow the network to settle, in order
to provide an accurate model. Hawkins et al. (2002)
and Markou & Singh (2003b) provide surveys regard-
ing neural networks in outlier detection. While super-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Flinders Academic Commons

https://core.ac.uk/display/14933931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

vised neural networks require numerical data, Skalak
& Rissland (1990) propose the use of decision trees as
a robust and scalable method to identify simple class
boundaries in categorical data.

Early statistical approaches construct probability
distribution models under which outliers are objects
of low probability. These discordancy tests (Barnett
& Lewis 1994) are typically univariate and require
ordinal data, however some multivariate extensions
have been proposed (Mahalanobis et al. 1949). More
complex statistical outlier tests have been proposed,
including the use of adaptive nominators (Billor et al.
2000), information measures (Lee & Xiang: 2001) and
convex peeling (Rousseeuw & Leroy 1996). While sta-
tistical methods have a solid foundation and are use-
ful given sufficient knowledge of the data and the type
of test to be applied, this is often not the case and
therefore their practical use is limited. Furthermore,
although multivariate techniques have been proposed,
they are few and scale poorly. A good review of sta-
tistical techniques is provided by Markou & Singh
(2003a).

Clustering aims to partition a dataset into groups
that maximise intra-group similarity and inter-group
dissimilarity. Clustering is also based upon distance
metrics and while some existing algorithms such as
CLARANS (Ester et al. 1995), DBSCAN (Ng & Han
1994) and BIRCH (Zhang et al. 1996) consider out-
liers (to the extent of ensuring that they do not in-
terfere with the clustering process) others have been
adapted to identify them, through post-processing
(Jain et al. 1999) or algorithmic specialisation. For
example, Nairac et al. (1999) extend K-means, Bolton
& Hand (2001) extend K-medoids, while others (Yu
et al. 2002, Struzik & Siebes 2002) use wavelet trans-
forms to find outliers by progressively removing clus-
ters from the dataset.

Deviation based algorithms inspect object char-
acteristics, identifying outliers as those that devi-
ate most from the identified standard features of a
dataset. Arning et al. (1996) identify those objects
that disturb a given time series as outliers, by la-
belling the subset of data that leads to the great-
est reduction in entropy as outliers. Although this
algorithm claims linear complexity, it depends upon
the incorporation of an incrementally calculated dis-
similarity function, which is often not possible.

Proximity or distance-based techniques identify
outliers as those objects distant from most other ob-
jects. The naive complexity of this is quadratic due
to pairwise comparison, however Bay & Schwabacher
(2003) propose a simple pruning optimisation that re-
duces complexity given a randomly ordered dataset.
Knorr & Ng (1998) propose DB-outliers which quan-
tises the space into hypercells, achieving linear com-
plexity in D (D = |tuples|) but exponential in κ
(κ = |dimensions|), making the algorithm efficient
for low dimensional spaces. Ramaswamy et al. (2000)
propose an extension to DB-outliers that produces
a ranked list of potential outliers and uses the mi-
cro clustering phase of BIRCH (Zhang et al. 1996) to
quantise the space in near linear time. Both these al-
gorithms use quantisation to narrow the search space
and then use explicit distance metrics to identify out-
liers. A similar approach by Shekhar et al. (2001)
examines point neighborhoods from a topologically
connected, rather than distance based perspective.

To alleviate the curse of dimensionality, research
has also been undertaken into the use of low-
dimensional projections to identify outliers. Aggar-
wal & Yu (2001) adopt an evolutionary algorithm
to discover those low dimension projections that are
locally sparse and indicate the presence of outliers,
while Angiulli & Pizzuti (2002) use Hilbert space fill-
ing curves to project the dataset multiple times into

a linear representation, where each projection im-
proves the accuracy of an object’s outlier score in
full-dimensional space.

While these extensions find global outliers, den-
sity based techniques, which are derived from density-
based clustering algorithms, enable the discovery of
local outliers, which are anomalies with respect to
their local neighborhood. The seminal algorithm LOF
(Breunig et al. 2000) calculates the Local Outlier Fac-
tor of each object through NN search, resulting in a
complexity of at best O(D log(D)). Jin et al. (2001)
propose an optimisation by constraining LOF calcu-
lation to the top-n outliers using the concept of mi-
cro clusters from BIRCH (Zhang et al. 1996), which
avoids the calculation of LOF for every object (given
that n � D). Many extensions to LOF have been
proposed, however of particular importance to this
paper are those involving quantisation, namely aLOCI
(Papadimitriou et al. 2003) and GridLOF (Chiu & Fu
2003) (see Section 5). Chaudhary et al. (2002) pro-
pose FastOut, a novel density based algorithm that
quantises the domain using an extended form of κ-D
trees (Bentley 1975) and ranks outliers based upon
the inverse density ratio of its cell (the ratio between
the size of the cell and the number of objects within
it).

More recently, Tao et al. (2006) present the out-
lier detection method SNIF which is able to accom-
modate arbitrarily large datasets in three scans or
the dataset through prioritised flushing. Priorities
are assigned based on the likelihood that the object
will be an outlier or a non-outlier with relatively few
neighbours. Other work includes the RBRP (Recur-
sive Binning and Re-Projection) binning technique
(Ghoting et al. 2006) which iteratively partitions the
dataset and thus limits comparisons of distance.

Building upon this previous work, CURIO presents
a novel outlier detection algorithm that makes two
significant contributions to the field. First, CURIO
optimses the analysis of disk resident datasets by
avoiding object-level comparisons and enabling anal-
ysis in only two sequential scans. Second, while pre-
vious techniques discover outliers and can imply out-
lier clusters through effective presentation techniques,
CURIO explicity discovers these clusters, a novel func-
tionality that increases usefulness. The following sec-
tions present the theory and implementation of CU-
RIO, followed by a discussion that compares CURIO
against its competitors, namely DB-outliers, FastOut,
GridLOF and aLOCI.

3 Theory

Given the simple premise that outliers are distant
from the majority of objects when represented in Eu-
clidean space, if this κ-D space is quantised, outliers
are those objects in relatively sparse cells, where the
degree of relative sparsity is dictated by the param-
eter tolerance T . Given T = 4, Figure 1 presents a
2-dimensional grid illustrating both potential (grey)
and valid (white labelled) outlier objects. However
this simple approach can validate false positives as
indicated by A, which is on the edge of a dense re-
gion. This problem can be resolved by either creating
multiple offset grids or by undertaking a NN (Nearest
Neighbour) search. Multiple offset grids requires the
instantiation of many grids which are slightly offset
from each other. This effectively alters the cell al-
location of objects, and requires a subsequent voting
system to determine if an object is to be regarded as
an outlier. The alternative NN search explores the
bounding cells of each identified potential outlier cell
and if the number of objects within this neighbour-
hood exceeds T , all objects residing within the cell

are eliminated from consideration. Both techniques
were implemented, however the neighborhood search
was found to be more accurate, and hence is the one
presented.

This overarching theory provides the foundation
of CURIO, enabling disk resident datasets to be anal-
ysed in two sequential scans. The quantisation and
subsequent count based validation effectively discov-
ers outliers (qv. Section 4), indicating that explicit
distance threshold is not required and in fact often
needlessly complicates the discovery process. CURIO
incorporates an implied distance metric through cel-
lular granularity, where the finer the granularity the
shorter the implied distance threshold. This param-
eter, denoted precision, P , effectively quantises each
dimension into 2P equal length intervals, see Section
4. For example, Figure 2 illustrates the effect of in-
creasing P by 1 (effectively doubling the number of
partitions), resulting in potentially more outliers (i.e.
G).

The provision of tolerance T and NN search en-
ables the explicit discovery of outlier clusters. While
the previous LOF algorithm (Breunig et al. 2000),
purports to discover outlier clusters, they refer to an
implied cluster identification, whereby a small group
of objects significantly removed from the rest of the
dataset are identified as individual outliers depen-
dent upon the parameter MinPts. However they re-
main independent outliers, while CURIO provides a
technique for explicitly grouping these independent
outliers and presenting them as an explicit cluster.

Such functionality facilitates result interpretation
by explicitly representing and differentiating the out-
lier clusters. Earlier techniques require the visual
identification of outlier clusters by the user, and while
this is satisfactory when κ ≤ 3, as direct Euclidean
mappings can be given, direct mappings cannot be
applied at higher κ, making visual interpretation dif-
ficult. For example, given a 2D scatterplot presen-
tation, what appears to be a single cluster, may be
a diverse set of objects that happen to share com-
monality in the presented dimensions. Furthermore,
the explicit identification of outlier clusters enables
the derivation and subsequent presentation of cluster
characteristics or traits to help identify causality.

CURIO identifies outlier clusters by constructing
associative lists during outlier discovery, which effec-
tively represents groups of similar valid outlier cells.
These lists are then merged to resolve duplicates, en-
suring that a valid outlier cell only appears in a single
cluster. Due to the small number of outliers sought
and their typical local sparsity, experimentation has
shown this to be an effective way of identifying outlier
clusters (qv. Section 4.3). An example of an outlier
cluster is presented by the shaded region (indicating
the valid neighbourhood) in Figure 2, consisting of
the outlier points D, E, F and G.

4 CURIO

The CURIO algorithm consists of two phases, quan-
tisation (the identification of candidate outlier cells)
and discovery (the validation of these candidate cells).
The following subsections present the algorithm and
present the outlier cluster extension. While a nor-
malised dataset is not required, it helps to eliminate
skew and leads to better results.

4.1 Quantisation

CURIO’s quantisation phase uses a novel technique to
partition the domain and allocate objects as a sin-
gle step. The storage structure S is realised as a
hashtable for fast access and dynamic construction,

Figure 3: storage structure comparison

effectively representing a directly accessible abstrac-
tion of the hypercube, with each hash-bucket repre-
senting a cell.

The allocation of objects to cells is achieved by
constructing the hash-index from the most signifi-
cant P bits of each dimension, which are concate-
nated to form the cell or index identifier. For exam-
ple, given that a three bit binary number (x) rep-
resents the range 0-7, the most significant bit repre-
sents whether x ≥ 4, effectively quantising the single
dimension space in two. Thus by taking the P most
significant bits, 2P partitions are constructed. For
example P=5 provides 32 partitions across each di-
mension, and given 4 dimensions P=5 will result in
the virtual creation of 25∗4 ≈ 1 million CURIO cells.
Table 1 provides examples of index construction given
8 bit dimensions and P=3, with a space for clarity.

Given this indexing method, the discovery of
candidate outlier cells requires a sequential scan of
the dataset. The index is constructed, providing
a hashtable key that identifies a relevant cell (hash
bucket). Each cell then contains a count, which is in-
cremented for each object mapped to it. Thus upon
completion S contains the set of populated cells and
their counts, with the set of candidate cells being
those with scount ≤ T : s ∈ S.

A hashtable structure was found best suited to this
situation given its dynamic nature. As precision or
dimensionality increase, the number of potential cells
grows exponentially (2P∗κ), resulting in increased do-
main sparsity, as the same objects are spread over
more cells. Since only knowledge of the populated
cells is required, static memory allocation for all do-
main cells, as required by an array structure A, is
inefficient. Early experimentation considered the use
of A for small κ, to provide direct access rather than
the mapping required with hashtables, however the
size of A and the time taken for its initial memory
allocation was found to negate the benefit of direct
access. Figure 3 shows the difference in required cell
numbers for the UCI-KDD dataset (Hettich & Bay
1999) on internet usage data, while increasing P and
κ. However it should be noted that an array structure
is still reasonable given a dense dataset and coarse
partitioning (number of cells < 224).

4.2 Outlier Discovery

The Outlier Discovery phase subsequently validates
the potential outlier cells in S to find outlier objects.
Each cell is validated by undertaking a NN search
upon its first object access to eliminate any false pos-
itives. Given the inclusion of an abstract distance
metric through quantisation, all objects within a valid
outlier cell are outliers. Therefore an object is vali-
dated based upon its cell’s classification.

By including neighbouring cells as part of the
target cell’s domain through NN search, false posi-

A

B

C

D

E FG

B

C

D

E FG

A

Figure 1: Example Grid Figure 2: With increased precision

Dim 1 Dim 2 Dim 3 Index
001 00110 101 11100 110 00001 001 101 110
001 10110 110 01010 011 11001 001 110 011
100 00010 000 11001 111 01110 100 000 111

Table 1: Cell Identifier Construction

Algorithm 1 Discover Outliers
1: for all d ∈ D do
2: I = calcIndex(d)
3: cell s = S.get(I)
4: if ! sinvalid then
5: if sunknown then
6: svalid = exploreHood(S,scount,I,N,T)
7: end if
8: if svalid then V.add(d)
9: end if

10: end for
11: hoodIterator.initialise(I, N)
12: while hoodIterator.hasNext() do
13: ct += S.get(hoodIterator.getNext())count
14: if ct > T then return false
15: end while
16: return true

tives are eliminated by comparing tolerance T against
the domain count scount

domain =
∑
{∀scount : s ∈

neighbourhood}, rather than the target cell’s count.
The neighbourhood extent is defined by N , such that
N defines the cellular radius of the NN search, hence
N = 1 includes only bounding cells, while N=3 in-
cludes those up to 3 distant from the target cell. The
search is inherently expensive, having a complexity of
O(2N+1)κ, typically N=1 has been found to perform
well and reduces complexity to O(3κ). However the
search is optimised by terminating when scount

domain > T .
Once a cell is validated (or classified) as either

common or outlier, all objects pertaining to that cell
are assigned the cell’s classification, therefore the set
of valid outliers V are those objects belonging to valid
outlier cells. The outlier discovery process is pre-
sented in Algorithm 1.

4.3 Cluster Discovery

Cluster discovery requires an extension of the out-
lier discovery stage to construct associated outlier
cell lists or cell clusters during cell validation. Fig-
ure 4 presents the outlier set from Figure 2 with cell

1

2

8

6 3

4

7

5

Figure 4: Valid Outlier cells

identifiers reflecting the order of cell validation. It
is apparent that cells 1, 2, 5 and 8 have no associ-
ated valid cells and therefore form single cell clusters,
while cells 3, 4, 6 and 7 form a multi-cell cluster.
During validation, or NN search, each target cell is
assigned a unique cluster identifier and upon encoun-
tering an earlier validated cell with a different cluster
identifier, the later cluster is merged into the earlier
cluster. Therefore upon completion if the target cell
is validated, it also contains the required clustering
information. For example, during validation, cell 1,
2 and 3 are validated, resulting the identification of
cluster1 ⇒ 1, cluster2 ⇒ 2, cluster3 ⇒ 3. Then cell
4 is validated, during which cell 3 is encountered, re-
sulting in cluster3 ⇒ 3,4. Subsequently cell 6 and 7
are both validated, encountering members of cluster3
and hence resulting in cluster3 ⇒ 3,4,6,7. This re-
sults in the eventual identification of 5 clusters : {1},
{2}, {3, 4, 6, 7}, {5}, {8}. The extended Outlier Dis-
covery algorithm is shown in Algorithm 2 illustrating
the generation of a cluster listing (#12) and cluster
reduction through merging (#18).

Algorithm 2 Outlier Discovery with explicit
Cluster Identification

1: for all d ∈ D do
2: I = calcIndex(d)
3: cell s = S.get(I)
4: if ! sinvalid then
5: if sunknown then
6: svalid = exploreHood(S,s,I,N,T)
7: end if
8: if svalid then s.add(d)
9: end if

10: end for
11: cluster l = new cluster(s)
12: clusterList.add(l)
13: hoodIterator.initialise(I, N)
14: while hoodIterator.hasNext() do
15: cell c = S.get(hoodIterator.getNext())
16: scount += ccount
17: if scount > T then return false
18: if cvalid then merge(scluster,ccluster)
19: end while
20: return true

Figure 5: Dataset scalability (legend: Dimensions by
Precision)

5 Discussion and Experiment Results

This section provides algorithmic comparison, exper-
imental results and briefly introduces the prototype.
CURIO is compared against the other fast outlier
detection algorithms that incorporate quantisation,
namely FastOut, aLOCI, GridLOF and DB-outliers (qv.
Section 2), with respect to complexity, underlying
data structures and disk resident analysis. The ex-
perimentation was conducted on a Pentium 2.4GHz
with 1Gb of memory dedicated to the process and the
code was written in Java 1.4.

CURIO has linear complexity with respect to D as
illustrated in Figure 5, which is based upon the analy-
sis of a real hospital administration dataset containing
3.1 million tuples and 5 selected analysis dimensions.
Two sequential passes of D are required for analy-
sis, resulting in O(2D). Neighbourhood exploration
of candidate cells is exponential with respect to κ,
having a worst case of O((2N + 1)κ), however optimi-
sation is provided through dynamic termination and
the typical case of N = 1. Given this and the typically
small number of candidate cells, the effect of this com-
plexity upon performance becomes significant above
≈ 8 dimensions as shown in Figure 6, which is derived
from the UCI-KDD Internet Usage Dataset (Hettich
& Bay 1999). Experimentation has shown that for all
practical purposes CURIO is efficient when κ < 10.

In comparison, GridLOF provides a pre-processing
optimisation for LOF by quantising the domain and
removing dense cell objects from further considera-
tion. This requires NN search to identify boundary
cells and is exponential with respect to κ. How-
ever GridLOF is also non-linear with respect to D
given its subsequent LOF processing, which at best
is O(DlogD). Similar to CURIO, DB-outliers is ex-
ponential in κ (5κ) and, although the authors claim
DB-outliers is linear in D, object level pairwise com-

Figure 6: Dimensionality (κ) scalability

parison is required for a subset of objects and hence
complexity with respect to D must be greater than
linear.

FastOut quantises the domain into regions of equal
density and if the density ratio exceeds a specified
threshold then the participant objects are outliers.
FastOut claims linear complexity with respect to both
κ and D. However valid outliers can occur near re-
gion boundaries and by not conducting a search of
adjacent regions, false positives can occur. There-
fore, although linear, FastOut is less accurate. aLOCI
is theoretically similar to CURIO, being linear in D
and requiring a NN search, however in practice it is
almost linear with respect to κ, as it takes advan-
tage of complex underlying data structures. aLOCI
implements a forest of κ-D trees to quantise the do-
main, which recursively create regions of finer granu-
larity. During discovery aLOCI identifies the relevant
cell and undertakes NN search by rolling up the tree
to a cell of suitable volume in which the target cell is
centered. This coarse cell provides the NN boundary
and the neighbourhood count is obtained by summing
its subtree’s cell’s object counts. As this technique
can introduce significant skew if no well fitting coarse
cell can be found, aLOCI creates many, slightly off-
set, κ-D trees (10 to 30), and selects the best tree
for each object’s validation, subsequently improving
result quality.

FastOut and aLOCI use variants of κ-D trees as
their underlying data structures in comparison to the
simple hashtables used by GridLOF, DB-outliers and
CURIO. While κ-D trees provide efficient techniques
for subtree accumulation, Knorr (2002) provides ex-
perimental evidence that the use of tree based index-
ing structures is typically uncompetitive due to hid-
den costs associated with the construction of these
structures. This is exacerbated in aLOCI by the cre-
ation of a forest of trees.

Similar to CURIO, GridLOF and DB-outliers use
hashtable storage structures. However the allocation
process is not discussed in DB-outliers and hence a
naive approach is assumed. While GridLOF mentions
the construction of an index based upon the concate-
nation of interval id’s for each dimension, it indicates
a two stage process of interval calculation and allo-
cation, and an intermediary mapping for each object.
In contrast CURIO’s quantisation technique accom-
plishes both interval calculation and allocation in a
single direct step.

With regard to the analysis of disk resident
datasets, CURIO and aLOCI are the most efficient as
neither requires pairwise comparison nor the storing
of objects within their underlying structures. Both
GridLOF and DB-outliers require pairwise comparison
and while GridLOF does not address the analysis of
disk resident datasets, DB-outliers proposes a novel
yet complex paginating algorithm to minimise disk
access. Similarly, FastOut requires that all objects be
stored within the κ-D tree to recursively divide cells
evenly, ensuring that each new region is uniformly
sparse. In contrast, both CURIO and aLOCI only re-
quire two sequential reads of a disk-resident dataset.

Figure 7: Effects of precision adjustment

Figure 8: Effects of tolerance adjustment

Figure 9: Effects of precision : tolerance adjustment

The CURIO algorithm has three parameters, pre-
cision P , tolerance T and neighbourhood extent N .
While N is typically set to 1, the variance of both
P and T affects the nature of results. This variance
is illustrated in Figures 7, 8 and 9 which are derived
from analysis upon the UCI KDD dataset (Hettich
& Bay 1999) with a basis of κ = 5, P=5, T=10 and
N=1. The set of scatterplot visualisations presented
in Figure 10 illustrates the effect of varying param-
eters, with the labels representing (P : N : T). For
simplicity only two dimensions are analysed, with the
last figure showing the complete dataset. Given a
base analysis of (4:1:10) these images show the effect
of increasing P or N and decreasing T .

In summary, CURIO is novel and efficient, provid-
ing an outlier detection algorithm for large disk res-
ident datasets that has linear time complexity with
respect to D and efficient for κ < 10. Compared to
other fast outlier detection algorithms, CURIO com-
pares favorably against DB-outliers and GridLOF, and
while FastOut is faster it is also less accurate. aLOCI
is more competitive, effectively providing near linear
complexity in κ. However aLOCI requires complex
data structures and analysis in order to maintain this
complexity, maintaining a larger footprint than CU-
RIO. Theoretically CURIO is significantly simpler than
aLOCI, with respect to both data structures and anal-
ysis, and provides an attractive alternative to aLOCI
for κ < 10. This is given further weight by recent
cognitive research (Pfitzner et al. 2003) which shows a
significant correlation between dimensionality and the
effort required by the user to understand the results.
This supports our current experience, with practition-
ers finding it difficult to understand outlier causality
when too many dimensions have been incorporated
within analysis.

CURIO has been developed as part of an analysis
toolkit for hospital administration data (Ceglar et al.
2006). Within this domain CURIO has proven effec-
tive at identifying outlier clusters within large com-
plex datasets. The current application prototype is
written in Java 1.4 for compatibility purposes and is
multi-threaded to allow for multiple concurrent anal-
ysis instances. The tool, presented in Figure 11, is
feature rich, providing clustering and characterisa-
tion in addition to outlier detection. Outlier anal-
ysis presentation is comprised of three aspects, a rich
dynamically constructed scatterplot presentation and
two tabular presentations providing a summary of dis-
covered outlier clusters and more detailed view.

The CURIO prototype (currently in beta test com-
mercial phase) is proving an effective outlier detection
tool with positive feedback from test sites, especially
with respect to its speed and outlier clustering abil-
ity. Feedback regarding the incorporated parameters
is also positive, with users being able to understand
their use within analysis.

6 Conclusion and further work

CURIO presents a novel outlier detection algorithm
that makes two significant contributions. The first
is the use of significant attribute bits to quantise the
domain space. This technique is faster than best cur-
rent practice, enabling both direct index construction
from the attribute and also a single step quantisation
and allocation, removing the need for intermediary
mappings in both cases. The second contribution is
the explicit identification of outlier clusters, which has
previously been identified as an area of further re-
search (Knorr 2002) and is proving of practical use.
Furthermore, CURIO is able to analyse disk resident
datasets in two sequential scans by removing object
level comparisons and only storing cell counts. How-

(a) 4:1:10 (b) 4:1:3 (c) 4:2:10

(d) 5:1:10 (e) complete

Figure 10: Outlier analysis parameter variance

Control Panel Summary TableOutlier Cluster Characterisation Scatterplot Visualisation

Figure 11: Prototype Application Snapshot

ever, aside from this, CURIO’s contribution lies in its
simplicity, being relatively easy to understand and
implement, making it an attractive alternative to cur-
rent algorithms.

Three areas of further work have been identi-
fied: weighting, domain knowledge inclusion and pro-
jected analysis. Increasing the precision of particular
attributes shows promise in increasing their weight
within analysis, due to the positive correlation be-
tween precision and number of outliers. The inclu-
sion of domain knowledge will improve result quality
by allowing the user to identify outlier characteristics
that although statistically correct, are already known
and therefore removed from consideration. Projected
outlier detection will allow analysis to be iteratively
undertaken upon attribute subsets, facilitating pro-
cessing and interpretation in a similar manner to that
proposed by Aggarwal & Yu (2001).

References

Aggarwal, C. C. & Yu, P. S. (2001), Outlier detec-
tion for high dimensional data, in ‘ACM SIGMOD
International Conference on Management of Data’,
ACM Press, Santa Barbara, CA, USA, pp. 37–46.

Angiulli, F. & Pizzuti, C. (2002), Fast outlier de-
tection in high dimensional spaces, in T. Elomaa,
H. Mannila & H. Toivonen, eds, ‘6th European
Conference on Principles and Practice of Knowl-
edge Discovery in Databases (PKDD 2002)’, Vol.
2431 of LNCS, Springer, Helsinki, Finland, pp. 15–
26.

Arning, A., Agrawal, R. & Raghavan, P. (1996),
A linear method for deviation detection in large
databases, in ‘Second International Conference on
Knowledge Discovery and Data Mining (KDD’02)’,
ACM Press, Portland, Oregan, pp. 164–169.

Barnett, V. & Lewis, T. (1994), Outliers in Statistical
Data, John Wiley and Sons, Chichester, New York.

Bay, S. D. & Schwabacher, M. (2003), Mining
distance-based outliers in near linear time with ran-
domization and a simple pruning rule, in L. Getoor,
T. Senator, P. Domingos & C. Faloutsos, eds,
‘Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining’, ACM
Press, Washington, DC, USA, pp. 29–38.

Bentley, J. L. (1975), ‘Multidimensional binary search
trees used for associative searching’, Communica-
tions of the ACM 18(9), 509–517.

Billor, N., Hadi, A. S. & Velleman, P. F. (2000), ‘BA-
CON: Blocked adaptive computationally-efficient
outlier nominators’, Computational Statistics and
Data Analysis 34, 279–298.

Bolton, R. J. & Hand, D. J. (2001), Unsupervised pro-
filing methods for fraud detection, in ‘Credit Scor-
ing and Credit Control VII’, Edinburgh, UK.

Breunig, M., Kriegel, H., Ng, R. & Sander, J.
(2000), Identifying density-based local outliers, in
W. Chen, J. Naughton & P. Bernstein, eds, ‘ACM
SIGMOD International Conference on the Manage-
ment of Data (SIGMOD 2000)’, ACM, Dallas, TX,
USA, pp. 93–104.

Ceglar, A., Morrall, R. & Roddick, J. F. (2006), Min-
ing medical administrative data - the PKB system,
in M. Ackermann, C. Soares & B. Guidemann,
eds, ‘ECML PKDD 2006 Workshop on Practical
Data Mining: Applications, Experiences and Chal-
lenges’, Berlin, pp. 59–66.

Chaudhary, A., Szalay, A. S. & Moore, A. W. (2002),
Very fast outlier detection in large multidimen-
sional data sets, in V. Ganti, ed., ‘ACM SIG-
MOD Workshop on Research Issues in Data Mining
and Knowledge Discovery (DMKD)’, ACM Press,
Madison, Wisconsin, USA, pp. 45–52.

Chiu, A. L. M. & Fu, A. W. C. (2003), Enhance-
ments on local outlier detection, in ‘7th Interna-
tional Database Engineering and Application Sym-
posium (IDEAS2003)’, ACM Press, Hong Kong
S.A.R., China, pp. 298–307.

Ester, M., Kriegel, H.-P. & Xu, X. (1995), A database
interface for clustering in large spatial databases, in
‘1st International Conference on Knowledge Dis-
covery and Data Mining, KDD’95’, AAAI Press,
Montreal, Canada, pp. 94–99.

Ghoting, A., Parthasarathy, S. & Otey, M. (2006),
Fast mining of distance-based outliers in high-
dimensional datasets, in ‘2006 SIAM Conference on
Data Mining’, SIAM, Bethesda, MA, USA.

Hawkins, S., He, H., Williams, G. J. & Baxter,
R. A. (2002), Outlier detection using replicator
neural networks, in Y. Kambayashi, W. Winiwarter
& M. Arikawa, eds, ‘4th International Conference
on Data Warehousing and Knowledge Discovery
(DaWaK ’02)’, Vol. 2454 of LNCS, Springer, Aix-
en-Provence, France, pp. 170–180.

Hettich, S. & Bay, S. D. (1999), ‘The UCI KDD
archive [http://kdd.ics.uci.edu]: Internet usage
data’.

Hodge, V. J. & Austin, J. (2004), ‘A survey of out-
lier detection methodologies’, Artificial Intelligence
Review 22(2), 85–126.

Jain, A. K., Murty, M. & Flynn, P. (1999), ‘Data
clustering: A review’, ACM Computing Surveys
31(3), 264–323.

Jin, W., Tung, A. K. H. & Han, J. (2001), Mining
top-n local outliers in large databases, in ‘7th ACM
SIGKDD International Conference on Knowledge
Discovery (KDD’01)’, ACM Press, San Francisco,
CA, pp. 293–298.

Knorr, E. (2002), Outliers and Data Mining: Find-
ing Exceptions in Data, PhD thesis, University of
British Columbia.

Knorr, E. M. & Ng, R. T. (1998), Algorithms for
mining distance-based outliers in large datasets, in
A. Gupta, O. Shmueli & J. Widom, eds, ‘24th In-
ternational Conference on Very Large Data Bases,
VLDB’98’, Morgan Kaufmann, New York, NY,
USA, pp. 392–403.

Lee, W. & Xiang:, D. (2001), Information yheoretic
measures for anomaly detection, in ‘2001 IEEE
Symposium on Security and Privacy’, IEEE Com-
puter Society, Oakland, CA, USA, pp. 130–143.

Mahalanobis, P., Majumda, D. & Rao, C. (1949),
‘Anthropometric survey of the united provinces: a
statistical study’, Sankhya 9, 89–324.

Markou, M. & Singh, S. (2003a), ‘Novelty detection:
a review - part 1: statistical approaches’, Signal
Processing 83(12), 2481–2497.

Markou, M. & Singh, S. (2003b), ‘Novelty detection: a
review - part 2: neural network based approaches’,
Signal Processing 83(12), 2499–2521.

Nairac, A., Townsend, N., Carr, R., King, S., Cow-
ley, P. & Tarassenko, T. (1999), ‘A system for the
analysis of jet system vibration data’, Integrated
Computer-Aided Engineering 6(1), 53–65.

Ng, R. & Han, J. (1994), Efficient and effective clus-
tering methods for spatial data mining, in J. Bocca,
M. Jarke & C. Zaniolo, eds, ‘20th International
Conference on Very Large Data Bases, VLDB’94’,
Morgan Kaufmann, Santiago, Chile, pp. 144–155.

Papadimitriou, S., Kitagawa, H., Gibbons, P. &
Faloutsos, C. (2003), Loci: Fast outlier de-
tection using the local correlation integral, in
U. Dayal, K. Ramamritham & T. Vijayaraman,
eds, ‘19th International Conference on Data En-
gineering (ICDE)’, IEEE Computer Society, Ban-
galore, India, pp. 315–326.

Pfitzner, D., Hobbs, V. & Powers, D. M. (2003), A
unified taxonomic framework for information visu-
alization, in T. Pattison & B. Thomas, eds, ‘Aus-
tralian Symposium on Information Visualisation,
(invis.au’03)’, Vol. 24 of CRPIT, ACS, Adelaide,
Australia, pp. 57–66.

Ramaswamy, S., Rastogi, R. & Kyuseok, S. (2000),
Efficient algorithms for mining outliers from large
data sets, in W. Chen, J. Naughton & P. Bernstein,
eds, ‘ACM SIGMOD International Conference on
the Management of Data (SIGMOD 2000)’, ACM
Press, Dallas, TX, USA, pp. 427–438.

Roddick, J. F., Fule, P. & Graco, W. J. (2003), ‘Ex-
ploratory medical knowledge discovery : Experi-
ences and issues’, SigKDD Explorations 5(1), 94–
99.

Rousseeuw, P. & Leroy, A. (1996), Robust Regression
and Outlier Detection, 3rd edn, John Wiley and
Sons.

Shekhar, S., Lu, C.-T. & Zhang, P. (2001), Detect-
ing graph-based spatial outliers: Algorithms and
applications (a summary of results), in ‘7th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD-2001)’, ACM Press, San Fran-
cisco, CA, pp. 371–376.

Skalak, D. & Rissland, E. (1990), Inductive learn-
ing in a mixed paradigm setting, in ‘8th National
Conference on Artificial Intelligence’, AAAI Press
/ MIT Press, Boston, MA, pp. 840–847.

Struzik, Z. R. & Siebes, A. P. J. M. (2002), ‘Wavelet
transform based multifractal formalism in outlier
detection and localisation for financial time series’,
Physica A 309(3-4), 388–402.

Tao, Y., Xiao, X. & Zhou, S. (2006), Mining distance-
based outliers from large databases in any metric
space, in ‘12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining’,
ACM Press, Philadelphia, PA, USA, pp. 394–403.

Yu, D., Sheikholeslami, G. & Zhang., A. (2002),
‘Findout: Finding outliers in very large datasets’,
Knowledge and Information Systems 4(4), 387–412.

Zhang, T., Ramakrishnan, R. & Livny, M. (1996),
BIRCH: An efficient clustering method for very
large data bases, in ‘ACM SIGMOD Workshop on
Research Issues on Data Mining and Knowledge
Discovery’, ACM, Montreal, Canada, pp. 103–114.

