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Abstract

The integration of data from different sources often
leads to the adoption of schemata that entail a loss of
information in respect of one or more of the data sets
being combined. The coercion of data to conform to
the type of the unified attribute is one of the major
reasons for this information loss. We argue that for
maximal information retention it would be useful to
be able to define attributes over domains capable of
accommodating multiple types, that is, domains that
potentially allow an attribute to take its values from
more than one base type.

Mesodata is a concept that provides an intermedi-
ate conceptual layer between the definition of a rela-
tional structure and that of attribute definition to aid
the specification of complex domain structures within
the database. Mesodata modelling techniques involve
the use of data types and operations for common data
structures defined in the mesodata layer to facilitate
accurate modelling of complex data domains, so that
any commonality between similar domains used for
different purposes can be exploited.

This paper shows how the mesodata concept can
be extended to facilitate the creation of domains de-
fined over multiple base types, and also allow the
same set of base values to be used for domains with
different semantics. Using an example domain con-
taining values representing three different types of
incomplete knowledge about the data item (coarse
granularity, vague terms, or intervals) we show how
operations and data structures for types already ex-
isting within the mesodata can simplify the task of
developing a new intelligent domain.

Keywords: Mesodata, intelligent domains, multiply-
typed domains, incomplete information, vagueness,
coarse granularity, intervals, relational model, hier-
archical domains, data integration.

1 Introduction

Integrating multiple sources of data is of vital impor-
tance to many enterprises. Within a single organiza-
tion such integration can lead to better strategic plan-
ning and decision making. Integration across multiple
organizations leads to more efficiency and quality of
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service due to better utilization of information and
elimination of redundancy (Zeng 1999).

Integration of sources with different conceptual
schemas is not a trivial process. The need to com-
bine attributes defined on different types often leads
to loss of information. For example, consider some-
thing as simple as a numerical attribute recorded in
one source using integers and in another as fixed point
values with two decimal places. These representations
could be combined by converting the latter into inte-
gers, which clearly involves a loss of accuracy in the
decimal data. But perhaps the most likely solution
when combining these values is to convert the integers
to numbers with two decimal places. This may not
appear to involve any information loss, but reporting
a value like 24 as 24.00 gives it the appearance of an
accuracy that it does not have: in fact, we have lost
information about the accuracy of the value. A much
better solution is to allow the attribute to take values
from both types. This concept we call multiply-typed
domains.

A problem with the former SQL standard (com-
monly known as SQL-2) is its lack of built-in support
for the creation of user-defined complex data types.
By this we do not mean merely the ability to create
simple domains using the CREATE DOMAIN command
as it is defined in the SQL standard (see e.g. (Melton
& Simon 2002)), but the ability to create domains
with complex structure and semantics. This has led
to commercial relational database management sys-
tems (RDBMS) adding this facility in an ad hoc way
as a response to user demands, as, for example, Or-
acle has done with its extensive CREATE TYPE facility
(Lorentz & Gregoire 2003). These extensions can be
an awkward fit with the concepts of the relational
model. Mesodata provides a method for users to im-
plement domains of arbitrary complexity that fits well
with the relational model, and there is no reason why
the new features offered in SQL:1999, such as the abil-
ity to create complex user-defined types, can’t be used
in the implementation of these domains.

The concept of mesodata – a middle layer of do-
main definition sitting between the metadata and the
data – allows the separation of the definition of the
structure from the semantics of a domain. Commonly
used data structures (such as lists, graphs and trees)
and operations for the manipulation of these data
structures are defined in the mesodata layer. These
mesodata types can then be used to build specific at-
tribute domains: a mesodata type is used to define the
structural aspects of the domain, and the domain is
then built by populating it with values, and by imple-
menting any additional semantics through additional
operations which can utilise the structural operations
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of the mesodata type.
In the past, the incorporation of additional se-

mantics in attribute domains has generally been ac-
complished by extending data models such as the
relational model for particular types of data. This
type of extension includes developments such as tem-
poral databases (Snodgrass 1995), spatial databases
(Schneider 1997, Egenhofer & Franzosa 1991) and
probabilistic databases (Dey & Sarkar 1996). The ad-
vantages that the mesodata approach has over the de-
velopment of a special-purpose extended data model
for each case include making it easier to combine sep-
arate extensions into a single data model (as has been
necessary for the development of spatio-temporal
databases, for example (Abraham & Roddick 1999)),
and the ability for reuse of the same data structures
with different semantics. We believe that the poten-
tial for reuse facilitates the creation of intelligent do-
mains.

Earlier papers on the mesodata concept have ar-
gued for the incorporation of mesodata in Database
Management Systems, and have shown how domain
evolution can be facilitated using mesodata (de Vries,
Rice & Roddick 2004, de Vries & Roddick 2004). This
paper further defines the mesodata concept by dis-
cussing how attributes can be defined over multiply-
typed domains – domains capable of accommodating
multiple types – and showing how the same set of
base values can be used for domains with different
semantics. We illustrate multiply-typed domains us-
ing an example with three types, two whose base val-
ues form hierarchies semantically, and one whose base
values are numeric intervals. The example we present
is of an attribute defined over a multiply-typed do-
main within a single relation. However, the methods
discussed are relevant to the definition of a common
schema to be used across different data sources.

The rest of this paper is organised in the following
way. Section 2 presents a conceptual model for meso-
data and some examples of basic mesodata types,
Section 3 introduces multiply-typed domains through
an example involving incomplete data, Section 4 dis-
cusses how we used these mesodata types to imple-
ment this domain as an exemplar of the use of meso-
data techniques, and Section 5 provides a conclusion
to this paper.

We have tried to be consistent in our use of the
terms domain and type in this paper. In our usage
we intend type to refer to the format of the data, and
domain to the broader concept of allowable values.
However sometimes we are constrained to use one or
the other due to things outside of our control, such as
SQL syntax.

2 Mesodata

Mesodata is a concept that facilitates the implemen-
tation of structurally and semantically-rich domains
(intelligent domains). Key features include a special
mesodata layer within which structural aspects are
defined for common structures such as graphs and
trees, and the ability to accommodate domain vari-
ability by mapping between different representations
(for example, between names and three-byte RGB
values for colours). An intelligent domain is built
by matching a mesodata type with a base type and
a source relation to hold the specific structural infor-
mation for the domain. The base type could form
a simple domain (such as INTEGER or CHAR(12)),
or it could in turn be a domain based on a meso-
data type, so we can define graphs of trees, for ex-
ample. The important difference between mesodata
techniques and object-oriented concepts, is that the
former introduces the idea of storing complex domain

values in the database. Object-oriented databases are
concerned with complex attribute values.

This section describes a data model for mesodata.
We first give a conceptual model and show how it can
be incorporated into a relational database, then we
present two mesodata types used in the development
of our example intelligent domain.

2.1 Conceptual model

Figure 1 shows an entity-relationship model for meso-
data, using UML notation as in e.g. (Connolly &
Begg 2005).

Domain represents a multiply-typed domain for
an Attribute. It is composed of one or more Types.
Type is completely specialised into either a Simple
type (such as INTEGER or CHAR(12)) or a Complex
type (one built using mesodata types).

A Complex type is described by a Mesodata type,
which has a structure SRstructure and a set of Op-
erations. Structural details of the Complex type are
stored in its source relation SourceRel, and its base
values have a Domain. For example, for a graph
whose nodes were strings of length 12, the graph’s
structure would be described in its source relation,
and the base domain of its nodes would be CHAR(12).
Note that the base Domain can itself be Complex
(to accommodate graphs of lists, for example), and
a SourceRel may be used for more than one Complex
type.

A Mapping shows how to convert a value from one
Type of a multiply-typed domain to another. Each
Mapping has a type MapType which can use a func-
tion or a lookup table (or a combination of the two)
to convert the values.

The implementation of this conceptual model can
be separated into four parts:

1. The entities Mesodata, SRstructure and Oper-
ations describing the mesodata types form the
layer between the metadata and the data de-
scribed earlier.

2. The entities Domain, Type, Mapping and Map-
Type are implemented as tables belonging to a
super-user (such as SYS in Oracle), which are pro-
tected from direct manipulation by the user.

3. User tables are created as normal, except that at-
tributes with multiply-typed domains must spec-
ify their data type as well as their value.

4. There are some hidden tables automatically cre-
ated when the complex types are defined, i.e. the
source relations and look up tables for mappings.
These tables should also not be directly manip-
ulable by the user.

2.2 SQL extensions for multiply-typed do-
mains

For illustrative purposes, we offer the following ex-
tensions to the syntax of SQL data definition com-
mands. This consists of extensions to CREATE DOMAIN
and CREATE TABLE, and a new command CREATE
MAPPING.

To allow the same mapping to be used to map
more than one type without redefinition, the defini-
tion of a mapping is divided into two parts:

• associating a mapping name with a look-up table
and/or a mapping function, and

• associating a mapping name with a FROM type
and a TO type.
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Figure 1: Conceptual model for mesodata

The CREATE MAPPING command associates a map-
ping name with a look-up table and/or a mapping
function.

CREATE MAPPING mapping_name
[LOOKUP mapping_rel]
[FUNCTION function_name]

A MAPPING clause has been added to the extended
CREATE DOMAIN command originally defined in (de
Vries, Rice & Roddick 2004) to accommodate meso-
data types. The MAPPING clause defines mappings
from the base values associated with a particular
CREATE DOMAIN command to another type. Because
a type may be mapped in more than one way, there
may be more than one MAPPING clause. The to type
can be either a simple or a complex type.

CREATE DOMAIN dom
AS mesodatatype
OF basedom
(RETURNS returndom)
OVER sourcerel {(attribute {,attribute})}
{MAPPING mapping_name TO to_type}
[EXCLUSIVE | NONEXCLUSIVE]

And finally, we create the multiply-typed domain
by allowing a domain for an attribute in CREATE
TABLE1 command to be a set of possible types.

[attribute_domain | (type {, type})]

2.3 Hierarchy and interval mesodata types

For our example, we use hierarchy and interval types
defined in the mesodata layer. We use the term hier-
archy for the mesodata type rather than tree because
we do not restrict nodes to having a single parent.
We used the term lattice to describe our hierarchies
in earlier work (Rice & Roddick 2000), but because

1The choice we have made of extending the CREATE DOMAIN com-
mand then allowing an attribute to take values from more than
one of these domains is possibly unfortunate, as it implies that an
attribute can be drawn from different domains, rather than that a
domain can be formed from values of different types.

they can include overlapping nodes, it is possible for
two nodes not to have a unique least upper bound,
so the term lattice is not general enough. Our struc-
tures are not as general as a DAG (directed acyclic
graph), because they do have a defined top node (>)
and bottom node (⊥). The directedness of our hier-
archy is also different from that of a DAG: you can
traverse its edges in both directions, but there is a
semantic difference between going towards ⊥ (more
specific) and towards > (more general).

The source relation for domains based on
interval has the schema (DESCRIP, START,
FINISH) with key DESCRIP. It is used to associate
the end-points of the interval with the stored string
used to represent it in the attribute, and is required
when the RDBMS does not have a base interval
type. START and FINISH can have any numeric or
date/time type: the underlying logic is the same
whether the intervals are numeric or temporal.
Operations defined on intervals include the Allen
relations (Allen 1983):
• equals(i1, i2)

• before(i1, i2) / after(i2, i1)

• starts(i1, i2) / startedBy(i2, i1)

• during(i1, i2) / contains(i2, i1)

• finishes(i1, i2) / finishedBy(i2, i1)

• meets(i1, i2) / metBy(i2, i1)

• overlaps(i1, i2) / overlappedBy(i2, i1)
In addition, we use startOf(i1) and finishOf(i1) to
retrieve the end-points of interval i1.

The source relation for domains based on
hierarchy describes the structure of the hierarchy:
it has the schema (CHILD, PARENT) which has a key
consisting of both attributes because a CHILD can
have more than one PARENT. Required operations in-
clude predicates childOf , parentOf , descendentOf ,
ancestorOf and inFamily, and set-valued functions
allDescendents, allAncestors and family. Let SR
be the source relation, then we define:
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• childOf(x, y) is true if (x, y) ∈ SR.

• parentOf(x, y) is true if (y, x) ∈ SR.

• descendentOf(x, y) is true if childOf(x, y) ∨
(∃(z) ∧ childOf(x, z) ∧ descendentOf(z, y)).

• ancestorOf(x, y) is true if parentOf(x, y) ∨
(∃(z) ∧ parentOf(x, z) ∧ ancestorOf(z, y)).

• inFamily(x, y) is true if x = y ∨
descendentOf(x, y) ∨ ancestorOf(x, y).

• allDescendents(x) is the set
{y|descendentOf(x, y)}.

• allAncestors(x) is the set {y|ancestorOf(x, y)}.

• family(x) is the set {y|inFamily(x, y)}.

These operations are part of the mesodata type and
do not need to be coded by the user.

3 Multiply-typed domains

As an example of a multiply-typed domain, we in-
troduce a data model for incomplete data where that
incompleteness can be of three different base types
(i.e. values with variable granularity, values that are
vague, or where an interval is used to represent a
single value). The same queries can be posed over
attribute values of any of these types: the differ-
ence between them lies in the data structures used
for each type and the corresponding operations used
to answer the queries. Our data model uses a third
truth value unknown and hierarchical domains to
cope with the partial knowledge. In other work (Rice
& Roddick 2000) we discuss an earlier version of this
data model.

In this section we give an overview of this intel-
ligent domain through an example based on archae-
ological data. In addition to the multiple types, we
show how attributes with different semantics can use
the same base values. This requires an implementa-
tion that allows the same stored domain values to be
used with multiple semantics.

3.1 The example domain

We use in our example two relations KILNS shown
in Table 1 and POTS shown in Table 2 containing
information about pots and pottery kilns in Roman
Britain (Swan 1984). The date values given for the
attributes inOperation in KILNS and dateCreated
in POTS are expressed in three different forms: us-
ing the names of Emperors, as an interval of years, or
using vague terms such as mid I (i.e. in the middle
of the first century). They reflect the terms used by
the archaeologists who conducted the initial research
over a period of nearly 200 years. All three forms use
values which explicitly or implicitly define a range of
values, but the semantics of the domain for each at-
tribute are different – whereas inOperation defines
the interval during which the kiln is believed to have
been in operation, dateCreated uses the same values
to represent not an interval, but an unknown point of
time somewhere in that interval. The sorts of ques-
tions that archaeologists would like to answer about
the pottery industry using these data include:

• What kilns were operating during the reign of
Nero?

• Were the Hardingstone 1 and Binsted 15 kilns
operating concurrently?

• Which kilns could have manufactured this pot?

To answer questions like these for the data shown,
it is necessary to be able to map between the dif-
ferent representations used, which could be done by
translating all dates into numerical intervals on data
entry. However, this can lead to loss of information:
if Claudian is translated into [41, 54], it loses the his-
torical context of the original estimate, and if early
I is changed to, say, [1, 30] the vagueness inherent in
the original form disappears.

3.2 Hierarchical Domains

By hierarchical domains we mean domains where
there is a hierarchical structure between (at least two
of) the elements of the domain. The examples D1 =
{Claudio-Neronian, pre-Flavian, Flavian, Claudian,
Neronian}, D2 = {[50,100], [30,60], [70,100], [50,60]}
and D3 = {early–mid I, mid–late I, early I, mid I,
late I} whose structures are shown in Figure 2 demon-
strate this. Connections between nodes in the hierar-
chy represent a containment relationship – the lower
of two connected nodes is (at least partially) con-
tained within the upper node. We call the upper node
of two connected nodes the concept and the lower
node the element, following the usage introduced in
(Roddick 1994). Any node in a hierarchy with both
a child and a parent can be either a concept or an
element, depending on which connection is being con-
sidered. An unlabelled top node > is shown for each
hierarchy, which by definition completely contains ev-
ery node in the hierarchy. Nodes further down the
hierarchy are more specific. For simplicity, the bot-
tom node of the hierarchy ⊥ (which represents the
empty set φ) is not shown. In the domains shown in
Figure 2, the node mid I demonstrates the multiple-
parent structure, because it belongs to (is contained
in) both early-mid I and mid-late I.

There are three kinds of containment relationships
shown in Figure 2 by the labels N , O and S. N is
the ‘normal’ containment relationship where the ele-
ment (lower node) is completely contained within the
larger concept (upper node), O is the overlapping re-
lationship where each node overlaps the other, and S
is the relationship between two synonyms. For exam-
ple, pre-Flavian and Claudio-Neronian are synonyms,
and early-mid I and mid-late I are overlapping. The
hierarchical structure has been retained in the pres-
ence of O and S containments by choosing one of the
pair of concepts involved to be lower in the hierarchy
than the other.2 In both cases the choice is arbitrary,
because each of the connected nodes contains the
other, either partially (O containment) or completely
(S containment). Although N , O and S containments
can apply to sets in general, the domain elements in
Figure 2 are all intervals, even if the bounds of the
interval are not obvious (hierarchy (a)), or not pre-
cisely known (hierarchy (c)). Of course, the contain-
ment relationship between two numerically-expressed
intervals such as [50, 60] and [50, 100] can be worked
out directly from their end-points, without recourse
to stored hierarchical information.

3.3 Queries

The development of a new type of intelligent do-
main usually entails extensions to query languages.
In our example, we introduce some new syntax to
SQL to cope with queries involving the attributes
dateCreated and inOperation. For inOperation

2Note that the O containments shown are an extension of the
usual meaning of hierarchy. It is perhaps better to describe O and
S links as sibling links rather than parent-child ones. Contain-
ment relationships were added to this data model to reduce the
complexity of algorithms for querying this data.
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Figure 2: Domains showing connection types

Table 1: Relation KILNS

kiln easting northing inOperation

Dates of varying granularity

Hardingstone 1 476 257 pre-Flavian
Colchester 15 599 226 Claudio-Neronian
Chichester 486 105 Claudian
Stoke-on-Trent 387 343 Neronian
Biddlesden 464 240 Flavian

Dates as numerical intervals

Oxford 5 455 206 [50, 100]
Binsted 15 477 141 [30, 60]
Hendon 1 517 194 [50, 60]
Dorchester 2 458 194 [70, 100]

Dates using vague terms

Colchester 11 599 226 early–mid I
Little Houghton 5 481 260 mid–late I
Harrold 493 255 mid I
Kettering 1 489 278 late I

this syntax is based on Allen’s logic for temporal in-
tervals (Allen 1983). For example

inOperation CONTAINS ’Claudian’

The different semantics of dateCreated mean that
conditions involving it are not comparing two inter-
vals, however, but comparing a point somewhere in
an interval with another interval. The Allen opera-
tions, as modified in (Vilain 1982) to compare a point
with an interval, can be used here, but they need to
be adapted to deal with uncertainty in the value of
the point. Consider the condition

dateCreated DURING ’Claudian’

applied to a relation consisting of pots 1, 2 and 3 (see
Table 2). This is true for pot 2, false for pot 3, and
unknown for pot 1 (since Claudio-Neronian represents
an interval that includes some dates that are Claudian
and some that are not). On the other hand, there is
no uncertainty about the condition

dateCreated DURING ’Claudio-Neronian’

which is false for pot 3, and true for the other pots.
In hierarchies that only have N and S containment
relationships, the condition dateCreated DURING v
is true for all pots with a date that is a descendent of
v in the hierarchy, but is unknown for all pots with a
date that is an ancestor of v that is not synonymous

with v where unknown is a third truth value between
true and false that indicates there is insufficient in-
formation to decide whether a condition evaluates to
true or false. Truth tables for the operators ∧ (and),
∨ (or) and ¬ (not) are shown in Table 3.. The situ-
ation is more complex in hierarchies which include O
containments: the truth value of the condition is also
unknown for all descendents of v in the hierarchy to
which there is no path that does not include an O
containment.

In order to accommodate the unknown truth
value, we introduce the keyword MAYBE as shown in
these queries.

SELECT * FROM pots
WHERE dateCreated DURING ’Claudian’;

SELECT * FROM pots
WHERE MAYBE dateCreated DURING ’Claudian’;

SELECT * FROM pots
WHERE MAYBE dateCreated

NOT DURING ’Claudian’;

MAYBE indicates we want to retrieve kilns for which
the query condition is true or unknown. To answer
these queries, we need to return all kilns where the
condition dateCreated DURING ’Claudian’ is true,
true ∨ unknown, and unknown ∨ false respectively.
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Table 2: Relation POTS

potID description easting northing dateCreated

Dates of varying granularity

1 Belgic grey ware cooking pot 599 226 Claudio-Neronian
2 poppy-head beaker 486 105 Claudian
3 ring-necked flagon 464 240 Flavian

Dates as numerical intervals

4 Clapham shelly ware bowl 517 194 [50, 60]
5 large storage jar 458 194 [70, 100]

Dates using vague terms

6 narrow-mouthed bowl 493 255 mid I
7 lid-seated jar and lid 489 278 late I

Table 3: 3-valued logic truth tables

C ¬C Ca ∨ Cb t u f Ca ∧ Cb t u f

t f t t t t t t u f

u u u t u u u u u f

f t f t u f f f f f

4 Implementing the domains

We have shown that, while the attributes
inOperation and dateCreated both use the
three domain hierarchies shown in Figure 2, their
semantics differ. Different semantics for the same
domain values can be accommodated by defining two
domains on the same source relation, each with their
own set of operations.

In this section, we develop different mesodata
types for each of the three types of data for both
these semantics, then create multiply-typed domains
for each attribute using the mesodata types. It is
a multi-layered approach, that allows re-use of the
stored domain values.

The mesodata types we use in our example are:

interval: The interval type described above.

typedHierarchy: The hierarchy type described
above extended to include an attribute specify-
ing the containment relationship for each edge in
the hierarchy.

pointInterval: The interval type where the inter-
val is used to represent an unknown point some-
where within the interval.

pointTypedHierarchy: The typedHierarchy type
where the nodes of the hierarchy represent points
within an interval similar to the pointInterval
type.

4.1 The extended mesodata types

First let us consider the source relations for the three
hierarchies. The intervals shown in part (b) of Fig-
ure 2 can use the source relation schema described
for the interval mesodata type in the previous sec-
tion. For the other two hierarchies, we extend the
schema for the source relation for hierarchy meso-
data type to include the containment relationship

between CHILD and PARENT to be (CHILD, PARENT,
CONTAINMENT).

Now consider the attribute inOperation. As dis-
cussed above, the attribute values are intervals, and
query conditions use the Allen operations. For the in-
terval hierarchy these need no adaptation (apart from
perhaps interpreting DURING to also include EQUALS,
STARTS and FINISHES). For the other two hierarchies
though, these operations must be redefined using the
structure of the hierarchy and the containment rela-
tionships of its edges. For example, consider the query
condition inOperation DURING d. For the hierarchi-
cal domains, we can work out whether the query con-
dition is true or false for a value v using these defi-
nitions:
• SYNONYMS(d, v) = true if v is a synonym of d

• N PATH(d, v) = true if there is a normal path
from d to v

• FULLDESCENDENT(d, v) = DESCENDENTOF(d, v) ∧
N PATH(d, v)

• DURING(d, v) = SYNONYMS(d, v) ∨
FULLDESCENDENT(d, v)

By a normal path we mean a path that does not con-
tain an O containment.

The attribute dateCreated, however, represents a
point located somewhere within the value used for the
attribute, and query conditions use operations com-
paring a point with an interval, the keyword MAYBE,
and three-valued logic as discussed earlier. For ex-
ample, consider the query condition dateCreated
DURING d. For the interval hierarchy we can use these
definitions to determine the truth value of this condi-
tion for a value v:
• true = EQUALS(d, v) ∨ CONTAINS(d, v) ∨
STARTS(d, v) ∨ FINISHES(d, v)

• unknown = DURING(d, v) ∨ OVERLAPS(d, v) ∨
OVERLAPPEDBY(d, v) ∨ STARTEDBY(d, v) ∨
FINISHEDBY(d, v)
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Table 4: Source relations

Source Relation intervalsrel
desc start finish

[50,60] 50 60
[70,100] 70 100
[30,60] 30 60
[50,100] 50 100

Source Relation emperorsrel
child parent containment

Claudian Claudio-Neronian N
Neronian Claudio-Neronian N
Claudio-Neronian pre-Flavian S

Source Relation vaguerel
child parent containment

early I early-mid I N
mid I early-mid I N
mid I mid-late I N
late I mid-late I N
early-mid I mid-late I O

• false = BEFORE(d, v)∨AFTER(d, v)∨MEETS(d, v)∨
METBY(d, v)

For the other two hierarchies, once again we need to
consider domain structure and containments. We can
determine the truth value of the condition for value v
using these definitions:

• true = SYNONYMS(d, v) ∨ FULLDESCENDENT(d, v)

• unknown = INFAMILY(d, v)∧¬(SYNONYMS(d, v)∨
FULLDESCENDENT(d, v))

• false = ¬INFAMILY(d, v)

The operations not defined in this section are defined
for the base mesodata types in Section 2. The differ-
ence in capitalisation is not meant to be significant.

4.2 Creating Mappings, Domains and Tables

To define the mappings between the source relations,
we use the CREATE MAPPING command described ear-
lier with a lookup table and a mapping function whose
purposes are discussed below. The mappings required
for our example are from Emperor names to intervals,
and from vague terms to intervals.

CREATE MAPPING emperorMap
LOOKUP emperorIntervals
FUNCTION emperorToIntervals

CREATE MAPPING vagueMap
LOOKUP vagueIntervals
FUNCTION vagueToInterval

To create the domains for inOperation and
dateCreated, we use the CREATE DOMAIN command
described earlier. The AS clause defines the meso-
data type to be used, the OF clause defines the base
data type for the nodes in the hierarchy, and the OVER
clause specifies the source relation to use.

CREATE DOMAIN inOpInterval
AS interval OF CHAR(10)
OVER intervalsrel

CREATE DOMAIN dateCrInterval
AS pointInterval OF CHAR(10)
OVER intervalsrel

CREATE DOMAIN inOpEmperor
AS typedHierarchy OF CHAR(16)
OVER emperorsrel
MAPPING emperorMap TO inOpInterval

CREATE DOMAIN dateCrEmperor
AS pointTypedHierarchy OF CHAR(16)
OVER emperorsrel
MAPPING emperorMap TO dateCrInterval

CREATE DOMAIN inOpVague
AS typedHierarchy OF CHAR(12)
OVER vaguerel
MAPPING vagueMap TO inOpInterval

CREATE DOMAIN dateCrVague
AS pointTypedHierarchy OF CHAR(12)
OVER vaguerel
MAPPING vagueMap TO dateCrInterval

We now use these domains to create tables KILNS
and POTS. The syntax used for the domains of
inOperation and dateCreated shows that values
from each of the three domains listed can be used
for that attribute.

CREATE TABLE kilns (
kiln CHAR(20) PRIMARY KEY,
easting INTEGER,
northing INTEGER,
inOperation (inOpInterval,

inOpEmperor,
inOpVague))

CREATE TABLE pots (
potID INTEGER PRIMARY KEY,
description CHAR(30),
easting INTEGER,
northing INTEGER,
dateCreated (dateCrInterval,

dateCrEmperor,
dateCrVague))
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Table 5: Mapping between Hierarchies and Intervals

Mapping Emperors to Intervals
emperor start finish

Claudian 41 54
Neronian 54 68
Flavian 68 96
Claudio-Neronian startOf(Claudian) finishOf(Neronian)
pre-Flavian startOf(Claudio-Neronian) finishOf(Claudio-Neronian)

Mapping Vague Terms to Intervals
vagueTerm start finish startMin finishMax

early I 1 33 1 startOf(mid I)
mid I 34 66 finishOf(early I) startOf(late I)
late I 67 100 finishOf(mid I) 100
early-mid I startOf(early I) finishOf(mid I)
mid-late I startOf(mid I) finishOf(late I)

The source relations describing the hierarchical
structure of the domains are shown in Table 4. It is
not necessary to include any edges connecting nodes
to >, as these always have N containment.

Table 5 shows how to map the two hierarchical
structures to intervals. This means providing start
and finish values for the Emperor’s reigns and the
vague terms. In the case of the vague terms, mini-
mum and maximum values have been given as well
as default start and finish values to allow the default
values to be varied if desired, but only in such a way
that the relationships between the terms remain con-
sistent. Wherever possible, startOf and finishOf oper-
ations are included in the table to reduce redundancy.
The lookup table and mapping function defined in
the CREATE MAPPING command are used to implement
this mapping. The lookup table contains the numer-
ical values in Table 5, and the mapping function is
used to calculate the values using the startOf and
finishOf operations.

4.3 Discussion of the Implementation

The implementation described in this paper com-
prises four distinct tasks:

Implementing the basic mesodata types.
The mesodata approach is new, and the only
mesodata types implemented previously are
graph, weighted graph, and circular list, so the
hierarchy and interval mesodata types must be
implemented. This task would not normally be
part of the development of a database using a
mesodata type.

Implementing the adapted mesodata types.
The typedHierarchy, pointInterval and point-
TypedHierarchy implementations are based on
those of interval and hierarchy. Once created,
these are reusable mesodata types like any other,
but the creation of a new intelligent domain may
require adaptations of existing mesodata types
like these.

Implementing the intelligent domain. This
task involves the implementation of the mapping
functions and different semantics for the query
operations for the attributes inOperation and
dateCreated.

Implementing the database This task incorpo-
rates the creation and population of the specific
domains, mappings and relations.

These tasks are shown in decreasing order of likeli-
hood of being required for a particular application.

The non-standard SQL syntax is handled by wrap-
pers which perform any required mesodata operations
and convert the various data definition and manipula-
tion commands to standard SQL, as mesodata is still
at the proof-of-concept stage.

In concept, a mesodata-style implementation of an
intelligent domain is three-layered. The implemented
algorithms are built using the operations defined for
the mesodata types used in the domain, which in turn
use the operations for the DBMS’s base data types. In
comparison, a direct implementation is two-layered:
its special-purpose data structures and algorithms are
built directly on top of the base data type, possibly
enhancing its efficiency at the expense of re-use. As
an experiment, our example domain is being imple-
mented using both methods to see how they differ in
ease of implementation, and efficiency of operation.

For illustrative purposes, consider the mesodata
implementation of the query3

SELECT * FROM KILNS
WHERE inOperation DURING ’pre-Flavian’

for the inOpEmperor part of the multiply-typed
inOperation domain. This requires identification
of the tuples in the KILNS table with a value
for inOperation which lies entirely within the pre-
Flavian era. The algorithm CALC DURING returns
the set DV during of domain values which satisfy
this condition (in our example these are ’Claudian’,
’Claudio-Neronian’ and ’pre-Flavian’) using as
input d (’pre-Flavian’, the domain value being
matched) and DV all (the set of inOpEmperor do-
main values used in KILNS). CALC DURING uses the
SYNONYMS and FULLDESCENDENT operations described
in Section 4.1.

Algorithm CALC DURING(d, DV all)

BEGIN
Initialise DV during to φ
3It will be necessary to introduce syntax to determine which of

the multiple types the value ’pre-Flavian’ belongs to, especially
where there is more than one possible as is the case with our ex-
ample.
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FOR (each v ∈ DV all)
IF SYNONYMS(d, v) ∨ FULLDESCENDENT(d, v)

Add v to DV during
ENDIF

ENDFOR
END

5 Conclusion and Further Research

Data integration often leads to compromise in the
adoption of schemas that do not fit the data very well,
in order to incorporate data from different sources
into a single global schema. At the attribute level,
this problem can be addressed by allowing attribute
domains to accommodate multiple types. We have
shown in this paper that the concept of mesodata
can be used to define such domains.

We believe that the mesodata modelling method-
ology provides a handy tool for developing novel in-
telligent domains of all types. In particular, the abil-
ity to separate the domain values and structure from
the semantics of attributes defined using the domain
proved very useful for this data model, by providing a
paradigm for thinking about the modelling process as
well as enabling the reuse of the same set of complex
values for attributes with different semantics.

Implementation of these ideas is already underway.
The MySQL RDBMS (MySQL 2003) is being used
for this purpose. We are implementing the same data
model both with and without using mesodata tech-
niques. Analysis of these algorithms so far shows no
significant theoretical difference in complexity. Com-
parisons are being undertaken to determine whether
there is a difference in practice.
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