
Suffix Tree Based Approach for Chinese Information Retrieval

Jin Hu Huang and David Powers

School of Computer Science, Engineering and Mathematics

Flinders University of South Australia

SA 5042, Australia

{jin.huang, powers}@flinders.edu.au

Abstract

With the widespread of the Internet, great research in-
terests are being shown in Chinese language information
retrieval in recent years. The absence of word bound-
aries in Chinese language makes Chinese information re-
trieval(IR) different to European IR. In order to apply tradi-
tional IR approaches to Chinese language, sentences have
to be segmented into words first. Word segmentation is
playing a key role in Chinese IR. As word segmentation
is not straightforward and the results are sometime am-
biguous, n-grams are used as an alternative. Several ex-
perimental studies have been conducted to compare words
and n-grams[5, 6], word segmentation and its effect on in-
formation retrieval[3]. These studies show that using ei-
ther words or n-grams leads to comparable performances.
Higher word segmentation accuracy does not necessarily
result in better retrieval performance. In this paper we pro-
pose a suffix tree based approach for Chinese information
retrieval without word segementation.

1. Introduction

The number of electronic documents other than Euro-

pean languages available in the Internet is growing enor-

mously. Traditional information retrieval systems for Euro-

pean languages such as English use words as indexing units

can not apply directly to Asian languages such as Chinese

because English text is written with delimiters and words

can be easily recognized. Chinese text is written as con-

tinuous strings of ideographs (or characters). Thus there

is major difference between Chinese IR and IR in Euro-

pean language. A pre-processing called segmentation has to

be done to determine the boundaries of words before tradi-

tional IR approaches based on words can be adapted to Chi-

nese language. Because text segmentation is not straightfor-

ward and the process itself can have ambiguous outcomes,

n-grams are used as an alternative indexing units instead of

words. Several studies have been carried out to compare

these two kinds of indexing approaches. It turns out that IR

based on words gives slightly better results than bi-grams.

Further studies have revealed that the accuracy of word seg-

mentation have an impact on IR performance but higher

word segmentation accuracy does not necessarily result in

better retrieval performance. In this paper, first we will in-

troduce to use suffix arrays to compute term frequency and

document frequency for all n-grams in documents. Then

we propose a filter algorithm to limit the size of n-grams

used for indexes. Finally we present results on information

retrieval conducted on TREC Chinese corpus.

2 Chinese Information Retrieval

For Chinese IR systems, choosing what kind of index-

ing units is more problematic than those that dealing with

European languages only.

2.1 Character-based Indexing

Typical character-based indexing uses single Chinese

characters as index terms. In Chinese language, the Chinese

character is the element unit of their writing system. The

definition of Chinese character does not cause any contro-

versy because visually a character is an isolated symbol. Al-

though the majority of Chinese words are compound words

consisting of free or bound morphemes, the meanings of

most compound words can be derived from the meanings

of their constituents. Each character has its own semantic

and syntactic properties. It can ensure no information loss

and is quite easy to implement. Any document contains the

same characters as the query will be retrieved. It causes

high recall but low precision as some single characters are

polysemantic and homonymic.

Eighth International Conference on Intelligent Systems Design and Applications

978-0-7695-3382-7/08 $25.00 © 2008 IEEE

DOI 10.1109/ISDA.2008.365

393

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Flinders Academic Commons

https://core.ac.uk/display/14933928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.2 N-grams-based Indexing

This indexing method uses chunks of n consecutive char-

acters as the index term. Neither dictionary nor other lin-

guistic knowledge is required in the processing. Bi-grams

have been often used as indexing terms form Chinese IR

as most Chinese words are composed of two characters. In

addition to the ease of word identification, bi-grams bear

more semantic information than single characters. Bi-gram

indexing is exhaustive and avoids the difficult problem of

word segmentation. Bi-grams can consider unknown words

and abbreviations in a better way than words do. The draw-

backs of using bi-grams as indexes are meaningless charac-

ter chunks are abundant among bi-grams, leading to noisy

matching between queries and documents.

2.3 Word-based Indexing

Using single characters and n-grams as index terms

makes it difficult to incorporate linguistic knowledge into

the retrieval processing because both of them are not ideal

conceptual units. In this aspect, words are better index can-

didates.

As mentioned above Chinese words are not readily rec-

ognizable because Chinese orthography fails to represent

word boundaries. Therefore, it is necessary and important

that word segmentation has to be carried out to break the

original Chinese text into a series of words. Segmentation

of Chinese text into words is a very difficult task. It re-

quires linguistic knowledge and coverage of dictionaries.

Many characters form one-character words by themselves,

but these characters can also form multi-character words

when used with other characters. Chinese words have vari-

able lengths, the same character may occur in many dif-

ferent words. The question of what constitutes a Chinese

”word” cannot be answered without any controversy. There

is poor agreement on word segmentation amongst human

annotators and at least three relative widespread conven-

tions (Penn Treebank, China, Taiwan).

1. The segmentation guidelines for the Penn Chinese

Treebank [10]

2. The guidelines for the Beijing University Institute of

Computational Linguistics Corpus [12]

3. The ROCLING standard developed at Academia

Sinica in Taiwan [7].

2.4 Retrieval Models

A retrieval model specifies how the content of a docu-

ment and user’s information need is represented in an IR

system, how the documents and the information needs are

matched so the relevant items can be retrieved. We used a

vector space model, which view documents and queries as

vectors in an n-dimension vector space and use distance as

a measure of similarity.

Suppose there is a document Di in collection D and a

query Qj , then the vector Di and Qj can be represented

respectively as follows:

Di = (di1 · · · dim) (1)

Qj = (qj1 · · · qjm) (2)

where dik is the weight of term tk in the document Di,

qik is the weight of term tk in the query Qi,and m is the size

of the vector space (the number of different terms, words

or ngrams). Our weighting scheme is same as the SMART

system [1]. The weight dik of a term in a document is calcu-

lated according to its occurrence frequency in the document

(term frequency) and its distribution in the entire collection.

We used the following formula as the Smart system.

dik =
(log(fik) + 1.0) ∗ log(N

nk
)√∑

j

((log(fjk) + 1.0) ∗ log(N
nk

))2
(3)

where fik is the occurrence frequency of the term tk in

the document Di, N is the total number of documents in the

collection. nk is the number of documents that contain the

term tk.

Similary between Di and Qj is calculated as the inner

product of their vectors as following:

Sim(Di, Qj) =
∑

k

(dik ∗ qjk) (4)

3 Suffix Trees and Arrays

A suffix tree[8] is a data-structure that allows to solve

many problems on strings. If str = s1s2 . . . si . . . sn is

a string, then Si = sisi+1 . . . sn is the suffix of str that

starts at position i to the end of the string, e.g. str =
”to be or not to be” illustrated in Table 1.

If the suffixes are sorted, some of them may share com-

mon prefixes shown in Table 2. These prefixes share

a common path from the root as in a PATRICIA tree.

Thus the sorted suffixes can be represented by a Trie-

like or PATRICIA-like data structure called suffix tree. A

given suffix tree can be used to search for a substring,

substr[1..m] in O(m) time. There are n(n + 1)/2 sub-

strings in str[1..n]. A substring must be a prefix of a suffix

of str, if it occurs in str.

Suffix arrays provide the same function as suffix trees

and occupy much less space. A suffix array is simply an

array containing all the pointers to the suffixes of a text

394

Position 0 1 2 3 4 5 6 7 8

Characters t o b e o r

Position 9 10 11 12 13 14 15 16 17

Characters n o t t o b e

Suffix Array Indexes Si Suffixes

s[0] 0 S0 to be or not to be

s[1] 1 S1 o be or not to be

s[2] 2 S2 be or not to be

s[3] 3 S3 be or not to be
...

...
...

...

s[13] 13 S13 to be

s[14] 14 S14 o be

s[15] 15 S15 be

s[16] 16 S16 be

s[17] 17 S17 e

Table 1. Suffixes and suffix arrays before

sorting

Array i Si Suffixes Lcp v

s[0] 15 S15 be lcp[0] 0

s[1] 2 S2 be or not to be lcp[1] 3

s[2] 8 S8 not to be lcp[2] 1

s[3] 5 S5 or not to be lcp[3] 1

s[4] 12 S12 to be lcp[4] 1

s[5] 16 S16 be lcp[5] 0

s[6] 3 S3 be or not to be lcp[6] 2

s[7] 17 S17 e lcp[7] 0

s[8] 4 S4 e or not to be lcp[8] 1

s[9] 9 S9 not to be lcp[9] 0

s[10] 14 S14 o be lcp[10] 0

s[11] 1 S1 o be or not to be lcp[11] 4

s[12] 6 S6 or not to be lcp[12] 1

s[13] 10 S10 ot to be lcp[13] 1

s[14] 7 S7 r not to be lcp[14] 0

s[15] 11 S11 t to be lcp[15] 0

s[16] 13 S13 to be lcp[16] 1

s[17] 0 S0 to be or not to be lcp[17] 5

lcp[18] 0

Table 2. Suffixes and suffix arrays after sort-

ing

sorted in lexicographical (alphabetical) order. Each suffix

is a string starting at a certain position in the text and end-

ing at the end of the text. Searching a text can be performed

by binary search using the suffix array.

The algorithm, suffix array, presented below takes a

string and its length N as input, and outputs the suffix array,

s.

suffix array ← function(string, N){
Initialize s to be a vector of integers from 0 to N−1.

Let each integer denote a suffix starting at s[i].
Sort s so that the suffixes are in alphabetical order.

return s; }
In order to compute the frequency, an auxiliary array is

defined to store LCPs (longest common prefixes). The lcp

array is a vector of N + 1 integers. Each element, lcp[i],
denotes the length of the common prefix between the suffix

s[i − 1] and the suffix s[i]. As mentioned above there are

N(N + 1)/2 substrings for a document with the length N .

Instead of computing the statistics for all substrings directly

the set of all substrings is partitioned by the classes with the

same statistics (term frequency tf and document frequency

df)[11]. The set of substrings in a class can be constructed

from the lcp vector:

class(< i, j >) = {s[i]m|LBL(< i, j >) < m ≤
SIL(< i, j >)} (5)

LBL(< i, j >) = max(lcp[i], lcp[j + 1])
SIL(< i, j >) = min(lcp[i + 1], lcp[i + 2], . . . , lcp[j])
tfclass(<i,j>) = j − i + 1 (6)

where LBL is longest bounding lcp, SIL is shortest in-

terior lcp and s[i]m denotes the first m characters of suffix

s[i]. A class < i, j > exists between interval < i, j > if

LBL < SIL. Then this interval < i, j > is lcp-delimited.

It means all the suffixes in lcp-delimited interval < i, j >
share the same longest common prefix and no other suffixes

outside the interval shares it. Thus it is not possible for

two lcp-delimited intervals to overlap but it is possible to be

nested. Table 2 shows that lcp-delimited interval < 0, 1 >
with lcp ” be” is nested in interval < 0, 4 > with lcp ” ”.

The term frequency for class(< i, j >) is equal to j−i+1.

class(< i, i >) has term frequency 1 called trivial class.

We are more interested in the nontrivial class with term fre-

quency greater than 1. The number of substrings in a non-

trivial class is

|class(< i, j >)| = SIL(< i, j >)− LBL(< i, j >).
(7)

The substrings in the nontrivial class class(< i, j >) are

the first LBL(< i, j >) + 1, . . . , SIL(< i, j >) characters

of suffix s[i], total SIL(< i, j >) − LBL(< i, j >) pre-

fixes of suffix s[i]. All substrings in the same class have the

same term frequency and document frequency if all suffixes

395

Interval Class {Substrings} SIL LBL tf

< 0, 1 > be { b, be } 3 1 2

< 0, 4 > { } 1 0 5

< 5, 6 > be {b,be} 2 0 2

< 7, 8 > e {e} 1 0 2

< 10, 11 > o be {o ,o b,o be} 4 1 2

< 10, 13 > o {o} 1 0 4

< 16, 17 > to be {to,to ,to b,to be} 5 1 2

< 15, 17 > t {t} 1 0 3

Table 3. Nontrivial classes for string

”to be or not to be”

were terminated with the first end of document symbol in

multi-document corpus. Table 3 shows nontrivial classes

for string ”to be or not to be”. For class < 16, 17 > with

SIL 5 and LBL 1 there are 4 substrings {to, to , to b, to be}
in the class with the same term frequency 2. In Chinese the

longest substring in the class is most likely to be a word or

a phase. We can use the longest substring to represent the

class instead of using all the substring to reduce the size of

all substrings.

As two lcp-delimited intervals are not possible to over-

lap and possible to be nested, there are at most N − 1 non-

trivial classes with term frequency greater than 1. For triv-

ial classes there are at most N classes with term frequency

equal to 1. This significantly reduces the computation of

various statistics over substrings (N(N + 1)/2)) to a com-

putation over classes (2N − 1).

If we can identify all the classes of a corpus, we can use

a straightforward method to compute the term frequency in

a document and the document frequency.

4 Filtering Algorithm

Suffix tree based approach described above can reduce

the computation term frequency and document frequency

over substrings (N(N + 1)/2)) to a computation over

classes (2N − 1). The following algorithm is used to filter

out the substrings which are incomplete and lack of repre-

sentative.

4.1 Stop Words

In modern information retrieval systems, effective index-

ing can be achieved by removal of stop words. Chinese

language hardly has any grammatical inflections. It makes

heavy use of grammatical particles to indicate aspect and

mood. They carry no significant information to the docu-

ment. They are used often enough to mislead the occur-

rences of string patterns. A stop word list about 100 Chi-

nese words is used to filter out these noisy patterns.

4.2 Longest substring in the class

All the substrings in the same class have the same term

frequency and document frequency. The longest substring

in the class is most likely to be a word or a phase. We can

use the longest substring to represent the class instead of

using all the substring to reduce the size of the substrings.

As suffix tree is built from one direction, all the substrings

with the same attributes (same statistics and part of longest

substring in the class) are not including in the same class.

In Table 3 there are 4 substrings {to, to , to b, to be} in the

class < 16, 17 > with the same term frequency 2. If we

construct another suffix from the other direction (from the

end to the start), we should get 5 substrings {e, be, be, o be,

to be} in the same class with longest substring ”to be”. In

this case, we can merge classes with same attributes.

4.3 Mutual Information

Mutual information is commonly used to evaluate the

correlation of substrings. We adapted the same mutual in-

formation metric as [2] by observing mutual information of

two overlapped patterns.

MIab =
Pr(c)

Pr(a) + Pr(b)− Pr(c)

=
fc

F
fa

F + fb

F − fc

F

=
fc

fa + fb − fc

where c is the substring to be estimated, c =
c1, c2, . . . , cn, a and b are the two longest composted sub-

strings of c with the length n − 1, i.e. a = c1, . . . , cn−1,

b = c2, . . . , cn, fa,fb and fc are the frequencies of a, b and

c. If MIab is large, it can be found that more of the time

substrings a and b have to occur together. It seems that c is

more complete in semantics than either a or b.

4.4 Frequency

The iterative occurrences of substring in multi-

documents is most likely to be a word or a phrase. Low

frequency substrings are more likely to occur by chance.

We filter the trivial classes with the the length of substring

greater than 1.

4.5 Length of N-gram

The length of N-gram will dramatically increase the

number of N-grams produced. The longer N-gram, the

larger space and longer time required. Most Chinese words

396

N-gram Average Precision

1-gram 0.3571

1,2-gram 0.4187

1,2,3-gram 0.4223

1,2,3,4-gram 0.4250

1,2,3,4+-gram 0.4206

Table 4. Test results on TREC Chinese corpus

are 2 character and less than 4 characters but some noun

phrases can be more than 4 characters such as ”����
����” (APEC) in query 17 and ”�������
��” (Philippine Mount Pinatubo Volcano) in query 47.

Term and document frequency thresholds are used in our

experiments to choose substring with length greater than 2.

5 Experiments and Future Work

The tests are conducted on TREC Chinese corpus. The

documents in the collection consist of approximately 170

megabytes of articles drawn from the People’s Daily news-

paper from 1991 to 1993 and the Xinhua newswire in 1994

and 1995. There are 164,789 documents in the collection.

A set of 54 queries (TREC 5 and 6) has been set up and

used to evaluate Chinese information retrieval task.

We used SMART system to evaluate our results.

The average precision is measured on 11 recall points

(0.0, 0.1, . . . , 1.0). Table 4 shows the test results on TREC

Chinese corpus. The results on 1-gram and 1,2-gram are

comparable to other researches [5, 6]. Wu [9] applied suffix

tree for Chinese information retrieval but he did not men-

tion how to rank the documents retrieved. Longer n-gram

slightly improve the average precision. N-gram longer than

4 yields worse performance maybe because of the nature of

the queries (shorter phrases).

Long strings are more meaningful than short strings as

more contexts are available. Short and long strings should

be treated differently in Chinese information retrieval. Luk

et al. [4] found that increasing the weight according to the

length might improve retrieval effectiveness. In future we

will apply a length-weighting scheme to our work.

6 Conclusions

This paper proposes a suffix tree based approach for Chi-

nese information retrieval. It uses n-gram as indexes with-

out word segmentation. Most previous studies only used

uni-gram and bi-gram. We extend N-gram to any length.

This suffix tree based approach can reduce the computation

term frequency and document frequency over substrings

(N(N +1)/2)) to a computation over classes (2N−1). The

results on TREC Chinese corpus are comparable to other re-

searches. Longer n-gram slightly improve the average pre-

cision in our experiment.

References

[1] C. Buckley. Implementation of the smart information re-

trieval system. Technical Report #85-686, Cornell Univer-

sity, 1985.

[2] L.-F. Chien. Pat-tree-based keyword extraction for chinese

information retrieval. In Proceedings of the 1997 ACM SI-
GIR, 1997.

[3] S. Foo and H. Li. Chinese word segmentation and its effect

on information retrival. Information Processing and Man-
agement, 40:161–190, 2004.

[4] R. Luk and K. Kwok. A comparison of chinese document

indexing strategies and retrieval models. ACM Transactions
on Asian Language Information Processing, 1(3):225–268,

2002.

[5] G. J. Z. J. NIE, J.-Y. and M. ZHOU. On the use of words and

n-grams for chinese information retrieval. In In Proceedings
of the Information Retrieval with Asian Languages, 2000.

[6] J.-Y. Nie and F. Ren. Chinese information retrieval: using

characters or words? Information Processing and Manage-
ment, 35:443–462, 1999.

[7] ROCLING. Segmentation principle for chinese language

processing, 1997.

[8] E. Ukkonen. On-line construction of suffix tree. Algorith-
mica, 14(3):249–260, 1995.

[9] L. Wu. A novel information search approach for languages

without word delimiters. International Journal of Computer
Science and Network Security, 6(5A):53–59, 2006.

[10] F. Xia. The segmentation guidelines for the penn chinese

treebank (3.0). Technical report, University of Pennsylvania,

2000.

[11] M. Yamamoto and K. Church. Using suffix arrays to com-

pute term frequency and document frequentcy for all sub-

strings in a corpus. Computational Linguistics, 27(1):1–30,

2001.

[12] S. Yu. Guidelines for the annotation of contemporary chi-

nese texts: word segmentation and pos-tagging. Technical

report, Institute of Computational Linguistics, Beijing Uni-

versity, Beijing, 1999.

397

