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Equivalence of light-front and conventional thermal field theory

A. N. Kvinikhidze* and B. Blankleidef
Department of Physics, Flinders University, Bedford Park, SA 5042, Australia
(Received 13 May 2003; published 2 June 2004

It is shown that light-front thermal field theory is equivalent to conventional thermal field theory. The proof
is based on the use of spectral representations, and applies to all Lagrangians for which such equivalence has
been proven at zero temperature. It is also pointed out that conventional spectral functions can be used to
express light-front finite temperature free propagators. As an application of our approach, we derive the
light-front finite temperature spin 1/2 fermion propagator in full Dirac space.
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I. INTRODUCTION Il. GENERAL PROOF OF EQUIVALENCE
OF LIGHT-FRONT AND CONVENTIONAL THERMAL
The light-front(LF) formulation of quantum field theory, FIELD THEORY

where quantization arises from equal LF “time”
commutation-anticommutation relations, offers some advan-

tages over the conventional formulation where equal usu% re | L?Lti'nnLFf ;qhuaPtlllzeéjrfleld éhfgﬁﬁanir?er ri?rgcedr to
times are used for quantization. In this respect, perhaps th € calculation ot the fully dresse aginary ime propa-

L . . .
three most often quoted advantages of the LF approach an%atorA given in coordinate and momentum spacé bye

kinematical boosts, a much less complicated vacuum, and>° units wheré =ks=1)
much simpler eigenstates. The last two properties are related a0 _ 2p0 0
and may be especially beneficial for thermal field theory AH(7x)=(Tre” FPL) "I Tr{e T [e"L7¢(0, x)
yvhere the main quect of interest, the ensemble average, is Xefpfqu(o)]}, (13
just a sum over eigenstates.

With such considerations in mind, the problem of formu-
lating the_rmal field theory on the light front has been ad- Ao, p)= ifﬁdeX g@n=PYAL (7 x), (1b)
dressed in a number of recent papgts-4]. In Ref. [2], J2Jo - -
Alves, Das, and Perez proposed the LF version of the imagi-
nary time scalar particle propagator, and used this to calcwhere w,=2n=T for bosons,w,=(2n+1)=T for fermi-
late the self-energy loop diagram. The result of this calculaons, x=(x",x*), p=(p*,p*), xi=(1/\/§) x°+x3), p*
tion looked so different from the conventional one that only=(1/y/2)(p°+p3), p-x=—p x +p*x", ¢(x) is a nonin-
after Weldon[4] made use of a clever transformation of the teracting particle field operatorp(0,x)= ¢(X)|x+-0, and
integration momentum variable did it become clear that thisvhere the energy operatd?E and the operator of some
difference is illusory. physical quantityO, are defined in the LF quantized theory,

In the present note we show that tivbole LF approach i.e., they depend on interacting field operators whose com-
using the imaginary time scalar particle propagator proposethutation relations are given on theé =0 hyperplanesee
in Ref. [2], is equivalent to the conventional one. Our Appendix A for more details The imaginary time ordering
method is based on spectral representations of Green funBroduct in Eq.(1a) is defined as
tions, and can be applied to the case of any Lagrangian for

The problem of calculating the ensemble average

which such equivalence has been shown at zero temperature TT[eP(L)Tgb(O,pe* PETgb(O)]

[5—12. In this respect, we note that the spectral function of 0 0 —

the Lehmann representation is already well recognized as =6(1)e"L"$(0,x)e” "L7¢(0)

being very useful for relating different types of Green func- _ 0 0

tions (imaginary time, real time, advanced, retarded,)etc. +6(—7)(0)e"L7¢p(0,x)e” L7, 2

the conventional approach. Here we show how to use the

conventional spectral function to derive a LF free particlewhere the uppetlower) sign is for the case of bosortter-
propagator of arbitrary spin in either imaginary or real timemions. Note that althoughr is associated with the usual
formalism. This allows us to derive fermion propagators intime, in the sense that it is combined wif{ (rather than
the full Dirac index space.

INote that the correct definition of ensemble average has energy
*On leave from The Mathematical Institute of Georgian AcademyoperatorP? in the exponentiab’ﬂ"f [13] and not the Hamiltonian

of Sciences, Thilisi, Georgia. P_ (see the discussion in Rd&]).
Electronic address: sasha.kvinikhidze @flinders.edu.au 2To distinguish between LF and usual equal time quantization we
Electronic address: boris.blankleider@flinders.edu.au work in the operator rather than path integral formalism.
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with P) in the exponent oéP(L)T, Eq. (2) nevertheless rep- dpy p-(pg.p)

resents the ordering of the interacting fields with respect to  D“(p°,p)=i | — —————=f(po)p"(po.p),

the imaginary LF “time”[see Eq.(8), the discussion below N 2T po—Potin N

Eq. (8), and the text after EqQB5)], in contrast to the usual (63

time ordering in Eq.(3a). It is also important to note that
Eqgs.(1) define the LF imaginary time formalism exactly, and L
in the case of scalar particlésnly), they define perturbation A(lon,p)=—
theory with the free propagator suggested in R2f. As the
perturbation theory for the dressed propagators of Efs.
may not be immediately apparefthe exponents involve the
energy operatoPE rather than the Hamiltonia® ), we spectral  function (defined in Appendix € is,
outline its derivation in the Appendix B. correspondingly,

In this paper we shall prove that the analytic continuation

fd_pépL(pé,g)

2 i‘J"n_p(,) ,

(6b)

where f(py) =(ePPox 1)1 is the distribution function for
bosons(upper sign or fermions (lower sign, and the LF

of the fully dressed LF imaginary time propagator (2)*
A'(iwy,p) to real energied,w,— po, is identical to the ana-  p“(Po.p)= w(liefﬁpo)g e PEns*(p—Py+Py)
lytic continuation of the fully dressed conventional imagi- Tre 7 nm
nary time propagatorA(iw,,p), i.e., that AL(pO,E) —
=A(po.p), where X(Ln|¢(0)[Lm)Lm]$(0)[Ln). @)
0 0 The difference betweep-(p) and the conventional spectral
A(7,x)=(Tre A7) 1Tr{e AP function p(p) [see Eqs(13)] is only in the eigenstatgs m)
00, 0, — of the LF four-momentumP{*|Lm)=PX/Lm),> which are
xXT[e"7¢(0.x)e $(0)]}, (33 gifferent from the conventional onédenoted bym) in Ref.

[14]). However, in the free case there is no difference be-
tween these eigenstates and thus the free LF and conven-
tional spectral functions are identical. The unusual scalar
productp®t— p- x in the exponent of Eq4b) can be written

in the invariant formp®—p-x=p-x’, wherex’ is defined

B .
A(iwn,p>=j0 drdx e PIA (1), (3b)

#(0X) = (X)|y0—0,> and P is the conventional energy op- b
erator. y
We begin our proof by relating\“(i w,, ,p) to the real

time LF Green function: ,_X na_ X N
Xo=—=+t, (X')’=——, (X' )r=x,
DL(t,x)=(Tre‘5PE)‘1Tr{e‘ﬁPE
- » e dtdx=— 2dx’. ®
XT[ePl'¢(0,x)e”PL'p(0)]},  (4a
N Writing
1 N R iPOt —iPOt:(D ’
DL(pO,p)=7 dtdxe PP XDL(t x), el p(0,x)e” TL=d (X'), 9)
P > X X

(4b) one finds thatb, is a LF Heisenberg field operator; i.e., for
any four-vectora,

whereT, is defined analogously to EQ) as

O (x+a)=€ePLadp (x)e Pra (10
TLePllg(0,x)e PLip(0)] with initial condition
= 6(1)ePp(0,x)e PIH(0) ®L(0,%)=(0,%). (11)

— 50 50
+6(—t)$(0)e"L'p(0,x)e'PLl, (5 Given thaty2(x')* =t, T, ordering in Eq.(4a) implies LF
time orderingT ;. , so that Eqs(4) can be written in the form
This is done by utilizing the Lehmann representation, which
can be derived for LF Green functions in a way similar to
that for conventional Green functiorisee Ref[14] for the “We do not show explicit spin indices. For particles with spin, one
conventional case should consider the fielgh as a column vector, the field as a row
vector, and quantities such g5, D", A%, etc., as square matrices,
in spin index space.
3Hopefully no confusion will arise from our not entirely consistent °Here P/ is the operator of the four-momentum in the LF ap-
notation for ¢(0,x) and ¢(0,x); in particular ¢(0x) proach wherea$’, is its eigenvalue corresponding to the state
#$(0,X)] x=x- |Lm).
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EQUIVALENCE OF LIGHT-FRONT AND CONVENTIONA. . ..

D(x) = (Tre AP ~1Tr{e #PLT, [@ (x) D (0) ]},
(12

DL(p)=J d*xeP*D(x), (12b)
with the understanding thatD“(p,,p)=D"(p) and
D(t,x)=D"(x').

The well-known relations, corresponding to the LF Eqgs

PHYSICAL REVIEW D 69, 125005 (2004

whereP?; is the free part oP?, S =U, (,— ), P, is the
LF Hamiltonian, i.e., the negative component of the four-
momentum operator, and

uL(az,al)znexp{ —if”dﬁf:dyag(x)],
' (20

PL(x) being the interaction part of the LF Hamiltonian den-

(6), connecting conventional real and imaginary time Greersity in the interaction representation.

functions via the conventional spectral functigip) are
[14-16

d ! /,
D(po,m:ifZ—T%rf(pow(po,m,
-
i (133
d ! 7'
Aliogp)=— [ S0 LPoP) (13

2 iwn—p(’),

whereD(p®,p) is the conventional real time Green function,
defined as

D(t,x)=(Tre #*°) ~1Tr{e AP’

xT P06 P H(0)]}, (149

D(po,p)zf dtdxe PP OD(t,x). (14b)

For a perturbative treatment the propagator of Eifla
should be written in the interaction representafid], with

d(x)=ePp(0x)e PH=U(01) s(x)U(1,0), (15

D(x)=(Tre #P") "1Tr{e APIS™ 1T 4(x) $(0) S]],
(16

whereP? is the free part oP?, T is the usual time ordering
operator,S=U(«,—»), and

U(ty,ty) =T exp[—ijttzdtfl&xp?(x)]. (17)

P?P(x) being the interaction part of the Hamiltonian density

A. Scalar particles

To compare the dressed real time propagators in the con-
ventional and LF formalisms, given in E(L6) and Eq.(19),
respectively, we first restrict the discussion to the case of
scalar particles. For scalar particleg, andP? are the same
functions of the free field operatos [ 7], which means that
the perturbation theories for E(¢L6) and Eq.(19) have the
same vertices. The inver&matrix in both Eq.(16) and Eq.

(19) leads to free propagators with doubled degrees of free-
dom, i.e., 2<2 matricesDf andD'f whose(1,1) element is
defined by Eq(16) and Eq.(19) in the no interaction limit:

Bl,(x)=D'(x)=(Tre #7%) " 1Tr{e FPIT,[ 4(x) $(0) T},

(213
D (t,x) =D (t,x)
=(Tr e‘ﬁp?)‘lTr{e"BP?
X T [ePTg(0,x)e P 5(0)]}, (21b)

— DLf(XI)
—(Tre FP) " 1Tr{e FPIT.[H(x ) H(0)]}, (210

where x’ is defined in Eg.(8). Similar to the zero-
temperature case, straightforward calculation of HG4)
shows thaDf(p)=D'(p) [see also Eqg24)], therefore the

full propagators constructed according to Ef#6) and Eq.
(19) are equal to each otheR“(p)=D(p), which already
means the equivalence of real time LF and conventional ther-
mal field theories for the scalar particle case. As we shall
now see, this also leads to the identity betweer(p,, p)
andA(pg,p), the analytic continuations of the LF and con-
ventional imaginary time propagators. To define a unique

in the interaction picture. We note the unusual appearancgn@lytic continuation ofA(iw,,p), given for the discrete

(for zero temperature perturbation thepof the inverseS
matrix, S~!, the source of doubled degrees of freeddr|.
An analogous LF interaction representation can be writte
for D%

DL (x)=€PL¥ $(0,x)e P =U (0X)p(x)UL(X",0),
(18

DL(x)=(Tr e—ﬁpf)‘1Tr{e‘ﬁPEfS[1T+[¢(X)$(0)SL]},
(19

values w,=2mn/B, only two requirements have been
needed in the conventional approadh: |A(z,p)|—0 as

r%z|—>oo, and(ii) that A(z,p) is analytic outside the real axis

14-16. Placing the same requirements Ah(py,p), one
obtains a unique analytic continuation of the LF imaginary
time propagator as well. These analytic continuations are
provided by Eqs(6b) and (13b):

dpy  p(Pg.P)

o (228
T Pot17—Po

A(po,p)=—

125005-3
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Ill. FREE PROPAGATORS
dpy p"(Po.p)

AL (22b)
27 po+in—pg

At(po,p)=— : , —
0:E With the help of spectral functions, we will derive the free

propagators of LF thermal field theory, including the spin 1/2
fermion (spinopn propagator in the entire Dirac index space.
EquatingD"(p) of Eq. (6a) to D(p) of Eq. (133 leads to the  |n Ref.[2] it was suggested that the fermion propagator be
identity of the LF and conventional spectral functions, asexpressed in the spinor subspace projected BY
well as to the identityA-(p)=A(p), as the latter are repre- =1~ y*/2. Yet there is clear need for the fermion propagator
sented by Eqs(22). in the entire spinor space, for example, to keep under control
the compensation between differences in vertices and propa-
gators with respect to the conventional approach.
Using the eigenstates of the noninteracting system in Eq.
To apply the above proof to the case of nonscalar par¢7), one gets the spectral functions of the free scalar and
ticles, we note that in the LF approach the components of thepinor particles:
nonscalar field become constrained, and as a result of the
constraints, the interaction part of the LF Hamiltoni&y, , Lfray— oy — 2_ 2
acquires extra terms, so that perturbation theory for the LF 6 (P)=polP)=2me(po)o(p—nm) (scalar, (243
real time propagatoD(x) [Eq. (19)] has extra vertices e ;
compared to that for the conventional propagdd¢k) [Eq.  P12(P)=p1AP)
(16)]. At the same time, the free nonscalar propagators in the _ 2 .2 .
LF and conventional approaches are differsge Eq.(29) =2me(po) (P +m)S(p=—m*) - (spinoy, (24D
for the case of a spinor partidléWithout going into details
here, the general strategy to prove the equivalence of LF and
conventional thermal field theories for the case of nonscalafhere e(p,) =po/|po|. Equations(24) can also be obtained
particles is similar to the one used in the zero-temperatur@om Eq.(C4) by using the well-known free field commuta-
case[5-11]. For example, in models of spin 1/2 fermions tors or anticommutators. Although the free spectral functions
where interactions are given by three-point scalar or pseudare the same in the LF and conventional approaches, the
scalar vertices, equivalence at zero temperature is proved grmion bare propagators are not:
showing that the extra vertices in LF perturbation theory can
be taken into account by simply adding the taérpi /2p* to
the free LF propagator, with the sum being equal to the con- 1/2(9) (¢ +m)
ventional propagatdrFor the same models at nonzero tem-
perature one follows a similar procedure: the extra vertices in

B. Nonscalar particles

—m2+i17

the LF perturbation theory of E¢19) are taken into account B 2 2
by adding the following instantaneous term to the free LF 2arf(|pol) 8(p*=m*) |, (253
propagator of Eq(29):

-7+(1 0) 23 D{Ap)=(p+m)

I . = m

2pt 10 -1 (23 AP D2—mi+ig
This turns the LF propagator into the conventional 2 real =27 (|po|) 8(p?—m?) |, (25b)
time propagator. In this way one can prove the equivalence

of LF and conventional real time thermal field theories for
nonscalar particles described by Lagrangians for which SUCWhereBin Eq. (25a is the on mass shell momentum with

an equivalence has been shown at zero temperature, as do&ﬁnponentsﬁ‘—(p +m?)i2p* anda p, which depend
1 ’ ’

for example in Refs{5-11." The rest of the proof, showing only onp* andp'. This difference arises because different
equivalence of the LF and conventional imaginary time ther-

mponents of the four-momentumare fixed in the inte-
mal field theories, is based on spectral representations a%i) P ol

ol h q ted ab tor th | als of Egs.(6) and(13). A similar difference arises in the
poar(t)ivcvlse caesesame procedure presented above for the sca aginary time formalism where the spinor propagator can

be derived using the same spectral function, given by Eq.
(24b), and the representation of E@b):

5This applies only to internal propagatditsose not correspond- _
ing to an external leg L p+m

"In this respect it should be noted that vector particles need a more Aoy 'B) - 2pp— m2— pz
sophisticated treatme8,9], and equivalence may not mean that n +
the dressed LF propagator is equal to the conventional one as in the
scalar particle case, or even effectively equal to the conventionaivherep, = \/Ei(er' 1)7aT—-p'= \/Epg— p*. When fermi-
one as in the spinor case discussed above. ons are involved the interaction part of the LF Hamiltonian

(26)

125005-4
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has an extra term resulting from resolving constraints, whose P or or
effect is an instantaneous addition of /2p* to the propa- —_— = —=0, (A1)
gatorALL: ax* g(odloxHy  IP
— N quantization enters through the specification of the initial
p+m n Y conditions for these equations. In the case of LF quantiza-
2p,pt—-m?—p? 2p* tion, we specify the initial conditions as

2P (Y P Y P o yipit M) pptm
2p*(2p, p* —m*—p?) pa—m?’

(27)
_ ) wherell | (X) is the momentum conjugate to the field (x),
where p,=p. Equation(27) should be compared with the and the commutation relation betweBh and®, is speci-

i
[@L(0),IT (x)]8(x")= 554(X),
(A2)

I (x)=—"-,
L) D [9x™)

conventional imaginary time fermion propagator fied on the LF surface* =0. Note that we have added a
(¢ fixed) subscriptL to those solutions of EA1) whose initial con-
¢ p+m ditions are given by Eq(A2). The LF initial conditions
Aydion,p)= 02— 2 should be contrasted with those of usual equal time quanti-
Po=i(2n+1)aT zation:

i(2n+1)7Tyg—p-y+m

e napipm 2 )=

ok o
I DI x°)’ [©(0),1T(x)]8(x%) =1 6*(x).

. L (A3)
The difference between E@27) and Eq.(28) is similar to

the scalar particle case in that the replacenghti7(2n The LF four-momentuniP{* is given as an integral on the
+1)T in the zero-temperature propagator is carried out wheisame surface as that specifying the LF commutation rela-
different remaining variablep andp are fixed, respectively. tions:

It is not difficult to derive a spectral representation for the
2X 2 propagators of the real time formalism and to write o FR— 4y _ +
down the analog of Eq7) for the corresponding 2 2 spec- PL= f ST @ Jd™x= ,L+=0T P,
tral function. Then again we will see that the spectral func- (A4)

tion of a free particle is identical for the LF and conventional L
approach. As a result we will obtain the following expressionWhere the energy-momentum tensof” is connecteq to the
for the LF real time fermion propagator: Lagrangian in a way that is independent of quantization:

oL e KLl D] (A5)
A(aD]IxH) X, g '

i 0 TH[D]=
L _ p2—m?+iy
Dya(p)=(p+m) —i Similarly, the conventional four-momentum is defined by
0 -
p?—m?—iy

Pr= f S(XO) T D ]d*x= f To“[®]dx. (A6)
9=0

f(|pol) f(|P0|)—9(—po)) X
—2m(p+m) . .
f(|pol) — 6(po) f(|pol) In the free caséno interactiony one can show that the LF
’ ) and conventional free fields are identical, as are the LF and
X 6(p=—m?), (29 conventional free momenta:
which differs from the conventional one in havipgas the dL(X)=d(x), Pli=Pf. (AT)
on mass shell momentum in the numerator of the first term
on the right-hand side of the equation. Constructed in this way, both the LF and conventional four-
momenta act as generators of space-time translations:
APPENDIX A: LIGHT-FRONT QUANTIZATION ; 0D (X)
As the precise meaning of “LF quantization” appears to [PL.LOOT= X, (A83)
vary in the current literature, here we give the exact sense in
which this term is used in the present paper. It is sufficient to . 9P(x)
consider only the scalar particle case. We follow the tradi- [P*®(x)]= I X, (A8b)

tional formulation of LF quantization. Starting with a La-
grangian densityl[®]=L(P(x),d,P (X)) and the equa- We note the universal nature of these commutation
tions of motion relations—they do not depend on the type of quantization

125005-5
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used. For the LF energy operat®}, and the LF Hamil- 1, o~ 80\ AL, x)=Tr{e BPLT [ePL"(0,x)e PL7(0)
tonian, P, = (1//2)(PY—P}?), we have ( AT (r0=Tr A $(0.9 SO

B
:Trr efﬁP?TT exp{f PE,(T')dT’)
o 0D (X) 0
[P @L(0]= i
ot e xep?f¢<o,z>ep?f$<o>”’ o
_ —io®(x) (A9)
N Bl red where T, orders operators P(7'),  ¢.(X)
—ePi7$(0,x)e”P", and $0(0)=¢(0) with respect tor’,
ID | (X) 7, and 0 according Eq2). It is important to note that as a
[Pl , @ (x)]=—i "+ result of the definition of Eq(l1a), the interaction part of the
X" |- 0 fixed energy  operator, PY,(7'), depends on ¢,(x)
i b () =ePi" $(0,x)e~Pi", the free field operators on the =0
-t (A10) LF hyperplanegq(x) = ¢(0,x), shifted by imaginary usual
N = xL fixed time. In the analogous conventional expression given in

Refs.[14-14, the interaction part of the energy depends on
. +
It is seen that bottP® and P, determine evolution in LF the free field operators on the hyperplare0 (notx™=0)
shifted by imaginary usual time. This difference is reflected

time x*, the only difference being in the variables that are: . ; . ;
kept constant. in the difference of the imaginary time propagators of the

As the LF four-momentunP? is defined on the LF hy- corresponding perturbation theories. Indeed using Wick’s
L . . . . . _
perplanex* =0, as indicated by Eq(A4), it follows that :B?Sa:ﬁ(r)nn '{;150(1'(8\5?&? n(reoegdztgfswnh Imaginary time per
it is a functional of ® (0,x)=¢(0,x). With the same y propag
being true of the free momentum operatBf', it fol-

AY(7,x)=(Tre #Pf)~1
lows that PY,(7)=e"/(PY~ PY)e” "' depends one(x) (mX)=( )

—ePi7$(0,x)e"P1". This observation is at the heart X Tr{e PPIT [T"(0,x)e "1 $(0)]},
of LF imaginary time perturbation theory, discussed in (B4)
Appendix B.
1 (8 )
APPENDIX B: LF IMAGINARY TIME PERTURBATION A (iwy,p)= —J drdxe @R 0AL (7 x). (BS)
THEORY V2Jo
Here we give a brief derivation of perturbation theory for Applying the arguments leading to E() to the imaginary

the fully dressed LF imaginary time propagator given in  timet= —ir, one getggp?qu(o&e* P #(z), wherezis a
Egs. (1). The perturbation theory is based on the following complex coordinate space four-vector with purely imaginary
operator exponent expansion: LF time z'=-i7/{2 and real spatial components

z8=—x"/\2 andz" =x". This suggests that the propagator
of Eq. (B4) corresponds to imaginary LF time ordering, in
' contrast to the usual time ordering in the conventional ap-
(B1) proach. Direct calculation leads to the scalar particle imagi-
nary time propagator suggested in Ref],

where P? and P? are the zero components of the LF four-

momentum operator in the interacting and free case, respec- . 1
P 9 P A5 (iwg,p)=— (86)

71

0 0 0 72
U(Ty,7p)=e"1mePLlra e Pima=T ex;{ f Pl (n)d7

tively, P?,(7) zep?T(PE— PYe” Pi7 andT. is the ordering 2p,p"—m?—p?’
operator, as in Eq.2), which ordersr-dependent quantities
with respect tor, so that with p, =\2i72nT—p"=2p%—p*, and the spinor par-
ticle propagator of Eq26) derived above. Even in the scalar
TP (NP (7)]=60(r— )PP, (7)PL,(7") particle case, the difference between the imaginary time for-

malisms in the two quantizations is more than a simple
+0(7' = )P (7)PL (7). (B2)  change of variables: although the energy variable is purely
imaginary in both Eq(B6) and the conventional propagator,
Note that bothP? and P are expressed in terms of the free p® is real in the conventional approach but complex in the
field operatorse(0,x) on the LF hyperplane™=0. Then LF one. Note also that in the LF dynamics the interaction
by analogy with textbook derivations of perturbation theorydoes not affecP,” . Only the operatoP_ acquires an inter-
in the imaginary time formalisfil4-16|, the Green function action part; therefore the interaction part of the energy op-
A" of Eq. (1a) can be written in the form erator is Pf,z P[ll\/f and in the case of scalar particles

125005-6
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(only) it is related to the interaction Lagrangigwithout
coupling with derivatives by a factor of \2: PP =
APPENDIX C: LIGHT-FRONT SPECTRAL FUNCTION

Here we introduce the LF spectral functigit used in

PHYSICAL REVIEW D 69, 125005 (2004

is the LF spectral function defined as the ensemble average

of the commutator-anticommutatdrd, (x),d(0)]s . The
Kubo-Martin-Schwinger relation is the same as in R&fl],

DL=(x)=D""(x°—iB,x). (C5)

It is easy to express the above equations in momentum space,

Egs.(6), and specify some of its properties by exploiting thethereby obtaining the following relations:

analogy with the well known spectral functignof conven-
tional thermal field theory14]. In coordinate space, one can
use Eq(12a), defining the real time LF propagatbr-(x), to
write

DY(x)=6(x")D""(x) = 6(—x")D"(x)
=0(x")p-(x) =D"=(x), (Cy
where
DY (x)=(Tre ")~ 1Tr{e APld (x)®, (0)}, (C2)

DL<(x)=(Tre~#P))~1Tr{e APl (0) D (x)},
(C3

and
p-(x)=D"7(x)¥D"~(x)

=(Tre FP)) "1 Tr{e APL[d (), (0)];}, (C4)

p-(p)=D""(p)+D"~(p), (Ce)
D-<(p)==e #°D"*(p), (C7)
D~ (p)=[1=f(p%)1p"(p), (C8)
D =(p)==1(p%)p-(p), (C9

which lead to Eq(6a). Thex™ ordering in Eq(C1) (instead
of conventionalx’ ordering is reflected in thap is fixed
(notp) in p-(p) in the spectral energy integral of E(a).
To derive Eq.(6b), one can easily verify that

AY(7,x)=D"7(—it,x)=D""(2), (C10

with z"=—i(7/\2), 2= —x"/\2, andz" =x*, if 7 is in
the intervall 0,83].
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