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3-Space In-Flow Theory of Gravity: Boreholes, Blackholes and
the Fine Structure Constant

Reginald T. Cahill

School of Chemistry, Physics and Earth Sciences, Flinders University, Adelaide 5001, Australia

E-mail: Reg.Cahill@flinders.edu.au

A theory of 3-space explains the phenomenon of gravity as arising from the time-
dependence and inhomogeneity of the differential flow of this 3-space. The emergent
theory of gravity has two gravitational constants: GN — Newton’s constant, and a
dimensionless constant α. Various experiments and astronomical observations have
shown that α is the fine structure constant ≈ 1/137. Here we analyse the Greenland Ice
Shelf and Nevada Test Site borehole g anomalies, and confirm with increased precision
this value of α. This and other successful tests of this theory of gravity, including the
supermassive black holes in globular clusters and galaxies, and the “dark-matter” effect
in spiral galaxies, shows the validity of this theory of gravity. This success implies that
the non-relativistic Newtonian gravity was fundamentally flawed from the beginning,
and that this flaw was inherited by the relativistic General Relativity theory of gravity.

1 Introduction

In the Newtonian theory of gravity [1] the Newtonian gravi-
tational constant GN determining the strength of this pheno-
menon is difficult to measure because of the extreme weak-
ness of gravity. Originally determined in laboratory experi-
ments by Cavendish [2] in 1798 using a torsion balance, Airy
[3] in 1865 presented a different method which compared
the gravity gradients above and below the surface of the
Earth. Then if the matter density within the neighbourhood
of the measurements is sufficiently uniform, or at most is
horizontally layered and known, then such measurements
then permitted GN to be determined, as discussed below, if
Newtonian gravity was indeed correct. Then the mass of the
Earth can be computed from the value of g at the Earth’s
surface. However two anomalies have emerged for these two
methods: (i) the Airy method has given gravity gradients
that are inconsistent with Newtonian gravity, and (ii) the
laboratory measurements of GN using various geometries for
the test masses have not converged despite ever increasing
experimental sophistication and precision. There are other
anomalies involving gravity such as the so-called “dark-
matter” effect in spiral galaxies, the systematic effects related
to the supermassive blackholes in globular clusters and ellipt-
ical galaxies, the Pioneer 10/11 deceleration anomaly, the so-
called galactic ‘dark-matter’ networks, and others, all suggest
that the phenomenon of gravity has not been understood
even in the non-relativistic regime, and that a significant
dynamical process has been overlooked in the Newtonian
theory of gravity, and which is also missing from General
Relativity.

The discovery of this missing dynamical process arose
from experimental evidence [4, 8, 9] that a complex dyn-
amical 3-space underlies reality. The evidence involves the

repeated detection of the motion of the Earth relative to that
3-space using Michelson interferometers operating in gas
mode [8], particularly the experiment by Miller in 1925/26
at Mt. Wilson, and the coaxial cable RF travel time measure-
ments by Torr and Kolen in Utah in 1985, and the DeWitte
experiment in 1991 in Brussels [8]. In all 7 such experiments
are consistent with respect to speed and direction. It has been
shown that effects caused by motion relative to this 3-space
can mimic the formalism of spacetime, but that it is the 3-spa-
ce that is “real”, simply because it is directly observable [4].

The 3-space is in differential motion, that is one part
has a velocity relative to other parts, and so involves a
velocity field v (r, t) description. To be specific this velocity
field must be described relative to a frame of observers, but
the formalism is such that the dynamical equations for this
velocity field must transform covariantly under a change of
observer. It has been shown [4, 6] that the phenomenon of
gravity is a consequence of the time-dependence and inhomo-
geneities of v (r, t). So the dynamical equations for v (r, t)
give rise to a new theory of gravity when combined with
the generalised Schrödinger equation, and the generalised
Maxwell and Dirac equations [10]. The equations for v (r, t)
involve the gravitational constant∗ G and a dimensionless
constant that determines the strength of a new 3-space self-
interaction effect, which is missing from both Newtonian
Gravity and General Relativity. Experimental data has re-
vealed [4, 5, 6] the remarkable discovery that this constant is
the fine structure constant α≈ e2/~c≈ 1/137. This dynamics
then explains numerous gravitational anomalies, such as the
borehole g anomaly, the so-called “dark matter” anomaly in
the rotation speeds of spiral galaxies, and that the effective

∗This is different from the Newtonian effective gravitational constant
GN defined later.
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mass of the necessary black holes at the centre of spherical
matter systems, such as globular clusters and spherical gal-
axies, is α/2 times the total mass of these systems. This pre-
diction has been confirmed by astronomical observations [7].

Here we analyse the Greenland and Nevada Test Site
borehole g anomalies, and confirm with increased precision
this value of α.

The occurrence of α suggests that space is itself a quan-
tum system undergoing on-going classicalisation. Just such
a proposal has arisen in Process Physics [4] which is an
information-theoretic modelling of reality. There quantum
space and matter arise in terms of the Quantum Homotopic
Field Theory (QHFT) which, in turn, may be related to the
standard model of matter. In the QHFT space at this quantum
level is best described as a “quantum foam”. So we interpret
the observed fractal∗ 3-space as a classical approximation to
this “quantum foam” [10].

2 Dynamical 3-space

Relative to some observer 3-space is described by a velocity
field v (r, t). It is important to note that the coordinate r is
not itself 3-space, rather it is merely a label for an element
of 3-space that has velocity v, relative to some observer.
Also it is important to appreciate that this “moving” 3-space
is not itself embedded in a “space”; the 3-space is all there
is, although as noted above its deeper structure is that of a
“quantum foam”.

In the case of zero vorticity ∇×v=0 the 3-space dyn-
amics is given by [4, 6], in the non-relativistic limit,

∇∙

(
∂v

∂t
+(v ∙∇)v

)

+
α

8

(
(trD)2−tr(D2)

)
=−4πGρ, (1)

where ρ is the matter density, and where

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)

. (2)

The acceleration of an element of space is given by the
Euler form

g(r, t) ≡ lim
Δt→0

v
(
r+v (r, t)Δt, t+Δt

)
−v (r, t)

Δt
=

=
∂v

∂t
+ (v ∙ ∇)v .

(3)

It was shown in [10] that matter has the same acceleration†

as (3), which gave a derivation of the equivalence principle as
a quantum effect in the Schrödinger equation when uniquely
generalised to include the interaction of the quantum system
with the 3-space. These forms are mandated by Galilean
covariance under change of observer‡. This minimalist non-
relativistic modelling of the dynamics for the velocity field

∗The fractal property of 3-space was found [10] from the DeWitte data.
†Except for the acceleration component induced by vorticity.
‡However this does not exclude so-called relativistic effects, such as the

length contraction of moving rods or the time dilations of moving clocks.
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Fig. 1: Upper plot shows speeds from numerical iterative solution
of (7) for a solid sphere with uniform density and radius r= 0.5
for (i) upper curve the case α=0 corresponding to Newtonian
gravity, and (ii) lower curve with α= 1/137. These solutions only
differ significantly near r=0. Middle plot shows matter density
and “dark matter” density ρDM , from (5), with arbitrary scales.
Lower plot shows the acceleration from (3) for (i) the Newtonian
in-flow from the upper plot, and (ii) from the α= 1/137 case. The
difference is only significant near r = 0. The accelerations begin
to differ just inside the surface of the sphere at r= 0.5, according
to (15). This difference is the origin of the borehole g anomaly, and
permits the determination of the value of α from observational data.
This generic singular-g behaviour, at r=0, is seen in the Earth, in
globular clusters and in galaxies.
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Fig. 2: The data shows Log10[MBH/M ] for the “blackhole” or “dark matter” masses MBH for a variety of spherical matter systems with
masses M , shown by solid circles, plotted against Log10[M/M0], where M0 is the solar mass, showing agreement with the “α/2-line”
(Log10[α/2] = −2.44) predicted by (10), and ranging over 15 orders of magnitude. The “blackhole” effect is the same phenomenon as the
“dark matter” effect. The data ranges from the Earth, as observed by the bore hole g anomaly, to globular cluster M15 and G1, and then
to spherical “elliptical” galaxies M32 (E2), NGC 4374 (E1) and M87 (E0). Best fit to the data from these star systems gives α = 1/134,
while for the Earth data in Figs.3,4,5 give α = 1/137. In these systems the “dark matter” or “black hole” spatial self-interaction effect is
induced by the matter. For the spiral galaxies, shown by the filled boxes, where here M is the bulge mass, the blackhole masses do not
correlate with the “α/2-line”. This is because these systems form by matter in-falling to a primordial blackhole, and so these systems are
more contingent. For spiral galaxies this dynamical effect manifests most clearly via the non-Keplerian rotation-velocity curve, which
decrease asymptotically very slowly. See [7] for references to the data.

gives a direct account of the various phenomena noted above.
A generalisation to include relativistic effects of the motion
of matter through this 3-space is given in [4]. From (1) and
(3) we obtain that

∇ ∙ g = −4πGρ− 4πGρDM , (4)

where
ρDM (r) =

α

32πG

(
(trD)2 − tr(D2)

)
. (5)

In this form we see that if α → 0, then the acceleration
of the 3-space elements is given by Newton’s Universal Law
of Gravitation, in differential form. But for a non-zero α
we see that the 3-space acceleration has an additional effect,
from the ρDM term, which is an effective “matter density”
that mimics the new self-interaction dynamics. This has been
shown to be the origin of the so-called “dark matter” effect
in spiral galaxies. It is important to note that (4) does not
determine g directly; rather the velocity dynamics in (1)
must be solved, and then with g subsequently determined
from (3). Eqn. (4) merely indicates that the resultant non-
Newtonian g could be mistaken as the result of a new form
of matter, whose density is given by ρDM . Of course the
saga of “dark matter” shows that this actually happened, and

that there has been a misguided and fruitless search for such
“matter”.

3 Airy method for determining α

We now show that the Airy method actually gives a technique
for determining the value of α from Earth based borehole
gravity measurements. For a time-independent velocity field
(1) may be written in the integral form

|v (r)|2 = 2G
∫
d3r′

ρ(r′) + ρDM (r
′)

|r− r′|
. (6)

When the matter density of the Earth is assumed to be
spherically symmetric, and that the velocity field is now
radial∗ (6) becomes

v(r)2 =
8πG

r

∫ r

0

s2
[
ρ(s) + ρDM (s)

]
ds+

+ 8πG

∫ ∞

r

s
[
ρ(s) + ρDM (s)

]
ds ,

(7)

∗This in-flow is additional to the observed velocity of the Earth through
3-space.
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where, with v′ = dv(r)/dr,

ρDM (r) =
α

32πG

(
v2

2r2
+
vv′

r

)

. (8)

Iterating (7) once we find to 1st order in α that

ρDM (r) =
α

2r2

∫ ∞

r

sρ(s) ds+O(α2) , (9)

so that in spherical systems the “dark matter” effect is con-
centrated near the centre, and we find that the total “dark
matter” is

MDM ≡ 4π
∫ ∞

0

r2ρDM (r)dr =

=
4πα

2

∫ ∞

0

r2ρ(r)dr +O(α2) =
α

2
M +O(α2) ,

(10)

where M is the total amount of (actual) matter. Hence to
O(α) MDM/M = α/2 independently of the matter density
profile. This turns out to be a very useful property as complete
knowledge of the density profile is then not required in order
to analyse observational data. As seen in Fig. 1 the singular
behaviour of both v and g means that there is a blackhole∗

singularity at r=0. Interpreting MDM in (10) as the mass
of the blackholes observed in the globular clusters M15 and
G1 and in the highly spherical “elliptical” galaxies M32,
M87 and NGC 4374, we obtained [7] α≈ 1/134, as shown
in Fig. 2.

From (3), which is also the acceleration of matter [10],
the gravity acceleration† is found to be, to 1st order in α,
and using that ρ(r)= 0 for r >R, where R is the radius of
the Earth,

g(r) =






(
1 + α

2

)
GM

r2
, r > R ;

4πG

r2

∫ r

0

s2ρ(s) ds+

+
2παG

r2

∫ r

0

(∫ R

s

s′ρ(s′)ds′
)

ds , r < R .

(11)

This gives Newton’s “inverse square law” for r >R, even
when α 6=0, which explains why the 3-space self-interaction
dynamics did not overtly manifest in the analysis of planetary
orbits by Kepler and then Newton. However inside the Earth
(11) shows that g(r) differs from the Newtonian theory, cor-
responding to α=0, as Fig. 1, and it is this effect that allows
the determination of the value of α from the Airy method.

Expanding (11) in r about the surface, r=R, we obtain,
to 1st order in α and for an arbitrary density profile,

∗These are called blackholes because there is an event horizon, but in
all other aspects differ from the blackholes of General Relativity.

†We now use the convention that g(r) is positive if it is radially inward.

g(r) =






GNM

R2
−
2GNM

R3
(r −R) , r > R ;

GNM

R2
−

(
2GNM

R3
− 4π

(
1−

α

2

)
GNρ

)

×

× (r −R) , r < R .

(12)

where ρ is the matter density at the surface, M is the total
matter mass of the Earth, and where we have defined

GN ≡
(
1 +

α

2

)
G . (13)

The corresponding Newtonian gravity expression is ob-
tained by taking the limit α→ 0,

gN(r) =






GNM

R2
−
2GNM

R3
(r −R) , r >R ;

GNM

R2
−
(
2GNM

R3
− 4πGNρ

)
(r−R) , r <R .

(14)

Assuming Newtonian gravity (14) then means that from
the measurement of difference between the above-ground and
below-ground gravity gradients, namely 4πGNρ, and also
measurement of the matter density, permit the determination
of GN. This is the basis of the Airy method for determining
GN [3].

When analysing the borehole data it has been found [11,
12] that the observed difference of the density gradients was
inconsistent with 4πGNρ in (14), in that it was not given by
the laboratory value of GN and the matter density. This is
known as the borehole g anomaly and which attracted much
interest in the 1980’s. The key point in understanding this
anomaly is that even allowing for the dynamical rescaling
of G, expressions (12) and (14) have a different dependence
on r−R beneath the surface. The borehole data papers [11,
12] report the discrepancy, i. e. the anomaly or the gravity
residual as it is called, between the Newtonian prediction
and the measured below-earth gravity gradient. Taking the
difference between (12) and (14), assuming the same un-
known value of GN in both, we obtain an expression for the
gravity residual

Δg(r) ≡ gN(r)− g(r) =

{
0 , r > R ;

2παGNρ(r−R) , r < R .
(15)

When α 6= 0 we have a two-parameter theory of gravity,
and from (11) we see that measurement of the difference be-
tween the above ground and below ground gravity gradients
is 4π

(
1− α

2

)
GNρ, and this is not sufficient to determine

both GN and α, given ρ, and so the Airy method is now
understood not to be a complete measurement by itself, i. e.
we need to combine it with other measurements. If we now
use laboratory Cavendish experiments to determine GN, then
from the borehole gravity residuals we can determine the
value of α, as already indicated in [5, 6]. As discussed in
Sect. 7 these Cavendish experiments can only determine GN

12 R. T. Cahill. 3-Space In-Flow Theory of Gravity: Boreholes, Blackholes and the Fine Structure Constant
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Fig. 3: The data shows the gravity residuals for the Greenland
Ice Shelf [11] Airy measurements of the g(r) profile, defined as
Δg(r)= gNewton− gobserved, and measured in mGal (1mGal =
= 10−3 cm/s2) and plotted against depth in km. The gravity
residuals have been offset. The borehole effect is that Newtonian
gravity and the new theory differ only beneath the surface, provided
that the measured above surface gravity gradient is used in both
theories. This then gives the horizontal line above the surface.
Using (15) we obtain α−1 = 137.9± 5 from fitting the slope of the
data, as shown. The non-linearity in the data arises from modelling
corrections for the gravity effects of the irregular sub ice-shelf rock
topography.

up to corrections of order α/4, simply because the analysis
of the data from these experiments assumed the validity of
Newtonian gravity. So the analysis of the borehole residuals
will give the value of α up to O(α2) corrections, which is
consistent with the O(α) analysis reported above.

4 Greenland Ice Shelf borehole data

Gravity residuals from a bore hole into the Greenland Ice
Shelf were determined down to a depth of 1.5 km by Ander
et al. [11] in 1989. The observations were made at the
Dye 3 2033 m deep borehole, which reached the basement
rock. This borehole is 60 km south of the Arctic Circle
and 125 km inland from the Greenland east coast at an
elevation of 2530 m. It was believed that the ice provided
an opportunity to use the Airy method to determine GN, but
now it is understood that in fact the borehole residuals permit
the determination of α, given a laboratory value for GN.
Various steps were taken to remove unwanted effects, such as
imperfect knowledge of the ice density and, most dominantly,
the terrain effects which arises from ignorance of the profile
and density inhomogeneities of the underlying rock. The

borehole gravity meter was calibrated by comparison with an
absolute gravity meter. The ice density depends on pressure,
temperature and air content, with the density rising to its
average value of ρ = 920 kg/m3 within some 200 m of
the surface, due to compression of the trapped air bubbles.
This surface gradient in the density has been modelled by
the author, and is not large enough the affect the results.
The leading source of uncertainty was from the gravitational
effect of the bedrock topography, and this was corrected for
using Newtonian gravity. The correction from this is actually
the cause of the non-linearity of the data points in Fig. 3. A
complete analysis would require that the effect of this rock
terrain be also computed using the new theory of gravity, but
this was not done. Using GN= 6.6742×10−11 m3s−2kg−1,
which is the current CODATA value, see Sect. 7, we obtain
from a least-squares fit of the linear term in (15) to the data
points in Fig. 3 that α−1= 137.9±5, which equals the value
of the fine structure constant α−1= 137.036 to within the
errors, and for this reason we identify the constant α in (1)
as being the fine structure constant. The first analysis [5, 6]
of the Greenland Ice Shelf data incorrectly assumed that
the ice density was 930 kg/m3 which gave α−1= 139 ± 5.
However trapped air reduces the standard ice density to
the ice shelf density of 920 kg/m3, which brings the value
of α immediately into better agreement with the value of
α= e2/~c known from quantum theory.

5 Nevada Test Site borehole data

Thomas and Vogel [12] performed another borehole experi-
ment at the Nevada Test Site in 1989 in which they measured
the gravity gradient as a function of depth, the local average
matter density, and the above ground gradient, also known as
the free-air gradient. Their intention was to test the extracted
Glocal and compare with other values of GN, but of course
using the Newtonian theory. The Nevada boreholes, with
typically 3 m diameter, were drilled as a part of the U.S.
Government tests of its nuclear weapons. The density of
the rock is measured with a γ− γ logging tool, which is
essentially a γ-ray attenuation measurement, while in some
holes the rock density was measured with a coreing tool. The
rock density was found to be 2000 kg/m3, and is dry. This is
the density used in the analysis herein. The topography for
1 to 2 km beneath the surface is dominated by a series of
overlapping horizontal lava flows and alluvial layers. Gravity
residuals from three of the bore holes are shown in Figs.4,
5 and 6. All gravity measurements were corrected for the
Earth’s tide, the terrain on the surface out to 168 km distance,
and the evacuation of the holes. The gravity residuals arise
after allowing for, using Newtonian theory, the local lateral
mass anomalies but assumed that the matter beneath the
holes occurs in homogeneous ellipsoidal layers. Here we
now report a detailed analysis of the Nevada data. First we
note that the gravity residuals from borehole U20AO, Fig. 6,

R. T. Cahill. 3-Space In-Flow Theory of Gravity: Boreholes, Blackholes and the Fine Structure Constant 13
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Fig. 4: The data shows the gravity residuals for the Nevada
U20AK borehole Airy measurements of the g(r) profile [12],
defined as Δg(r)= gNewton− gobserved, and measured in mGal,
plotted against depth in km. This residual shows regions of linearity
interspersed with regions of non-linearity, presumably arising from
layers with a density different from the main density of 2000 kg/m3.
Density changes generate a change in the (arbitrary) residual offset.
From a least-squares simultaneous fit of the linear form in (15)
to the four linear regions in this data and that in Fig. 5 for the
data from borehole U20AL, we obtain α−1= 136.8 ± 3. The two
fitted regions of data are shown by the two straight lines here and
in Fig. 5.

are not sufficiently linear to be useful. This presumably
arises from density variations caused by the layering effect.
For boreholes UA20AK, Fig. 4, and UA20AL, Fig. 5, we
see segments where the gravity residuals are linear with
depth, where the density is the average value of 2000 kg/m3,
but interspersed by layers where the residuals show non-
linear changes with depth. It is assumed here that these non-
linear regions are caused by variable density layers. So in
analysing this data we have only used the linear regions,
and a simultaneous least-squares fit to (15), with again GN=
= 6.6742×10−11 m3 s−2kg−1 as for the Greenland data
analysis, of these four linear regions gives α−1 = 136.8± 3,
which again is in extraordinary agreement with the value of
137.04 from quantum theory.

6 Ocean measurements

The ideal Airy experiment would be one using the ocean, as
all relevant physical aspects are accessible. Such an expe-
riment was carried out by Zumberge et al. in 1991 [13]

Fig. 5: The data shows the gravity residuals for the Nevada U20AL
borehole Airy measurements of the g(r) profile [12], defined
as Δg(r)= gNewton− gobserved, and measured in mGal, plotted
against depth in km. This residual shows regions of linearity
interspersed with regions of non-linearity, presumably arising from
layers with a density different from the main density of 2000 kg/m3.
Density changes generate a change in the (arbitrary) residual offset.
From a least-squares simultaneous fit of the linear form in (15) to
the four linear regions in this data and that in Fig. 4 for the data
from borehole U20AK in Fig. 4, we obtain α−1= 136.8 ± 3. The
two fitted regions of data are shown by the two straight lines here
and in Fig. 4.

using submersibles. Corrections for sea floor topography,
seismic profiles and sea surface undulations were carried
out. However a true Airy experiment appears not to have
been performed. That would have required the measurement
of the above and below sea-surface gravity gradients. Rather
only the below sea-surface gradients were measured, and
compared with a predicted gravity gradient using the density
of the water and a laboratory value of GN from only one
such experiment and, as shown in Fig. 7, these have a
large uncertainty. Hence this experiment does not permit an
analysis of the data of the form applied to the Greenland
and Nevada observations. The value of GN from this ocean
experiment is shown in Fig. 7 as experiment #12.

7 G experiments

The new theory of gravity, given in (1) for the case of zero
vorticity and in the non-relativistic limit, is a two-parameter
theory; G and α. Hence in experiments to determine G
(or GN) we expect to see systematic discrepancies if the

14 R. T. Cahill. 3-Space In-Flow Theory of Gravity: Boreholes, Blackholes and the Fine Structure Constant
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Fig. 6: The data shows the gravity residuals from the third Nevada
U20AO borehole Airy measurements of the g(r) profile [12]. This
data is not of sufficient linearity, presumably due to non-uniformity
of density, to permit a fit to the linear form in (15), but is included
here for completeness. There is an arbitrary offset in the residual.

Newtonian theory is used to analyse the data. This is clearly
the case as shown in Fig. 7 which shows the results of such
analyses over the last 60 years. The fundamental problem
is that non-Newtonian effects of size ΔGN/GN≈α/4 are
clearly evident, and effects of this size are expected from
(1). To correctly analyse data from these experiments the
full theory in (1) must be used, and this would involve (i)
computing the velocity field for each configuration of the
test masses, and then (ii) computing the forces by using
(3) to compute the acceleration field. These computations
are far from simple, especially when the complicated matter
geometries of recent experiments need to be used. Essentially
the flow of space results in a non-Newtonian effective “dark
matter” density in (5). This results in deviations from New-
tonian gravity which are of order α/4. The prediction is that
when laboratory Cavendish-type experiments are correctly
analysed the data will permit the determination of both GN

and α, and the large uncertainties in the determination of GN

will no longer occur. Until then the value of GN will continue
to be the least accurately known of all the fundamental
constants. Despite this emerging insight CODATA∗ in 2005
[20] reduced the apparent uncertainties in GN by a factor of
10, and so ignoring the manifest presence of a systematic
effect. The occurrence of the fine structure constant α, in

∗CODATA is the Task Group on Fundamental Constants of the
Committee on Data for Science and Technology, established in 1969.

Fig. 7: Results of precision measurements of GN published in
the last sixty years in which the Newtonian theory was used to
analyse the data. These results show the presence of a systematic
effect, not in the Newtonian theory, of fractional size up to
ΔGN/GN≈α/4, which corresponded with the 1998 error bars
on GN (outer dashed lines), with the full line being the current
CODATA value of GN= 6.6742(10)×10−11 m2s−2kg−1. In 2005
CODATA [20] reduced the error bars by a factor of 10 (inner dashed
lines) on the basis of some recent experiments, and so neglecting
the presence of the systematic effect.

giving the magnitude of the spatial self-interaction effect in
(1), is a fundamental development in our understanding of 3-
space and the phenomenon of gravity. Indeed the implication
is that α arises here as a manifestation of quantum processes
inherent in 3-space.

8 Some history

Here we have simply applied the new two-parameter theory
of 3-space, and hence of gravity, to the existing data from
borehole experiments. However the history of these experi-
ments shows that, of course, the nature of the gravitational
anomaly had not been understood, and so the implications
for fundamental physics that are now evident could not have
been made. The first indications that some non-Newtonian
effect was being observed arose from Yellin [14] and Hinze
et al. [15]. It was Stacey et al. in 1981 [17, 16, 18] who
undertook systematic studies at the Mt. Isa mine in Queens-
land, Australia. In the end a mine site is very unsuited for
such a gravitational anomaly experiment as by their very
nature mines have non-uniform poorly-known density and
usually, as well, irregular surface topography. In the end it
was acknowledged that the Mt. Isa mine data was unreliable.
Nevertheless those reports motivated the Greenland, Nevada
and Ocean experiments, as well as above-ground tower expe-
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riments [19], all with the assumption that the non-Newtonian
effects were being caused by a modification to Newton’s
inverse square law by an additional short-range force —
which also involved the notion of a possible “5th-force”
[21]. However these interpretations were not supported by
the data, and eventually the whole phenomenon of these
gravitational borehole anomalies was forgotten.

9 Conclusions

We have extended the results from an earlier analysis [5, 6]
of the Greenland Ice Shelf borehole g anomaly data by
correcting the density of ice from the assumed value to
the actual value. This brought the extracted value of α
from approximately 1/139 to approximately 1/137, and so
into even closer agreement with the quantum theory value.
As well the analysis was extended to the Nevada borehole
anomaly data, again giving α≈ 1/137. This is significant
as the rock density is more than twice the ice density. As
well we have included the previous results [7] from analysis
of the blackhole masses in globular clusters and elliptical
“spherical” galaxies, which gave α≈ 1/134, but with larger
uncertainty. So the conclusion that α is actually the fine
structure constant from quantum theory is now extremely
strong. These results, together with the successful expla-
nation for the so-called spiral galaxy “dark-matter” effect
afforded by the new theory of gravity, implies that the New-
tonian theory of gravity [1] is fundamentally flawed, even
at the non-relativistic level, and that the disagreement with
experiment and observation can be of fractional order α, or
in the case of spiral galaxies and blackholes, extremely large.
This failure implies that General Relativity, which reduces to
the Newtonian theory in the non-relativistic limit, must also
be considered as flawed and disproven.
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