
Towards Active Conceptual Modelling for Sudden Events

John F. Roddick, Aaron Ceglar and Denise de Vries

School of Informatics and Engineering
Flinders University,

PO Box 2100, Adelaide, South Australia 5001,
Email: roddick@infoeng.flinders.edu.au

Abstract

There are a number of issues for information systems
which are required to collect data urgently that are
not well accommodated by current conceptual mod-
elling methodologies and as a result the modelling
step (and the use of databases) is often omitted. Such
issues include the fact that

• the number of instances for each entity are rel-
atively low resulting in data definition taking a
disproportionate amount of effort,

• the storage of data and the retrieval of informa-
tion must take priority over the full definition of
a schema describing that data,

• they undergo regular structural change and are
thus subject to information loss as a result of
changes to the schema’s information capacity,

• finally, the structure of the information is likely
to be only partially known or for which there
are multiple, perhaps contradictory, competing
hypotheses as to the underlying structure.

This paper presents the Low Instance-to-Entity Ratio
(LItER) Model, which attempts to circumvent some
of the problems encountered by these types of ap-
plication and to provide a platform and modelling
technique to handle rapidly occurring phenomena.
The two-part LItER modelling process possesses an
overarching architecture which provides hypothesis,
knowledge base and ontology support together with
a common conceptual schema. This allows data to
be stored immediately and for a more refined concep-
tual schema to be developed later. LItER modelling
also aims to facilitate later translation to EER, ORM
and UML models and the use of (a form of) SQL.
Moreover, an additional benefit of the model is that
it provides a partial solution to a number of outstand-
ing issues in current conceptual modelling systems.

Keywords: LItER Modelling, Rapid Conceptual
Modelling.

1 Introduction

Some sudden events require systems capable of
rapidly tracking and explaining the phenomenon for
a number of reasons:
Copyright c©2007, Australian Computer Society, Inc. This
paper appeared at the Twenty-Sixth International Conference
on Conceptual Modeling - ER 2007 - Tutorials, Posters, Panels
and Industrial Contributions, Auckland, New Zealand. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 83, John Grundy, Sven Hartmann, Alberto H.
F. Laender, Leszek Maciaszek and John F. Roddick, Ed. Re-
production for academic, not-for profit purposes permitted pro-
vided this text is included.

1. To eliminate, or at least limit, any immediate
damage caused by the event,

2. To explain how an event occurred or was allowed
to occur, including accommodating alternative
hypotheses as to why the event happened,

3. To assist in any subsequent investigations, in-
cluding the generation of inferences regarding the
people who may have been involved,

4. To expose weaknesses in measures designed to
prevent such events,

5. To prevent such events happening again.

The role of information systems in such scenarios can
vary widely but given that such events are largely un-
expected, the rapid development of information sys-
tems capable of answering questions is clearly impor-
tant. Unfortunately, current conceptual modelling
techniques are not capable of handling some of the
vagaries of such systems (Chen 2006).

In the case of the September 11 attacks, there is
still some debate as to whether the US intelligence
community did or did not possess the data neces-
sary to infer in advance that the attacks would occur
(Lefebvre 2004, Popp et al. 2004). However, whatever
the truth, it became necessary to rapidly construct a
database to assist afterwards. This database needed
to include data from a number of diverse and up to
that point, unlinked systems.

Since then there have been a number of attempts
to build large scale intelligence systems including the
now defunct Terrorism Information Awareness (TIA)
project, the abandoned Computer-Assisted Passenger
Prescreening System II (CAPPS II), and the Mul-
tistate Anti-Terrorism Information Exchange (MA-
TRIX) pilot project (Seifert 2004). Each of these
aimed to prevent expected scenarios and thus, in the-
ory at least, the necessary data structures were known
in advance.

In the case of unexpected events, the data neces-
sary to assist fall into two categories:

• Context-specific data that could not reason-
ably have been foreseen,

• Referential or global data (such as ontolo-
gies, classifications, taxonomies, etc) that can be
compiled in advance and used as needed.

What is required therefore is a conceptual structure
within which contextual data can be loaded and wait-
ing but which also accommodates, rapidly, any other
data that might be deemed necessary.

In this paper we outline a new approach – LItER
modelling – that lends itself to such systems1. Both

1The LItER model, including the example in Section 2.2, was
first discussed by the authors elsewhere (Roddick et al. 2007).

Tutorials, Posters, Panels and Industrial Contributions at ER 2007

203Archived at Flinders University: dspace.flinders.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Flinders Academic Commons

https://core.ac.uk/display/14933913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

context-specific and referential data can be accom-
modated and, since the model possesses a common
schema, the data can be recorded in a (temporal)
database environment with all of the advantages that
such databases offer, including security, auditing and
decision justification. (In the case of decision justi-
fication, it may be important that the exact details
of the knowledge available at the time of the decision
are noted in case they are contradicted by subsequent
data).

If required, although with some caveats, the even-
tual model can be translated to a conventional model
(such as EER) once the aspects unable to be accom-
modated by conventional models have dissipated.

In Section 2 we discuss a number of conceptual
modelling issues and issues related to the late bind-
ing of the conceptual model over the database data
is discussed in Section 3. The LItER model itself is
introduced in Section 4. This is followed by some
discussion of the issues and an outline of future work.

2 Rapid Conceptual Modelling

2.1 Systems Issues in Conceptual Modelling

Conceptual schema development is an important as-
pect of an information system’s design. In this phase
the structure of the system in terms of the rela-
tionships between objects, their attributes and con-
straints are established to the agreement of user and
designer. Modelling techniques, such as ER/EER
(Chen 1976, Thalheim 2000), NIAM/ORM (Halpin
1998, Verheijen & van Bekkum 1982) and UML
(Booch et al. 2005), have been developed, extended
and deployed effectively for this purpose over a num-
ber of years. Such techniques fit well into the com-
mon software engineering frameworks that establish a
firm design for the database before any data is stored
(Sommerville 2006).

As discussed in other work (Roddick et al. 2007)
some classes of information system, however, are not
well served by these common techniques. These in-
clude:

• systems in which the immediate storage of data
is the priority with the organisation of that data
(that is, the development of a conceptual model)
a secondary issue. For some systems, a mecha-
nism to collect and store data is required more
rapidly than the database design phase will per-
mit. This includes systems designed rapidly in
response to an immediate need (Chen 2006).

• systems for which the number of entity-types is
large in comparison with the number of instances
stored. For these systems, the overhead of con-
ceptual modelling can be high and can lead to
short-cuts such as the aggregation of inappropri-
ate entity-types.

• systems that undergo substantial structural
change. While schema conversion, even those
in which the schema’s information capacity
changes, does not always result in a loss of infor-
mation2, systems that regularly undergo change
commonly lose information. Such systems in-
clude those used for hypothesis creation such
as scientific databases (Shoshani & Wong 1985),
criminological systems (Chen et al. 2003) and ad
hoc models established to track evolving phenom-
ena.

2As discussed in other work (Roddick & de Vries 2006) the limits

for practical schema versioning in a database D are that S1
p
≡ S2

iff I′(D|S1) → I′(D|S2) is bijective where I′(D|Sn) is the set of
all instances of Sn inferrable from D given the constraints of Sn.

• situations where the structure of the information
is only partially known or where there are mul-
tiple, sometimes competing (although equally
valid) models of the same data. While XML
can handle semi-structured schema in which in-
stances may possess varying structure, the over-
all schema is still largely formalised. However,
we deal here with systems where the existence
of different entity-types and the attributes they
possess are largely unknown or where there is
no agreement on the structure. Such systems in-
clude those that aim to handle empirical evidence
in which the overall structure may be changed as
ideas are developed and the evidence may still
be in the process of being discovered. For these
sorts of system, in any conflict between data and
schema, it cannot be assumed that the schema
is correct and that the data is therefore wrong.
Sometimes it is the schema which is the compo-
nent requiring change.

All of these aspects are exhibited, to a greater
or lesser extent, by systems set up to handle sud-
den events and/or rapidly changing systems. Thus,
while, with effort, the traditional forms of conceptual
modelling can handle these types of system, the over-
head and side effects of doing so are often excessively
high. In practice, the conceptual modelling step (and
as a consequence the use of a DBMS and the valuable
facilities that it can provide) is often side-stepped be-
cause of the overhead involved.

2.2 Data Issues in Conceptual Modelling

As well as the classes of system outlined in Section
2.1, there are other problems common in the mod-
elling and implementation of even conventional sys-
tems. Some of these are also apparent in systems set
up quickly as some occur as a result of ambiguity in
the object world. Others, such as the example below,
are simply situations not well handled by conventional
modelling techniques.

In order to provide some illustration of this, we
provide here a motivating example based around the
part-subpart and the supplier-part-project problems.

The ABC Company manufactures three types
of widget - widayes, which are always blue
regardless of who makes them, widbees,
which the ABC Company paints blue, and
widseas which are by default black but which
can be painted according to the project on
which they are used. The XYZ Company
manufactures widayes, green widbees and
has recently made a test batch of red
widdees that are as yet unused. widayes are
not only sold by themselves but are also used
to make widseas. widayes are also known
as ayewids.

Some of the problems illustrated by this example and
that currently cause some concern include the follow-
ing:

• Collections of objects must sometimes be treated
in the same manner as the objects themselves,
often transitively, sometimes recursively. For ex-
ample, if a batch of widayes are found to be de-
fective then there may also be some widseas that
also need to be recalled. This is particularly the
case where groups are referred to in place of indi-
viduals (either through metonyms, holonyms or
hypernyms).

• Attribute values are often provided to the sys-
tem in ways that are not directly comparable de-
spite conforming to the domain’s type definition.

CRPIT Volume 83

204 Archived at Flinders University: dspace.flinders.edu.au

For example, widayes may be described as blue,
dark blue, x3333cc, royal blue, PMS286 and so
on. Synonyms, such as widayes and ayewids in
the example, despite being relatively common,
are not well accommodated. While data coer-
cion is sometimes possible, this is not always a
solution as the provenance and integrity of the
original data may need to be maintained.

• In many conventional modelling techniques (such
as EER) a relation formed from an n-ary or bi-
nary many-to-many relationship must, for rea-
sons of entity integrity, have a stored instance
for all its associated entities. In some cases this
is either not possible or not desirable and the
common practice is either to deform the model
to suit a small fraction of the instances or, more
commonly, to create dummy or default codes to
circumvent this constraint. For instance, in our
example, since widayes only come in blue there
may be little need to record the supplier or the
project but for widbees and widseas the project
must be recorded if the colour is needed. More-
over, what about the sample batch of red wid-
dees? How is the colour to be stored? Classical
modelling would required colour to be recorded
in two (or more) places in the model, for example,
in a schema such as that depicted in Figure 1.

3 Late Binding the Conceptual Modelling

The storage of data followed by conceptual model cre-
ation requires a different position to be adopted in
that a generic or common conceptual model must ex-
ist for the initial data storage in the absence of the
more specialised model. However, having established
a common conceptual model, specialisations to that
model can be developed incrementally through the
testing and imposition of constraints.

For example, consider a scenario in which a Uni-
versity’s student and faculty data is stored in a com-
mon storage structure (ignore for the moment the de-
tails of that storage structure). In the absence of
any specialised schema, reference to entities and at-
tributes must be phrased in terms of the structures
provided by the common data model.

Over time, constraints could be tested and added
providing more specialisation and eventually provid-
ing a level of structure consistent with a conven-
tional conceptual schema. For example, we might
test through the discovery of induced dependencies
(Roddick et al. 1996), whether a doctoral student has
exactly one supervisor and if so, and if such a con-
straint is considered sensible, it could be added. La-
bels could also be added so that conventional query
languages such as SQL can function.

There are however, a few additional advantages to
this approach:

• multiple, perhaps conflicting, structures can be

supplies

Supplier

Part

Project

SPJ

projid

colour partid colour

colour

suppid

is another
name for

is subpart of

Figure 1: Example Schema for Parts Example

Entity Property

Event

OntologyOntology

Xonyms

Xonyms

role value

security levelsignature

quality

provenance

LinkLink

Spatio-
temporal

Non-spatio-
temporal

Figure 2: LItER Schema

held allowing, for example, transition between
structures or the development of hierarchies of
schema.

• multiple modelling paradigms can be used. For
example, an EER model can be superimposed
to provide a schema view while graph-oriented
structures could be tested between data ele-
ments.

• having a common conceptual schema provides
the ability to construct general utilities as well
as facilitating schema integration.

• a common conceptual model lends itself to data
mining as an a priori defined structure will not
mask hidden associations.

The issue is to define a common schema which is flex-
ible enough to hold all data but simple enough not
to incur the overhead experienced when creating a
full conceptual model. We argue that the proposed
LItER modelling method provides a common struc-
tural model capable of accommodating data derived
from a variety of situations but which remains suffi-
ciently structured to retain the semantics of the data.

4 LItER Modelling

The LItER approach has been developed as a con-
sequence of a practical industry need to generate
systems rapidly where the nature of the system is
not known in advance but where some preparation
(for example, the collection of mesodata and/or on-
tologies) can be undertaken. Such areas include na-
tional security, natural disaster and large-scale inci-
dents where the details are unlikely to be known (at
least not in detail) in advance. The LItER approach
is to use a common schema discussed in Section 4.1
and shown in Figure 4, embedded within an overar-
ching architecture discussed in Section 4.2 and shown
in Figure 3.

4.1 The LItER Schema

The schema consists of three primary meta-entity-
types, Entities, Properties and Events, together with
a ternary Link (a form of polymorphic (overloaded)
relationship-type). Events and Links are temporally
referenced. Specifically, the model consists of the fol-
lowing components:

Entities: These represent objects in the model. This
includes not only elementary objects such as
those that might be represented by strong and
weak entities in an EER Model but also com-
ponents and aggregations of entities. If data is
obtained from multiple sources, the same entity
may also be recorded more than once (linked by
a synonym link). The only attribute directly
recorded is the entity’s identifier (which might

Tutorials, Posters, Panels and Industrial Contributions at ER 2007

205Archived at Flinders University: dspace.flinders.edu.au

be user or system supplied); all other attributes
being recorded through reference to a property.

Properties: These allow the description of proper-
ties that can be associated with either an entity
or an event. A property may be associated with
an ontology which can be used by the constraint
manager/hypothesis checker or by the query lan-
guage as appropriate.

Events: These allow the recording of spatio-
temporally referenced happenings. Once again,
the only attribute directly recorded is the event’s
identifier.

Links: The link allows entities, properties and events
to be combined. In LItER, we use an overload-
ing form of polymorphism to specify that a link
can occur between all or any of Entities, Events
or Properties. Moreover, more than one of each
can participate in a link with the sole require-
ment being that a link must include at least two
identifying instances. Thus a link can allow:

• one or more entities to be associated with a
describing property, optionally with a value
of that property. Note that the value may
also be provided as a simple formula which
may include a variable (such as > 25 or
P (Age).E(Christopher) + 2). This allows
facts such as ... is over 25 or ... is 2 years
older than Christopher to be recorded3.

• one or more events to be associated with a
describing property, optionally with a value
for that property.

• a link between an entity (or entities) and an
event such that an entity’s role in the event
can be recorded.

• a relationship between two entities.

Links have a number of optional predefined at-
tributes as follows:

Value - providing a qualification for the re-
lationship being described. For example,
Entity Mary linked to Property Nationality
might have the value Australian.

Role - providing a qualification for the relation-
ship being described. For example, Entity
Luke linked to Event Phone Call might have
the role Caller.

Quality - provides a measure of confidence
(such as a probability) to the link;

Security level - provides a mechanism for re-
stricting access to data;

Provenance - provides a mechanism to record
the owner or source of the data.

Ontologies and Xonyms : These are an integral
part of the model.

Ontologies: Full ontologies (which for this pur-
pose we define as complex domain struc-
tures) are associated with properties. Such
ontologies are similar to the mesodata con-
cept discussed by de Vries et al. (de Vries
et al. 2004, de Vries 2006).

3Specifically, we allow first order formulae over constants
or variables participating in the link plus those accessible
through graph traversal. For example, P (Age).E(Christopher) +
2 references the value associated with link between the en-
tity with entity identifier Christopher and the Property Age
while max(P.(Age).E(∗).P (InDept[Consultant].Sales)) returns
the maximum Age of all entities with a link to Property InDept
with a value of Sales and a role of Consultant.

Xonyms: There are a variety of common binary
references that are used and understood
widely. Xonyms allow such common link-
ages between objects to be recorded more
simply. For example, a Person can be found
to be the same as another. A Meeting is
a form of Communication and so on. In
these cases synonym and hypernym refer-
ences would be created resp.
Other Xonyms include acronyms, holonyms
(and meronyms), hypernyms (and hy-
ponyms), metonyms, pseudonyms, and syn-
onyms. The alternative, merging Entities,
would result in a loss of both information
and provenance, particularly if the reason
for the merge was later discredited.

While in many cases it is not difficult to extend
most query languages and data mining routines
to be able to understand the semantics of ontolo-
gies and Xonyms, by making them part of the
model it is possible that some systems need not
have to do so. For example, association mining
routines might be given their input data with all
synonyms resolved.

4.2 The LItER Architecture

While the LItER model is independently useful, an
overarching architecture has been developed which
maximises the benefits of the model (shown in Fig-
ure 3). Some of the important points are discussed
below.

Analysis Routines. Four sets of routine are made
available to the user:

Predicate Definition and Data Dictionary.
These provide a resource to allow easy ref-
erence to data items.

Query Languages. It is possible to provide a
form of SQL which resolves the terms pro-
vided by reference to the Predicate Defini-
tions and Data Dictionary. For example,
the query:

SELECT EmpNAME
FROM EMPLOYEE
WHERE EmplAGE < 25;

might (depending on how the data was or-
ganised) be resolved by the following defini-
tions:

EMPLOYEE ::= {E(*).P(WorkFor)}
EmpNAME ::= P.(HasName).EMPLOYEE
P.HasAge ::= V.(WasBorn).E(*)

- TODAY()
EmpAGE ::= P.(HasAge).EMPLOYEE

The first statement creates a set of instances
of Entity. The second returns the value for
the link to the Property HasName. The
third creates a virtual property of HasAge
which exists for all instances of Entity with
a link to an Event of type WasBorn. The
last returns that value for all instances of
EMPLOYEE.

Constraint Manager / Hypothesis Checker.
This allows the creation of structures that
are either used to constrain the data or as
putative hypotheses that can be checked
against the data.

Data Mining Routines. One of the draw-
backs of many data mining systems is the
lack of reuseability caused, in part, by

CRPIT Volume 83

206 Archived at Flinders University: dspace.flinders.edu.au

 Ontology
Storage

Competing
Hypotheses

Users / Applications

Analysis Routines

Data
Storage

Import /
Export

Knowledge
Base

Query
Languages

Predicate
Definitions
and Data
Dictionary

Data Mining
Routines

Visualisation Routines

Constraint
manager
(includes

hypothesis
and schema

checker)

R
ef

or
m

at
te

r

Figure 3: LItER Architecture

changes in the manner in which data are
stored. LItER accommodates data mining
routines which now have access to a com-
mon schema. In particular, graph mining
(Chakrabarti & Faloutsos 2006) and associ-
ation mining (Ceglar & Roddick 2006) have
been found to be useful. Importantly, these
routines are generally generic and indepen-
dent of the data. For example, a graph min-
ing routine that seeks to characterise modes
of communication between actors can also
be applied, given the same LItER schema,
to any other graph in which the entities are
linked through some event, for example, the
transmission of infection.

A knowledge base. In most cases the knowledge
base uses the same LItER architecture. Impor-
tantly, visualisation routines can operate over the
knowledge base and this can take advantage of
multiple runs and different forms of data min-
ing.

A general ontology storage area. This can be
populated independently of the data storage (ie.
it can be made ready in advance of any intended
use). To date, the ontologies used have been re-
stricted to complex structures of attribute values
à la the mesodata concept (de Vries et al. 2004)4.

5 Discussion

The model has a number of important modelling char-
acteristics.

1. Because the objects in a system can play many
different roles, entities are not directly typed.
Instead their types are recorded by virtue of
the properties (and perhaps the property-value
pairs) they hold. Thus property owners may be
identified by being linked to the property is an
owner (cf. the category concept of Elmasri et
al. (Elmasri et al. 1985)), Australians by hav-
ing the property-value pair of having nationality
with value Australian. Significantly, this allows

4Mesodata aims to add semantic capability by providing greater
semantics to the domain of an attribute by allowing attributes to
be defined over complex domain structures. For example, while the
code for a disease might be defined as CHAR(5), disease codes exist
within an agreed international classification (such as ICD10), a tree-
structure that relates diseases and other observations by group.

Person CourseEnrols
In

Country of
birth

identifier

Person CourseEnrols
In

Country was
born in

identifier

Figure 4: Two design choices

the creation of heterogeneous sets - being Aus-
tralian is, of course, a property that could be
assigned to more than just people.

2. As the data stored in such a system is often used
for hypothesis creation, the model must also al-
low for temporal auditing and probabilistic rea-
soning. Moreover, such systems often obtain
data from various sources and therefore not only
must the provenance of the data be recorded but
also, as far as practicable, the format and con-
tent of the data must be maintained (and thus
data matching is an important component of the
system).

3. Relationships, and their cardinalities, are in-
duced rather than explicitly stored. In many
cases, the choice to make a property of an ob-
ject an attribute rather than a relationship to
an entity-type representing the concept is largely
dependent on the data available (qv. the seman-
tic ambiguity as discussed by Wand, Storey and
Weber (Wand et al. 1999)). Consider the ex-
ample in Figure 4 in which either an attribute
or a relationship-type and entity-type are used.
In this respect, the LItER model mirrors the
bottom-up approach used by ORM.

4. Unlike the EER Model, relationships (renamed
here as links to avoid confusion) are polymor-
phic; a variable number of Entities can be re-
quired to provide the key for a link. For example,
the property has colour may be specified with a
part number and the project and/or with just a
part number. In LItER, this polymorphic use of
relationships is allowed subject to there not being
a constraint forbidding it.

5. The recording of constraints used to gradually
refine the model can be used to either validate

Tutorials, Posters, Panels and Industrial Contributions at ER 2007

207Archived at Flinders University: dspace.flinders.edu.au

data (either before or after DBMS commit) or
to validate the schema, and to determine contra-
dictory information. Moreover, constraints can
take the form of hypotheses, in which ideas can
be tested and the extent of missing information
ascertained.

Note that the systems for which the LItER model
is most suited do not necessary have low volumes of
data. What distinguishes the model for these sys-
tems is that the information held is diverse with some
coming from large databases but with the structure
of other information being more or less specific to one
or a few entities only.

6 Conclusions and Further Work

The LItER model and architecture is being developed
as a result of genuine industry requirements and is be-
ing applied in both a defence and health environment.
Interestingly, as has been noticed in some informa-
tion analysis research (e.g. Spencer 2001), there is a
cascade effect in which the more data is added, the
greater the overall connectivity between data objects
is experienced.

There has been considerable discussion as to the
role of Reiter’s closed world assumption (Reiter 1978)
and whether it can be assumed to hold in the context
of some systems. This, and the accommodation of
negative information is currently the subject of fur-
ther investigation.

While the LItER model does not fulfil all concep-
tual modelling needs, (we restrict ontologies to con-
form to the concepts of mesodata domains for exam-
ple), its development is generating substantial inter-
est. In particular, its ability to rapidly provide areas
for subsequent investigation and its ability to quickly
bring together data from a variety of data sources has
been of substantial interest and it is in this domain
that future development work is being directed.

References

Booch, G., Jacobson, I. & Rumbaugh, J. (2005), Uni-
fied modelling language user guide, 2 edn, Addison
Wesley Professional.

Ceglar, A. & Roddick, J. F. (2006), ‘Association min-
ing’, ACM Computing Surveys 38(2).

Chakrabarti, D. & Faloutsos, C. (2006), ‘Graph min-
ing: Laws, generators, and algorithms’, ACM Com-
puting Surveys 38(1).

Chen, H., Zeng, D., Atabakhsh, H., Wyzga, W. &
Schroeder, J. (2003), ‘Coplink: managing law en-
forcement data and knowledge’, Communications
of the ACM 46(1), 28–34.

Chen, P. P.-S. (1976), ‘The entity-relationship model
- toward a unified view of data’, ACM Transactions
on Database Systems 1(1), 9–36.

Chen, P. P.-S. (2006), Suggested research directions
for a new frontier - active conceptual modeling, in
D. Embley, A. Olivé & S. Ram, eds, ‘25th Inter-
national Conference on Conceptual Modeling (ER
2006)’, Vol. 4215 of LNCS, Springer, Tucson, AZ,
pp. 1–4.

de Vries, D. (2006), Mesodata : Engineering Domains
for Attribute Evolution and Data Integration, PhD
thesis, Flinders University.

de Vries, D., Rice, S. & Roddick, J. F. (2004), In sup-
port of mesodata in database management systems,
in F. Galindo, M. Takizawa & R. Traunmüller, eds,
‘15th Int. Conf. on Database and Expert Syst.’, Vol.
3180 of LNCS, Springer, Zaragoza, pp. 663–674.

Elmasri, R., Weeldreyer, J. A. & Hevner, A. R.
(1985), ‘The category concept: an extension to
the entity-relationship model’, Data and Knowl-
edge Engineering 1(1), 75–116.

Halpin, T. (1998), Object-role modeling
(ORM/NIAM), in P. Bernus, K. Mertins &
G. Schmidt, eds, ‘Handbook on Architectures of
Information Systems.’, Springer-Verlag, Berlin,
pp. 81–101.

Lefebvre, S. (2004), ‘A look at intelligence analysis’,
International Journal of Intelligence and Counter-
Intelligence 17(2), 231–264.

Popp, R., Armour, T., Senator, T. & Numrych,
K. (2004), ‘Countering terrorism through infor-
mation technology’, Communications of the ACM
47(3), 36–43.

Reiter, R. (1978), On closed world databases,
in H. Gallaire & J. Minker, eds, ‘Logic and
Databases’, Plenum Press, New York, pp. 55–76.
Reprinted in Artificial Intelligence and Databases.
J. Mylopoulos and M.L. Brodie (eds.), Morgan
Kaufmann, 248–258.

Roddick, J. F., Ceglar, A., Vries, D. d. & La-
Ongsri, S. (2007), Postponing schema definition :
Low instance-to-entity ratio (LItER) modelling, in
P. Chen & L. Wong, eds, ‘ACM-L workshop pro-
ceedings’, LNCS, Springer.

Roddick, J. F., Craske, N. G. & Richards, T. J.
(1996), ‘Handling discovered structure in database
systems’, IEEE Transactions on Knowledge and
Data Engineering 8(2), 227–240.

Roddick, J. F. & de Vries, D. (2006), Reduce, reuse,
recycle: Practical approaches to schema integra-
tion, evolution and versioning. invited keynote ad-
dress, in F. Grandi, ed., ‘4th International Work-
shop on Evolution and Change in Data Manage-
ment (ECDM 2006)’, Vol. 4231 of LNCS, Springer,
Tucson, Arizona, pp. 209–216.

Seifert, J. W. (2004), ‘Data mining and the search
for security: Challenges for connecting the dots
and databases’, Government Information Quar-
terly 21(4), 461–480.

Shoshani, A. & Wong, H. K. T. (1985), ‘Statistical
and scientific database issues’, IEEE Transactions
on Software Engineering 11(10), 1040–1047.

Sommerville, I. (2006), Software Engineering, 8th
edn, Addison-Wesley, Boston, MA, USA.

Spencer, J. (2001), The Strange Logic of Random
Graphs, Springer.

Thalheim, B. (2000), Entity-Relationship Modeling:
Foundations of Database Technology, Springer,
Berlin.

Verheijen, G. & van Bekkum, J. (1982), NIAM: an in-
formation analysis method, in ‘IFIP WG8.I Work-
ing conf.’, Information Systems Design Methodolo-
gies: a comparative review, North Holland Publish-
ing, Netherlands.

Wand, Y., Storey, V. C. & Weber, R. (1999), ‘An
ontological analysis of the relationship construct
in conceptual modeling’, ACM Transactions on
Database Systems 24(4), 494–518.

CRPIT Volume 83

208 Archived at Flinders University: dspace.flinders.edu.au

