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Equivalence of light-front and conventional thermal field theory

A. N. Kvinikhidze* and B. Blankleider†

Department of Physics, Flinders University, Bedford Park, SA 5042, Australia
~Received 13 May 2003; published 2 June 2004!

It is shown that light-front thermal field theory is equivalent to conventional thermal field theory. The proof
is based on the use of spectral representations, and applies to all Lagrangians for which such equivalence has
been proven at zero temperature. It is also pointed out that conventional spectral functions can be used to
express light-front finite temperature free propagators. As an application of our approach, we derive the
light-front finite temperature spin 1/2 fermion propagator in full Dirac space.
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I. INTRODUCTION

The light-front ~LF! formulation of quantum field theory
where quantization arises from equal LF ‘‘time
commutation-anticommutation relations, offers some adv
tages over the conventional formulation where equal us
times are used for quantization. In this respect, perhaps
three most often quoted advantages of the LF approach
kinematical boosts, a much less complicated vacuum,
much simpler eigenstates. The last two properties are rel
and may be especially beneficial for thermal field theo
where the main object of interest, the ensemble averag
just a sum over eigenstates.

With such considerations in mind, the problem of form
lating thermal field theory on the light front has been a
dressed in a number of recent papers@1–4#. In Ref. @2#,
Alves, Das, and Perez proposed the LF version of the im
nary time scalar particle propagator, and used this to ca
late the self-energy loop diagram. The result of this calcu
tion looked so different from the conventional one that on
after Weldon@4# made use of a clever transformation of t
integration momentum variable did it become clear that t
difference is illusory.

In the present note we show that thewholeLF approach
using the imaginary time scalar particle propagator propo
in Ref. @2#, is equivalent to the conventional one. O
method is based on spectral representations of Green f
tions, and can be applied to the case of any Lagrangian
which such equivalence has been shown at zero temper
@5–12#. In this respect, we note that the spectral function
the Lehmann representation is already well recognized
being very useful for relating different types of Green fun
tions ~imaginary time, real time, advanced, retarded, etc.! in
the conventional approach. Here we show how to use
conventional spectral function to derive a LF free parti
propagator of arbitrary spin in either imaginary or real tim
formalism. This allows us to derive fermion propagators
the full Dirac index space.

*On leave from The Mathematical Institute of Georgian Acade
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II. GENERAL PROOF OF EQUIVALENCE
OF LIGHT-FRONT AND CONVENTIONAL THERMAL

FIELD THEORY

The problem of calculating the ensemble avera

Tr e2bPL
0OL in LF quantized field theory1 can be reduced to

the calculation of the fully dressed LF imaginary time prop
gatorDL given in coordinate and momentum space by2 ~we
use units where\5kB51)

DL~t,x!5~Tr e2bPL
0
!21Tr$e2bPL

0
Tt@ePL

0tf~0, x!

3e2PL
0tf̄~0!#%, ~1a!

DL~ ivn ,p!5
1

A2
E

0

b

dt dx ei (vnt2p•x)DL~t,x!, ~1b!

where vn52npT for bosons,vn5(2n11)pT for fermi-
ons, x5(x2,x'), p5(p1,p'), x65(1/A2)(x06x3), p6

5(1/A2)(p06p3), p•x52p1x21p'x', f(x) is a nonin-
teracting particle field operator,f(0,x)5f(x)ux150, and
where the energy operatorPL

0 and the operator of som
physical quantityOL are defined in the LF quantized theor
i.e., they depend on interacting field operators whose co
mutation relations are given on thex150 hyperplane~see
Appendix A for more details!. The imaginary time ordering
product in Eq.~1a! is defined as

Tt@ePL
0tf~0,x!e2PL

0tf̄~0!#

5u~t!ePL
0tf~0,x!e2PL

0tf̄~0!

6u~2t!f̄~0!ePL
0tf~0,x!e2PL

0t, ~2!

where the upper~lower! sign is for the case of bosons~fer-
mions!. Note that althought is associated with the usua
time, in the sense that it is combined withPL

0 ~rather than

y

1Note that the correct definition of ensemble average has en

operatorPL
0 in the exponentiale2bPL

0
@13# and not the Hamiltonian

PL
2 ~see the discussion in Ref.@2#!.
2To distinguish between LF and usual equal time quantization

work in the operator rather than path integral formalism.
©2004 The American Physical Society05-1
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A. N. KVINIKHIDZE AND B. BLANKLEIDER PHYSICAL REVIEW D 69, 125005 ~2004!
with PL
2) in the exponent ofePL

0t, Eq. ~2! nevertheless rep
resents the ordering of the interacting fields with respec
the imaginary LF ‘‘time’’ @see Eq.~8!, the discussion below
Eq. ~8!, and the text after Eq.~B5!#, in contrast to the usua
time ordering in Eq.~3a!. It is also important to note tha
Eqs.~1! define the LF imaginary time formalism exactly, an
in the case of scalar particles~only!, they define perturbation
theory with the free propagator suggested in Ref.@2#. As the
perturbation theory for the dressed propagators of Eqs.~1!
may not be immediately apparent~the exponents involve the
energy operatorPL

0 rather than the HamiltonianPL
2), we

outline its derivation in the Appendix B.
In this paper we shall prove that the analytic continuat

of the fully dressed LF imaginary time propagat
DL( ivn ,p) to real energies,ivn→p0, is identical to the ana-
lytic continuation of the fully dressed conventional imag
nary time propagatorD( ivn ,p), i.e., that DL(p0 ,p)
5D(p0 ,p), where

D~t,x!5~Tr e2bP0
!21Tr$e2bP0

3Tt@eP0tf~0,x!e2P0tf̄~0!#%, ~3a!

D~ ivn ,p!5E
0

b

dt dx ei (vnt2p•x)D~t,x!, ~3b!

f(0,x)5f(x)ux050,3 and P0 is the conventional energy op
erator.

We begin our proof by relatingDL( ivn ,p) to the real
time LF Green function:

D L~ t,x!5~Tr e2bPL
0
!21Tr$e2bPL

0

3Tt@eiPL
0tf~0,x!e2 iPL

0tf̄~0!#%, ~4a!

DL~p0,p!5
1

A2
E dtdxei (p0t2p•x)D L~ t,x!,

~4b!

whereTt is defined analogously to Eq.~2! as

Tt@eiPL
0tf~0,x!e2 iPL

0tf̄~0!#

5u~ t !eiPL
0tf~0,x!e2 iPL

0tf̄~0!

6u~2t !f̄~0!eiPL
0tf~0,x!e2 iPL

0t. ~5!

This is done by utilizing the Lehmann representation, wh
can be derived for LF Green functions in a way similar
that for conventional Green functions~see Ref.@14# for the
conventional case!:

3Hopefully no confusion will arise from our not entirely consiste
notation for f(0,x) and f(0,x); in particular f(0,x)
Þf(0,x)u x5x .
12500
o

n

h

DL~p0,p!5 i E dp08

2p

rL~p08 ,p!

p02p081 ih
6 f ~p0!rL~p0 ,p!,

~6a!

DL~ ivn ,p!52E dp08

2p

rL~p08 ,p!

ivn2p08
, ~6b!

where f (p0)5(ebp071)21 is the distribution function for
bosons~upper sign! or fermions ~lower sign!, and the LF
spectral function ~defined in Appendix C! is,
correspondingly,4

rL~p0 ,p!5
~2p!4

Tr e2bPL
0 ~17e2bp0!(

nm
e2bEnd 4~p2Pm1Pn!

3^Lnuf~0!uLm&^Lmuf̄~0!uLn&. ~7!

The difference betweenrL(p) and the conventional spectra
functionr(p) @see Eqs.~13!# is only in the eigenstatesuLm&
of the LF four-momentum,PL

muLm&5Pm
m uLm&,5 which are

different from the conventional ones~denoted byum& in Ref.
@14#!. However, in the free case there is no difference
tween these eigenstates and thus the free LF and con
tional spectral functions are identical. The unusual sca
productp0t2p•x in the exponent of Eq.~4b! can be written
in the invariant formp0t2p•x5p•x8, wherex8 is defined
by

x085
x2

A2
1t, ~x8!352

x2

A2
, ~x8!'5x',

dtdx52A2d4x8. ~8!

Writing

eiPL
0tf~0,x!e2 iPL

0t5FL~x8!, ~9!

one finds thatFL is a LF Heisenberg field operator; i.e., fo
any four-vectora,

FL~x1a!5eiPL•aFL~x!e2 iPL•a, ~10!

with initial condition

FL~0,x!5f~0,x!. ~11!

Given thatA2(x8)15t, Tt ordering in Eq.~4a! implies LF
time orderingT1 , so that Eqs.~4! can be written in the form

4We do not show explicit spin indices. For particles with spin, o

should consider the fieldf as a column vector, the fieldf̄ as a row
vector, and quantities such asrL, DL, DL, etc., as square matrices
in spin index space.

5Here PL
m is the operator of the four-momentum in the LF a

proach whereasPm
m is its eigenvalue corresponding to the sta

uLm&.
5-2
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EQUIVALENCE OF LIGHT-FRONT AND CONVENTIONAL . . . PHYSICAL REVIEW D 69, 125005 ~2004!
DL~x!5~Tr e2bPL
0
!21Tr$e2bPL

0
T1@FL~x!F̄L~0!#%,

~12a!

DL~p!5E d4xeip•xDL~x!, ~12b!

with the understanding thatDL(p0 ,p)5DL(p) and
D L(t,x)5DL(x8).

The well-known relations, corresponding to the LF Eq
~6!, connecting conventional real and imaginary time Gre
functions via the conventional spectral functionr(p) are
@14–16#

D~p0,p!5 i E dp08

2p

r~p08 ,p!

p02p081 ih
6 f ~p0!r~p0 ,p!,

~13a!

D~ ivn ,p!52E dp08

2p

r~p08 ,p!

ivn2p08
, ~13b!

whereD(p0,p) is the conventional real time Green functio
defined as

D~ t,x!5~Tr e2bP0
!21Tr$e2bP0

3Tt@eiP0tf~0,x!e2 iP0tf̄~0!#%, ~14a!

D~p0,p!5E dtdxei (p0t2p•x)D~ t,x!. ~14b!

For a perturbative treatment the propagator of Eq.~14a!
should be written in the interaction representation@17#, with

F~x![eiP0tf~0,x!e2 iP0t5U~0,t !f~x!U~ t,0!, ~15!

D~x!5~Tr e2bP0
!21Tr$e2bPf

0
S21T@f~x!f̄~0!S#%,

~16!

wherePf
0 is the free part ofP0, T is the usual time ordering

operator,S5U(`,2`), and

U~ t2 ,t1!5T expH 2 i E
t1

t2
dtE

2`

`

d3xP I
0~x!J , ~17!

P I
0(x) being the interaction part of the Hamiltonian dens

in the interaction picture. We note the unusual appeara
~for zero temperature perturbation theory! of the inverseS
matrix, S21, the source of doubled degrees of freedom@17#.
An analogous LF interaction representation can be writ
for DL:

FL~x![eiPL
2x1

f~0,x!e2 iPL
2x1

5UL~0,x1!f~x!UL~x1,0!,
~18!

DL~x!5~Tr e2bPL
0
!21Tr$e2bPL f

0
SL

21T1@f~x!f̄~0!SL#%,
~19!
12500
.
n

ce

n

wherePL f
0 is the free part ofPL

0 , SL5UL(`,2`), PL
2 is the

LF Hamiltonian, i.e., the negative component of the fou
momentum operator, and

UL~a2 ,a1!5T1expH 2 i E
a1

a2
dx1E

2`

`

dxP LI
2 ~x!J ,

~20!

P LI
2 (x) being the interaction part of the LF Hamiltonian de

sity in the interaction representation.

A. Scalar particles

To compare the dressed real time propagators in the c
ventional and LF formalisms, given in Eq.~16! and Eq.~19!,
respectively, we first restrict the discussion to the case
scalar particles. For scalar particlesP LI

2 andP I
0 are the same

functions of the free field operatorsf @7#, which means that
the perturbation theories for Eq.~16! and Eq.~19! have the
same vertices. The inverseSmatrix in both Eq.~16! and Eq.
~19! leads to free propagators with doubled degrees of fr
dom, i.e., 232 matricesD̂ f andD̂L f whose~1,1! element is
defined by Eq.~16! and Eq.~19! in the no interaction limit:

D̂11
f ~x!5D f~x!5~Tr e2bPf

0
!21Tr$e2bPf

0
Tt@f~x!f̄~0!#%,

~21a!

D̂11
L f~ t,x!5D L f~ t,x!

5~Tr e2bPf
0
!21Tr$e2bPf

0

3Tt@eiP f
0tf~0,x!e2 iP f

0tf̄~0!#%, ~21b!

5DL f~x8!

5~Tr e2bPf
0
!21Tr$e2bPf

0
T1@f~x8!f̄~0!#%, ~21c!

where x8 is defined in Eq. ~8!. Similar to the zero-
temperature case, straightforward calculation of Eqs.~21!
shows thatDL f(p)5D f(p) @see also Eqs.~24!#, therefore the
full propagators constructed according to Eq.~16! and Eq.
~19! are equal to each other,DL(p)5D(p), which already
means the equivalence of real time LF and conventional th
mal field theories for the scalar particle case. As we sh
now see, this also leads to the identity betweenDL(p0 ,p)
andD(p0 ,p), the analytic continuations of the LF and co
ventional imaginary time propagators. To define a uniq
analytic continuation ofD( ivn ,p), given for the discrete
values vn52pn/b, only two requirements have bee
needed in the conventional approach:~i! uD(z,p)u→0 as
uzu→`, and~ii ! that D(z,p) is analytic outside the real axi
@14–16#. Placing the same requirements onDL(p0 ,p), one
obtains a unique analytic continuation of the LF imagina
time propagator as well. These analytic continuations
provided by Eqs.~6b! and ~13b!:

D~p0 ,p!52E dp08

2p

r~p08 ,p!

p01 ih2p08
, ~22a!
5-3
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DL~p0 ,p!52E dp08

2p

rL~p08 ,p!

p01 ih2p08
. ~22b!

EquatingDL(p) of Eq. ~6a! to D(p) of Eq. ~13a! leads to the
identity of the LF and conventional spectral functions,
well as to the identityDL(p)5D(p), as the latter are repre
sented by Eqs.~22!.

B. Nonscalar particles

To apply the above proof to the case of nonscalar p
ticles, we note that in the LF approach the components of
nonscalar field become constrained, and as a result of
constraints, the interaction part of the LF Hamiltonian,PLI

2 ,
acquires extra terms, so that perturbation theory for the
real time propagatorDL(x) @Eq. ~19!# has extra vertices
compared to that for the conventional propagatorD(x) @Eq.
~16!#. At the same time, the free nonscalar propagators in
LF and conventional approaches are different@see Eq.~29!
for the case of a spinor particle#. Without going into details
here, the general strategy to prove the equivalence of LF
conventional thermal field theories for the case of nonsc
particles is similar to the one used in the zero-tempera
case@5–11#. For example, in models of spin 1/2 fermion
where interactions are given by three-point scalar or pseu
scalar vertices, equivalence at zero temperature is prove
showing that the extra vertices in LF perturbation theory c
be taken into account by simply adding the termig1/2p1 to
the free LF propagator, with the sum being equal to the c
ventional propagator.6 For the same models at nonzero te
perature one follows a similar procedure: the extra vertice
the LF perturbation theory of Eq.~19! are taken into accoun
by adding the following instantaneous term to the free
propagator of Eq.~29!:

i
g1

2p1 S 1 0

0 21D . ~23!

This turns the LF propagator into the conventional 232 real
time propagator. In this way one can prove the equivale
of LF and conventional real time thermal field theories
nonscalar particles described by Lagrangians for which s
an equivalence has been shown at zero temperature, as
for example in Refs.@5–11#.7 The rest of the proof, showing
equivalence of the LF and conventional imaginary time th
mal field theories, is based on spectral representations
follows the same procedure presented above for the sc
particle case.

6This applies only to internal propagators~those not correspond
ing to an external leg!.

7In this respect it should be noted that vector particles need a m
sophisticated treatment@8,9#, and equivalence may not mean th
the dressed LF propagator is equal to the conventional one as i
scalar particle case, or even effectively equal to the conventi
one as in the spinor case discussed above.
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III. FREE PROPAGATORS

With the help of spectral functions, we will derive the fre
propagators of LF thermal field theory, including the spin 1
fermion ~spinor! propagator in the entire Dirac index spac
In Ref. @2# it was suggested that the fermion propagator
expressed in the spinor subspace projected byP1

5g2g1/2. Yet there is clear need for the fermion propaga
in the entire spinor space, for example, to keep under con
the compensation between differences in vertices and pr
gators with respect to the conventional approach.

Using the eigenstates of the noninteracting system in
~7!, one gets the spectral functions of the free scalar
spinor particles:

r0
L f~p!5r0

f ~p!52pe~p0!d~p22m2! ~scalar!, ~24a!

r1/2
L f ~p!5r1/2

f ~p!

52pe~p0!~p” 1m!d~p22m2! ~spinor!, ~24b!

wheree(p0)5p0 /up0u. Equations~24! can also be obtained
from Eq. ~C4! by using the well-known free field commuta
tors or anticommutators. Although the free spectral functio
are the same in the LF and conventional approaches,
fermion bare propagators are not:

D1/2
L f ~p!5~p”̄ 1m!F i

p22m21 ih

22p f ~ up0u!d~p22m2!G , ~25a!

D1/2
f ~p!5~p” 1m!F i

p22m21 ih

22p f ~ up0u!d~p22m2!G , ~25b!

where p̄ in Eq. ~25a! is the on mass shell momentum wit
componentsp̄25(p'

2 1m2)/2p1, and p̄5p, which depend
only on p1 andp'. This difference arises because differe
components of the four-momentump are fixed in the inte-
grals of Eqs.~6! and ~13!. A similar difference arises in the
imaginary time formalism where the spinor propagator c
be derived using the same spectral function, given by
~24b!, and the representation of Eq.~6b!:

D1/2
L f ~ ivn ,p!52

p”̄ 1m

2pn
2p12m22p'

2
~26!

wherepn
25A2i (2n11)pT2p15A2pn

02p1. When fermi-
ons are involved the interaction part of the LF Hamiltoni

re

the
al
5-4
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has an extra term resulting from resolving constraints, wh
effect is an instantaneous addition ofg1/2p1 to the propa-
gatorD1/2

L f :

p”̄ 1m

2pn
2p12m22p'

2
1

g1

2p1

5
2p1~g1pn

21g2p12g'p'1m!

2p1~2pn
2p12m22p'

2 !
5

p” n1m

pn
22m2

,

~27!

where pn5p. Equation~27! should be compared with th
conventional imaginary time fermion propagator

D1/2
f ~ ivn ,p!5

p” 1m

p22m2U
p05 i (2n11)pT

(p fixed)

52
i ~2n11!pTg02p•g1m

@~2n11!pT#21p21m2
. ~28!

The difference between Eq.~27! and Eq.~28! is similar to
the scalar particle case in that the replacementp0→ ip(2n
11)T in the zero-temperature propagator is carried out w
different remaining variablesp andp are fixed, respectively

It is not difficult to derive a spectral representation for t
232 propagators of the real time formalism and to wr
down the analog of Eq.~7! for the corresponding 232 spec-
tral function. Then again we will see that the spectral fun
tion of a free particle is identical for the LF and convention
approach. As a result we will obtain the following expressi
for the LF real time fermion propagator:

D̂1/2
L f ~p!5~p”̄ 1m!S i

p22m21 ih
0

0
2 i

p22m22 ih

D
22p~p” 1m!S f ~ up0u! f ~ up0u!2u~2p0!

f ~ up0u!2u~p0! f ~ up0u! D
3d~p22m2!, ~29!

which differs from the conventional one in havingp̄ as the
on mass shell momentum in the numerator of the first te
on the right-hand side of the equation.

APPENDIX A: LIGHT-FRONT QUANTIZATION

As the precise meaning of ‘‘LF quantization’’ appears
vary in the current literature, here we give the exact sens
which this term is used in the present paper. It is sufficien
consider only the scalar particle case. We follow the tra
tional formulation of LF quantization. Starting with a La
grangian densityL@F#[L„F(x),]mF(x)… and the equa-
tions of motion
12500
e

n

-
l

in
o
i-

]

]xm

]L
]~]F/]xm!

2
]L
]F

50, ~A1!

quantization enters through the specification of the ini
conditions for these equations. In the case of LF quant
tion, we specify the initial conditions as

PL~x!5
]L

]~]FL /]x1!
, @FL~0!,PL~x!#d~x1!5

i

2
d4~x!,

~A2!

wherePL(x) is the momentum conjugate to the fieldFL(x),
and the commutation relation betweenPL andFL is speci-
fied on the LF surfacex150. Note that we have added
subscriptL to those solutions of Eq.~A1! whose initial con-
ditions are given by Eq.~A2!. The LF initial conditions
should be contrasted with those of usual equal time qua
zation:

P~x!5
]L

]~]F/]x0!
, @F~0!,P~x!#d~x0!5 id4~x!.

~A3!

The LF four-momentumPL
m is given as an integral on th

same surface as that specifying the LF commutation r
tions:

PL
m5E d~x1!T1m@FL#d4x5E

x150
T1m@FL#dx,

~A4!

where the energy-momentum tensorTmn is connected to the
Lagrangian in a way that is independent of quantization:

Tmn@F#5
]L

]~]F/]xm!

]F

]xn
2gmnL@F#. ~A5!

Similarly, the conventional four-momentum is defined by

Pm5E d~x0!T0m@F#d4x5E
x050

T0m@F#dx. ~A6!

In the free case~no interactions!, one can show that the LF
and conventional free fields are identical, as are the LF
conventional free momenta:

fL~x!5f~x!, PL f
m 5Pf

m . ~A7!

Constructed in this way, both the LF and conventional fo
momenta act as generators of space-time translations:

@PL
m ,FL~x!#52 i

]FL~x!

]xm
, ~A8a!

@Pm,F~x!#52 i
]F~x!

]xm
. ~A8b!

We note the universal nature of these commutat
relations—they do not depend on the type of quantizat
5-5
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used. For the LF energy operator,PL
0 , and the LF Hamil-

tonian,PL
25(1/A2)(PL

02PL
3), we have

@PL
0 ,FL~x!#52 i

]FL~x!

]x0 U
x3,x' fixed

5
2 i

A2

]FL~x!

]x1 U
x3,x' fixed

, ~A9!

@PL
2 ,FL~x!#52 i

]FL~x!

]x1 U
x2,x' fixed

5
2 i

A2

]FL~x!

]x0 U
x2,x' fixed

. ~A10!

It is seen that bothPL
0 and PL

2 determine evolution in LF
time x1, the only difference being in the variables that a
kept constant.

As the LF four-momentumPL
m is defined on the LF hy-

perplanex150, as indicated by Eq.~A4!, it follows that
it is a functional of FL(0,x)5f(0,x). With the same
being true of the free momentum operatorPf

m , it fol-

lows that PLI
0 (t)[etPf

0
(PL

02Pf
0)e2tPf

0
depends onft(x)

5ePf
0tf(0,x)e2Pf

0t. This observation is at the hea
of LF imaginary time perturbation theory, discussed
Appendix B.

APPENDIX B: LF IMAGINARY TIME PERTURBATION
THEORY

Here we give a brief derivation of perturbation theory f
the fully dressed LF imaginary time propagatorDL given in
Eqs. ~1!. The perturbation theory is based on the followi
operator exponent expansion:

U~t1 ,t2![ePf
0t1ePL

0(t22t1)e2Pf
0t25Tt expF E

t1

t2
PLI

0 ~t!dtG ,
~B1!

wherePL
0 and Pf

0 are the zero components of the LF fou
momentum operator in the interacting and free case, res

tively, PLI
0 (t)5ePf

0t(PL
02Pf

0)e2Pf
0t, andTt is the ordering

operator, as in Eq.~2!, which orderst-dependent quantitie
with respect tot, so that

Tt@PLI
0 ~t!PLI

0 ~t8!#5u~t2t8!PLI
0 ~t!PLI

0 ~t8!

1u~t82t!PLI
0 ~t8!PLI

0 ~t!. ~B2!

Note that bothPL
0 andPf

0 are expressed in terms of the fre
field operatorsf(0,x) on the LF hyperplanex150. Then
by analogy with textbook derivations of perturbation theo
in the imaginary time formalism@14–16#, the Green function
DL of Eq. ~1a! can be written in the form
12500
c-

~Tr e2bPL
0
!DL~t,x!5Tr$e2bPL

0
Tt@ePL

0tf~0,x!e2PL
0tf̄~0!#%

5TrH e2bPf
0
TtFexpS E

0

b

PLI
0 ~t8!dt8D

3ePf
0tf~0,x!e2Pf

0tf̄~0!G J , ~B3!

where Tt orders operators PLI
0 (t8), ft(x)

5ePf
0tf(0,x)e2Pf

0t, and f̄0(0)5f̄(0) with respect tot8,
t, and 0 according Eq.~2!. It is important to note that as a
result of the definition of Eq.~1a!, the interaction part of the
energy operator, PLI

0 (t8), depends on ft8(x)

5ePf
0t8f(0,x)e2Pf

0t8, the free field operators on thex150
LF hyperplanef0(x)5f(0,x), shifted by imaginary usua
time. In the analogous conventional expression given
Refs.@14–16#, the interaction part of the energy depends
the free field operators on the hyperplanet50 ~not x150)
shifted by imaginary usual time. This difference is reflect
in the difference of the imaginary time propagators of t
corresponding perturbation theories. Indeed using Wic
theorem in Eq.~B3! one ends up with imaginary time pe
turbation theory with propagators

DL f~t,x!5~Tr e2bPf
0
!21

3Tr$e2bPf
0
Tt@ePf

0tf~0,x!e2Pf
0tf̄~0!#%,

~B4!

DL f~ ivn ,p!5
1

A2
E

0

b

dt dxei (vnt2p•x)DL f~t,x!. ~B5!

Applying the arguments leading to Eq.~8! to the imaginary

time t52 i t, one getsePf
0tf(0,x)e2Pf

0t5f(z), wherez is a
complex coordinate space four-vector with purely imagina
LF time z152 i t/A2 and real spatial componen
z352x2/A2 andz'5x'. This suggests that the propagat
of Eq. ~B4! corresponds to imaginary LF time ordering,
contrast to the usual time ordering in the conventional
proach. Direct calculation leads to the scalar particle ima
nary time propagator suggested in Ref.@2#,

D0
L f~ ivn ,p!52

1

2pn
2p12m22p'

2
, ~B6!

with pn
25A2ip2nT2p15A2pn

02p1, and the spinor par-
ticle propagator of Eq.~26! derived above. Even in the scala
particle case, the difference between the imaginary time
malisms in the two quantizations is more than a sim
change of variables: although the energy variable is pu
imaginary in both Eq.~B6! and the conventional propagato
p3 is real in the conventional approach but complex in t
LF one. Note also that in the LF dynamics the interacti
does not affectPL

1 . Only the operatorPL
2 acquires an inter-

action part; therefore the interaction part of the energy
erator is PLI

0 5PLI
2 /A2 and in the case of scalar particle
5-6
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~only! it is related to the interaction Lagrangian~without
coupling with derivatives! by a factor of A2: PLI

0 5

2LI /A2.

APPENDIX C: LIGHT-FRONT SPECTRAL FUNCTION

Here we introduce the LF spectral functionrL used in
Eqs.~6!, and specify some of its properties by exploiting t
analogy with the well known spectral functionr of conven-
tional thermal field theory@14#. In coordinate space, one ca
use Eq.~12a!, defining the real time LF propagatorDL(x), to
write

DL~x!5u~x1!DL.~x!6u~2x1!DL,~x!

5u~x1!rL~x!6DL,~x!, ~C1!

where

DL.~x!5~Tr e2bPL
0
!21Tr$e2bPL

0
FL~x!F̄L~0!%, ~C2!

DL,~x!5~Tr e2bPL
0
!21Tr$e2bPL

0
F̄L~0!FL~x!%,

~C3!

and

rL~x!5DL.~x!7DL,~x!

5~Tr e2bPL
0
!21Tr$e2bPL

0
@FL~x!,F̄L~0!#7%, ~C4!
12500
is the LF spectral function defined as the ensemble ave
of the commutator-anticommutator@FL(x),F̄L(0)#7 . The
Kubo-Martin-Schwinger relation is the same as in Ref.@14#,

DL,~x!5DL.~x02 ib,x!. ~C5!

It is easy to express the above equations in momentum sp
thereby obtaining the following relations:

rL~p!5DL.~p!7DL,~p!, ~C6!

DL,~p!56e2bp0
DL.~p!, ~C7!

DL.~p!5@16 f ~p0!#rL~p!, ~C8!

DL,~p!56 f ~p0!rL~p!, ~C9!

which lead to Eq.~6a!. Thex1 ordering in Eq.~C1! ~instead
of conventionalx0 ordering! is reflected in thatp is fixed
~not p) in rL(p) in the spectral energy integral of Eq.~6a!.
To derive Eq.~6b!, one can easily verify that

DL~t,x!5D L.~2 i t,x!5DL.~z!, ~C10!

with z152 i (t/A2), z352x2/A2, andz'5x', if t is in
the interval@0,b#.
@1# S.J. Brodsky, Nucl. Phys. B~Proc. Suppl.! 108, 327 ~2002!.
@2# V.S. Alves, Ashok Das, and Silvana Perez, Phys. Rev. D66,

125008~2002!.
@3# H. Arthur Weldon, Phys. Rev. D67, 085027~2003!.
@4# H. Arthur Weldon, Phys. Rev. D67, 128701~2003!.
@5# J.B. Kogut and D.E. Soper, Phys. Rev. D1, 2901~1970!.
@6# F. Rohrlich, Acta Phys. Austriaca, Suppl.32, 87 ~1970!.
@7# S.J. Chang, R.G. Root, and Tung-Mow Yan, Phys. Rev. D7,

1133 ~1973!.
@8# S.J. Chang and Tung-Mow Yan, Phys. Rev. D7, 1147~1973!.
@9# Tung-Mow Yan, Phys. Rev. D7, 1760~1973!.

@10# E. Tomboulis, Phys. Rev. D8, 2736~1973!.
@11# J.H. Ten Eyck and F. Rohrlich, Phys. Rev. D9, 2237~1974!.
@12# G. McCartor and D.G. Robertson, Z. Phys. C53, 679 ~1992!.
@13# S. Elster and A.C. Kalloniatis, Phys. Lett. B375, 285 ~1996!.
@14# M. Le Bellac, Thermal Field Theory~Cambridge University

Press, Cambridge, England, 1996!.
@15# A. Abrikosov, L. Gor’kov, and I. Dzyaloshinsky,Methods of

Quantum Field Theory in Statistical Physics~Dover Publica-
tions, New York, 1977!.

@16# A. L. Fetter and J. D. Walecka,Quantum Theory of Many-
Particle Systems~McGraw-Hill, New York, 1971!.

@17# A.V. Smilga, Phys. Rep.291, 1 ~1997!.
5-7


