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Perturbation theory for bound states and resonances where potentials and propagators have
arbitrary energy dependence
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Standard derivations of “time-independent perturbation theory” of quantum mechanics cannot be applied to
the general case where potentials are energy dependent or where the inverse free Green function is a nonlinear
function of energy. Such derivations cannot be used, for example, in the context of relativistic quantum field
theory. Here we solve this problem by providing a new, general formulation of perturbation theory for calcu-
lating the changes in the energy spectrum and wave function of bound states and resonances induced by
perturbations to the Hamiltonian. Although our derivation is valid for energy-dependent potentials and is not
restricted to inverse free Green functions that are linear in the energy, the expressions obtained for the energy
and wave function corrections are compact, practical, and maximally similar to the ones of quantum mechan-
ics. For the case of relativistic quantum field theory, our approach provides a direct covariant way of obtaining
corrections to wave functions that are not in the center of mass frame.
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[. INTRODUCTION is known completely. Thus we seek the ma$g and wave
function ¥ such that Eq(1) with P?=M? is satisfied. A
There is a growing interest in calculations, within a cova-consequence of the complete knowledg&g(P) is that the
riant quantum field theory framework, of changes in themass spectrunMj(n=1,2,3...) andcorresponding wave
properties of bound states and resonances induced by smélinctions® , of the unperturbed equation,
perturbations in the interaction Hamiltonian. The four-
dimensional Bethe-Salpeter equation and its various three- [GEI(P)—Ko(P)]CDn:O, 3
dimensional reductiongso-called quasipotential equations
are the most popular tools in this respect. A current examplg are p2— (M
is the Nambu—Jona-LasinitéNJL) model where the nucleon The task of solving Eq(1) by expressing the mass and
is described in terms of three relativistic quarks interacting, ...« tnction¥ as a perturbation series with respecktp
via contact potentials, and where meson exchange providqg a problem whose solution is well known in the corre-
an important perturbative correctipm]. Another example is sponding context of nonrelativistic quantum mechanics
provided by relativistic calculations of hadronic atoms where given by so-called time-independent perturbation theory

tges strogg itnteratchtionb pertqrbs t?ﬁ Coulomtk_a bo;md IS:E?“ nfortunately the(textbook derivation used to obtain the

_[ t,' l, a? Iyei ano ferl ytvarlous ?_ ir cor(;e(‘:[u;é\s orela IV'quantum mechanical result is restricted to the case where the
inverse free Green functio@, is linearly dependent on

istic calculations of electromagnetic bound stdiéls free G f to@oOlP | ly dependent

The perturbation problem involved in such covariant cal- nergyP, and where the unperturbed kerikg) is an energy-
culations can be formulated as follows. Denoting the total €'Y 0 P 9y

. independent Hermitian operator. Although these restrictions
four-momentum of the system W8, one would like to deter- : o
. ) ; lead to the closure and orthonormality conditions
mine the bound state solution of the equation

12, are known.

[Go X(P)—Ko(P)—K,(P)]¥ =0, ) DoPn=dum, 2 Pry=1, @

where Kl( P) is a perturbation to the unperturbed kernel which are crucial for the derivation of time-independent per-
Ko(P), and where it is assumed that the unperturbed GreeRirbation theory, they are not valid in the Bethe-Salpeter

function G,(P), defined as the solution to the equation case. Indeed none of these restrictions is required in the con-
text of a covariant field theoretic approach. In this paper we

Gu(P)=Go(P)+Go(P)Ko(P)G,(P) 2
For simplicity of presentation we generally do not show spin or
relative momentum variables; similarly, identical particle factors

*On leave from Mathematical Institute of Georgian Academy ofand all sums and integrals over intermediate state variables are sup-
Sciences, Thilisi, Georgia. pressed.
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therefore present a new solution to the perturbation problernnterested in the case whe@,(P) has a pole corresponding
which is valid for any form ofG, *(P) andKy(P); in par-  to a bound or resonance state. Thus we can write

ticular, our solution is valid for the case of covariant field

theoretic approaches whe@;, (P) depends nonlinearly on iq)(p)g(p)
P, and whereK,(P) can be energy R,) dependent. Our Gu(P)=

solution, given in Eq(24) and Eq.(25) for the nondegener-
ate case, and in E43) and Eq.(46) for the degenerate case, _
expresses the mabsof the bound state or resonance and thewhere the wave function® (P) and®(P), the unperturbed
corresponding wave functiodf in terms of compact expres- bound state mass!,,, and the background ter@B(P) are
sions that take into account the perturbation té&mto any  all assumed to be knownln this respect it is worth noting
order. At the same time, our formulation allows us to writethat the pole term of Eq(7) is separable with respect to
the perturbation series for boM and¥, up to any order, in initial and final state variables, thus for a two-body system
a straightforward way which is maximally close to the analo-¢(p)=a (P, p) is a function of the initial relative momen-
gous quantum mechanical formulation. A further importanty,m p while ®(P)=®(P,p’) is a function of the final rela-
aspect of our approa(_:h is that it is manifestly _covarla_nt. Th'sfive momentunp’. Note also, that aB— Py, whereP, is
feature enables the direct use of the perturbation serie¥ for — 5 .

also in cases where the bound state or resonance is not &Y four-vector such tha; =My, the wave function®>(P)
rest. In this way the more involved approach of Lorentzand ®(P) must reduce to the respective solutions of the
boosting wave functions calculated perturbatively in the resbound state equations

frame, can be avoided. As such, our approach to the pertur-

bation problem where no restriction is put on the energy D (P,)=Go(P)Ko(P)P(P);

dependence of kernels and inverse free Green functions, may

provide some important advantages over previous formula- - = — — —
tions[5,6,2. D(P,)=D(Py)Ko(Py)Go(Py). (€))

iz TGP, 7

Il. PERTURBATION THEORY Although ®(P,) and ®(P,) are therefore specified as the
solutions of the above bound state equations, for monfnta
not on the mass shelR?+ I\Aﬁ, there is no unique way to

In this paper we use the framework of relativistic quan-define®(P) [and thereforeP(P)] since any definition can
tum field theory to illustrate our approach to perturbationbe adopted in Eq(7) with an appropriate redefinition of the
theory. Although this is done partly for presentational packground ternGﬂ(P). Here we shall choos®(P) to be a
purposes—it is a particular case where the kernel is energyorentz covariant function of the total momentuf the
dependent and where the inverse Green function is nonlinelative momenta, and the spinor indices of the constituents
early dependent on energy—it is also a particularly topicafje. &(P) is covariant under the simultaneous transforma-
case, as discussed in the Introduction. On the other hand, Weyn of all these variablds The way to construct such a
emphasize that our approach to perturbation theory does ng(p) will be discussed below. Since the full unperturbed
depend on the particular theoretical framework in which thegreen functionG,(P) is a Lorentz covariant function of its
bound state problem is set—it can be that of nonrelativisti/ariables from the outset, the Lorentz covariance of the back-
quantum mechanics, relativistic quantum field theory, threegong termGP(P) is therefore assured.
dimensional relativistic quasipotential equations, etc. Simi-" qnce the perturbatiok(; is included, the massl, will

larly, our approach does not depend on the functional formypis 1o the physical valud and ®(P) will modify to the
taken by the energy dependence of either the kernel or the-. o function (P) where

inverse free Green function. All we need to assume is the
usual overall structure of the dynamical equations involved,
as exemplified by Eq(l) and Eq.(2).

We thus consider the Green function

A. Basic equations

iw(P)W(P) .

G(P)=W+Gb(P). 9)
G(P)=Gy(P)+Gy(P)K(P)G(P), 5 —
(P)=Go(P)+ Gol PIK(PIG(P) ® The wave functionsl (P) and ¥ (P) are likewise assumed

whereP is the total four-momentun, is the fully discon- to be covariant functions which reduce in the lirfit- P,
nected part ofG, and where the kerné{ consists of a part whereP?=M?2, to the respective solutions of the bound state
Ko for which the corresponding Green function is known, equations

and a small parK, which can be treated as a perturbation.
Thus

’Here, for simplicity, we assume that the bound state is
K(P)=Ko(P)+Ky(P), (6)  nondegenerate—the degenerate case is considered in detail in the
next subsection. Also, here and elsewhere, all references to a
and it is assumed that the unperturbed Green fun@ig(iP) “bound state” should be understood to include the case of a “reso-
has been previously determined by solving E2). We are  nance state.”
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W (P)=Gy(P)K(PYW(P), W(P)=U(P)K(P)Go(P). GP(P)=Gy(P)+G(P)K.(P)G"(P). (12

10 N .
. _ . _ (10 Note thatG°(P)+# G°(P) whereGP(P) was defined in Eq.
To write a perturbation series f@, we expres$ in terms of  (9). From Eq.(12) it follows that

the known unperturbed Green functi@y, through the equa-

tion (1+G°K,) "1GP=Gy, (13)
G(P)=Gy(P)+Gu(P)K1(P)G(P), (11 where we have dropped the momentum arguments for con-

which follows from the fact thaG1=G; K andg,t  emence. Similarly Eq(Ll) implies

=G, '—K,. By iterating Eq.(11) we obtain a perturbation G(1+K,G) 1=G,. (14)

series forG(P) with respect to the perturbatio;(P).
What appears more difficult is to find a corresponding per-Subtracting the last two equations, we obtain
turbation series for the mass and wave functionV. Yet if o
one closely examines the structure of the above equations, it D
can be discovered that a mathematically similar problem was G(1+K;G) 1= (1+G"Ky) 'GP=—
solved long ago by FeshbafR] albeit in the rather different P*=Mj
context of nuclear reaction theory. Indeed there are a number
of other contexts where analogous problems have bee?ind therefore
solved, the case of mass and vertex renormalization in pion-
nucleon scattering being particularly noteworfl8}. In the
next section we therefore use the method of Feshbach to i D
derive the solution of our covariant perturbation theory prob- =(1+ GbKl) ARy
lem. —My

(15

(1+G"K,)G-GP(1+K,G)

(1+K,G).  (16)

B. Solution Thus

In this subsection we derive expressions for the bound

state wave functiongV’, ¥, and the bound state masé G=GP+ 5 >
corresponding to the full kerné{ of Eq. (6). Although our P=Mj
goal is to formulate the covariant perturbation theory for this _
problem, we in fact derive expressions fr W, andM that ~ which can be solved fo (1+K,G) by writing
are exact with all orders oK, being taken into account. . o
Starting from these exact expressions it is then trivial to gen- & (1+K,;G)=d(1+K,GP)
erate all terms of the perturbation series. To present our so- _ _
lution it will be convenient to discuss the cases of hondegen- DK (1+GPK)idP(1+K,G)
erate and degenerate states, separately. + p2_ M2

u

1. Nondegenerate case (18

(14 GPK,)i DD (1+K,G)

: (17)

In the nondegenerate case, to each unperturbed bound
state mas# , there corresponds a unique bound state wavé!
function®. The unperturbed Green functi@,(P) then has — b -1
the “pole plus background” structure, as given in E@). <I—>(1+K G)=|1- 1P(K 1 +KGK P 5(1+K Gb)
Having in mind that the full Green functio®(P) has a 1 p2—M2 =
similar structure to that given in EQ), and that our goal is (19
to relate the quantities in these two expressions, we begin by
introducing a “background” Green functioB”(P) defined Using this result in Eq(17) we obtain the result we are
as the solution of the equation seeking:

d then

_ i y(P)y(P)
PZ—M2—i®(P)[Ky(P)+Ky(P)GP(P)K,(P)]®(P)

G(P)= +G°(P), (20)

where the functiong/(P) andZ(P) are defined by

Y(P)=[1+G (P)Ky(P)]®(P), (21)
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WP)=D(P)[1+Ky(P)G(P)]. (22
A comparison of Eq(20) with Eq. (9) shows that? (P) = VZ#(P), and W (P) = Z(P), where

Z= - - ' (23)
1=i{®(P)[K1(P)+K1(P)G(P)Ky(P)]P(P)}’

p2—p2=\2

with the prime indicating a derivative with respectRd, and  be calculated perturbatively. To illustrate this, we consider

- the determination of a scalar bound state wave function
M2=Mﬁ+i<D(P)[K1(P)+Kl(P)Gb(P)Kl(P)](ID(P). W (P) to first order in the perturbation. Showing explicitly
(24) one relative momentunp in addition to the total on-shell

In this respect it is worth noting that because all our WavemomentumP, we first write the perturbed wave function as
) ) . a boosted wave function at rest:

functions and Green functions are Lorentz covariant, the

quantity in the curly brackets of ER3) [which also appears

in Eq. (24)], is a Lorentz scalar depending only &3.

Thus, in the nondegenerate case, the properly normalized

W(P,p)=S, W(L,P,Lp)=S, Wo(Lop), (28

wave functions for the full perturbation theory are where L, is the boost Lorentz transformationl. ,P
=(M,0), S, is the associated transformation matrix acting
\P(E):(l—i{d_D(E)[Kl(E)JrKl(s) on the spin indices of the constituents, awg(q) is the
L . bound state wave function at rest. The next step is to calcu-
X GP(P)K(P)]®(P)}') %2 late Wo(q) to first order in the perturbation®,(q)=(1
R — _ +71)®Po(q), where the first-order correction factay, is
X[1+G (P)Ky(P)]®(P), (25  given explicitly in Eq.(57). Thus
¥(P)=d(P)[1+K,(P)G(P)] W(P,p)=S. (1+ 7)Po(Lop). (29
X (1= i{®(P)[Ky(P)+Ky(P) Since L, is a function of the unit vectorn=P/M

=(\P?*+M?,P)/M, and therefore oM, and because we
needW¥ (P,p) up to first order, the maskl should be ap-
We note that these wave functions satisfy the normalizatioffroximated up to first order in the perturbation. Denoting the
condition first-order perturbation correction 2 by &, [given explic-

ity in Eqg. (53)], the approximation n(M)~n(M,
IG~H(P) + 64/2M ) should thus be used in E9) with a subsequent

T‘I’(P) =1 (27)  expansion of the resulting (P, p) up to first order ind;. If
P=pP admixtures of higher-order corrections were acceptable, then
this last expansion could be neglected.

2. Reference frame dependence of the wave functions In what follows we show a more straightforward way to

As far as we know, all previous attempts at developingobtain the perturbed wave functioh(P) whenP+#0. For
perturbation theory for relativistic systems have consideredhis purpose we shall requi®°(P), which determines the
bound states only at reg¢see e.g. Ref[5]). On the other wave function via Eq(25), to be Lorentz covariant; that is,
hand, for observables involving scattering off the bound statgve would like it to transform kinematically under any Lor-
(e.g. electromagnetic form factorsaking into account the entz transformationL of the momenta involved, as
total momentum dependence of the bound state wave fun@b(P;p’,p)=SLGb(LP;Lp’,Lp)SI wherep andp’ are the
tion is important. In the relativistic case there are somenitial and final relative momenta. In order for this to be
subtleties in the determination of this dependence perturbasatisfied, G2(P;p’,p) should also be Lorentz covariant in
tively and at the same time in a manifestly covariant way.view of Eq. (12). Using the definition(7) for G2(P;p’,p)
One possible way to do this is to derive the wave function tione can see that the unperturbed wave functiafP,p)
the needed order in the rest reference frame, and then #hould also be a Lorentz covariant function under any Lor-
boost it in order to give it the desired momentum. There arentz transformatioh. of P andp.
two disadvantages to this approach: one is that it involves Thus the essential problem is a practical one: how to con-
two separate steps—the perturbation expansion and thgruct a wave functiod (P, p) that is Lorentz covariant, and
bogsting. The second disadvantage is that the unit vector which satisfies the bound state equatifirst of Egs.(8)] for
=P/M, which determines the boogt4], itself may need to anyP such thatP?= Mﬁ. For this purpose it is useful to have

XGP(P)K4(P)]D(P)}') 12 (26)

iw(P)
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a separate notation for the bound state wave functions, so to
this end we denote byD(Pu,p) all the solutions of the 'E @ ‘b i(P)
bound state equatioffirst of Eqs (8)] for which the total G,(P)=

momentumP has the propert}*‘”u M2 We then note that

one cannot simply defineb(P,p)= ®(P,,p) where P As for the nondegenerate case, we shall assume our wave
=(Po,P) andP,=(\/P?+M?,P), so that®(P,p) does not  functions to be covariant but not dependentRén The wave
depend orPo—such ad(P,p) cannot be Lorentz covariant functions ®; are, by the assumption otfold degeneracy,
since a Lorentz transformation will change this function tolinearly mdependent Applying this fact to the pole structure
S.®(LP,Lp) which will necessarily depend on th@rbi-  of the identityG,G, 'G,=G,, we obtain the normalization
trary) value of P, (the three-vector part df P depends on condition for these wave functions:

Po).

ARV +Go(P). (33

u

To make progress, we note that the bound state wave — G, 1(P)
function ®(P,p) is covariant under the transformatiéh, I iT i = Sij - (34
—LPy, p—Lp: P=P,
~ ~ Equation(33) can be written exactly as E¢7) with ® now
O(Py,p)=S.P(LPy,Lp). (30 defined to be a row matrix whose elements aredhe
Since this is true forany four-vector P, satisfying P2 CDE((Dl e, Pz ... ‘Dr), (35

=M2, it will certainly be true for the four-vecta P/\/_z
where P is arbitrary. Thus, if we define wave function with > > _being the corresponding column matrix with ele-

®(P,p) as ments®;. With this redefinition ofd and ®, the above
derivation for the nondegenerate case remains valid up to

M P and including Eq(22). In this way we obtain, for the degen-
®(P,p)= @ P (31)  erate case, that
\/_
G(P)=iy(P)A Y(P)y(P)+G"(P), (36)

it immediately follows that
where ¢ and  are row and column matrices defined by

®(P,p)=S.®(LP,Lp), (B2 elements
which is the statement that wave functi®{P,p) is Lorentz z//j(P):[1+Gb(P)K1(P)](I)]-(P),
covariant in the way we need. In this way we have con- B
structed a wave functiod (P,p) that satisfies the sought- ¢j(P)=d>j(P)[1+Kl(P)Gb(P)], (37)

after Lorentz covariance, while at the same time reducing to

the bound state wave funCtIGh(Pu ,p) asP—P, [in fact  respectively, and\ is anr Xr matrix whose elements are
®(P,p), as defined by Eq(31), is the bound state wave

function with total momentunM ,P/\/P?]. By choosing the A (P)=(P?—M2)5. —id,(P)
form of ®(P) given in Eq.(31), we guarantee that E?) is . v
expressed in a manifestly covariant way. The immediate con- X[K1(P)+K1(P)GP(P)K(P)]®;(P). (38)

sequence of this is that the exact wave functib(P) is

given, up to a scalar normalization, in a manifestly covarianiVe are interested in the massdédor which the Green func-
way by Eq.(21), and so is each term in E¢56) correspond-  tion G(P) of Eq. (36) develops a bound state or resonance
ing to any order of perturbation theory fdr. The same is pole. This will happen when the determinant of mati¢e)
valid for the denominator of Eq20), Eq. (24) for the mass, becomes zero. This, in turn, can be determined by finding the
and the expression for the renormalization constag). If ~ matrix S(P) which diagonalizesA(P). With S(P) deter-
instead we had choseh(P) to transform differently from mined, we have that

Eq. (32), even the fact that the solution of E@4) does not

depend orP would be hidden. D(P)=S"%(P)A(P)S(P)

DyP) O o - 0

3. Degenerate case
0 D,(P) 0 cee 0

In the degenerate case there is more than one soldtion
of the unperturbed bound state equation, @B}, for a single = 0 0 DaP) - o |,
unperturbed bound state maegk,. Assuming arr-fold de- : : : :
generacy, we denote such wave function solutionsbas 0 0 0 . D.(P)
wherej=1,2,3 ... r. In this case the pole structure of the '
unperturbed Green functioB,(P) is easily seen to be (39

076003-5
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G(P)=iyS(P)D *(P)y*(P)+G"(P), (40 M2=M2+idS(P))
where X[Ka(Py)+Ky(P)G(P)Ky(P) 1{(Py),
(43)
Dij(P)=(P2—~M2)5; —idS(P) with P; being any momentum satisfyirng?=M?, and the

functions ®(P) and ®7(P) being the jth elements of

®S(P) anddS(P), respectively.
(41) Taking into account the diagonal nature(P), Eq.(40)
can be written as

X[K1(P)+K1(P)G(P)Ky(P)]®Y(P),

yS(P)=y(P)S(P), ¢(P)=S"YP)y(P), (42
G<P>=i2i YJ(P)D; (P Y(P)+GP(P). (49

with similar_definitions holding for®S(P) and ®%(P). Thus, assuming that the perturbed bound state rvasss
Since deD(P)=1I;D;(P)=0, the Green functionG(P)  jiself nondegenerate, we can find its corresponding wave
will have poles aP2=Mj2, j=123...r, whereM;isthe function ¥; as in the nondegenerate case aboWe;
solution of the equation =Z;y(P;), where

1
ZJ= . _S b S N (45)
1-iH{P7(P)[K1(Pj)+ Ky (PG (P K (P)]P7(Pj)}

Thus, in the degenerate case of the unperturbed theory, the - 52
properly normalized wave functions corresponding to the K=K+ 5Ki+§KZ+ (49
(nondegenerajéound state magdd ; of the full perturbation '
theory are
_ S ~ , 8,
V= V1 GUPIK(PYIORPY,  48) Gh-Gltacl + 260, (50
W= VZ;®(P)[1+K(P)G(P))]. (47)
where

4. Comments

The main results of this subsection are the expressions for
M2 and ¥ given in the nondegenerate case by E) and 6=M?—M?2 (51)
Eqg.(25), and in the degenerate case by Et) and Eq.(46),
respectively. Not only are these expressions exact and com-

pact, but they can also be easily used to write down theind each term without a tilde is evaluatedR#=M?, we

explicit perturbation series for these quantities. For this purcan immediately writeM? as a perturbation series with re-
pose it is most convenient to treat all functionsPoéis func-  spect to orders oK,=K,(M):

tions of P2 and the unit four-vecton=P/\/PZ, and at the

same time to use the covariant form for the unperturbed

wave function given by Eq(31), since thend will not de- M2=M2+ 8+ 8+ S5+ . . .
pend onP?. For example, in the nondegenerate case, to gen-

erate the perturbation series fid® we use Eq(12) to write

Eq. (24) as an infinite series where

+R,GOR BRG], (48) o1 =1PK D 63

where a tilde ovelK; or GB indicates that this quantity is — ) b
evaluated aP?=M?2. By making Taylor series expansions 0,=1®[ 6K+ K G Ky P (54

076003-6
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5% nondegenerate cases, the main calculational effort would be
S3=i dj[ S8,K 1+ ?K’1’+ 81(K,GPK )’ in solving Eq.(12) for the “background” Green functioG®.
Yet this is an especially simple equation, of standard
Lippmann-Schwinger form, wher&® has no pole atP?
+K1GBK165K1}‘D (55  =M? andG? has no pole aP?=M? (since they have been
subtracteg) and where there are no singularities in the inte-
etc. gration over momenta. Even in the unlikely event tﬁiﬂ
Similarly, the wave function of E¢25) can be written as happens to have an unsubtracted pole close’te M?, this
a perturbation series in orders kf: case can be easily handled numerically. Finally, it is useful to
note thatG" has already been constructed for the important
V=(1+n+ntn+...)0, (56)  case of the nonrelativistic Coulomb problem by Schwinger
[11]—a result that can be easily adapted to the relativistic
where Coulomb cas¢?2].
1 b
n= §A1+ G K, (57) Ill. DISCUSSION AND SUMMARY
In this work we have presented a general formulation of
1 3., b, <, b perturbation theory applicable to bound states and reso-
M2~ §A2+ §Al+ 61(G K1)+ mG Ky (58 hances where the bound state equations involve kernels and
inverse free Green functions that have an arbitrary energy
1 15 dependence. Our formulation is thus directly applicable to
73= 5 A3+ ZA1A2+EA§+(52+ 81171)(GKy)' the important case of relativistic quantum field theory. One
can consider our results as extending the well-known time-
1, o ) independent perturbation theory of quantum mechanics to
+501(GUKY)"+ 172G Ky (59 the case where the kernels are energy dependent and where
the inverse propagators are nonlinear in the energy.
etc., where); is derived froms; by putting an extra deriva- In particular, we have derived expressions for the bound

state(or resonancemassM and wave function? of a sys-

tem whose interaction kerndd consists of a park, for

which the corresponding Green functi@, is known, and a

partK, which plays the role of a perturbation. Our results for

— M and ¥ are contained in Eq(24) and Eq.(25) for the

Ap=i®[ 8K +(KiGIK,) 1P (61)  nondegenerate case, and in E43) and Eq.(46) for the

degenerate case, and have the feature that they are exact,

. . 01 . b, » with the perturbatiorK; taken into account to all orders. The

Ag=id| 5K+ EKl +61(KiGKy) key element in these expressions is the Green fund@ibn

which needs to be found by solving Ed2). For sufficiently

tive on eachK,; andG®; that is,

N (60)

, smallK, Eqg.(12) can be solved simply by iteration, in this
+(KiGK1GKy) }q) (62) way generating a perturbation expansionkin that is the
analogue of the time-independent perturbation theory of
etc. guantum mechanics. On the other handKif is not small
A similar procedure can be used to generate the perturbanough to generate a convergent perturbation serie$,1Eq.
tion series for the degenerate case. could still be solved by standard numerical techniques for

It is worth noting that the perturbative corrections to theintegral equations.
bound state wave function, as derived here, are particularly As far as we know, our formulation of the perturbation
important to take into account when calculating correctiongheory problem is new. However, there are a few alternative
to vertices(electromagnetic, axial, ejcwithin constituent formulations available in the literature, all presented for the
models. It is only by taking into account the appropriateparticular case of relativistic quantum field theory. The first
order of wave function perturbation exactly will symmetry of these is a method where the perturbation serieMfoand
properties, such as, for example, gauge invariance, be pr& are expressed in terms of contour integrals. Originally
served at each order in the vertex correction—for a concretdeveloped by Kat¢9] and described in Messiah’s standard
example, see Ref10] where Eq(57) was used to determine text [12] for the case of quantum mechanics, the contour
the full lowest order pionic correction to the nucleon vertexmethod was extended to the covariant case by Lepage
function in the NJL model. and used, for example, by Muraf®3]. Another method, of

It is also worth pointing out that in the case where theBodwin and Yennid6], is closest in spirit to our approach,
perturbationK ; is too large for a perturbative treatment, our but does not have the feature of having closed expressions
expressions of Eq24), Eq.(25), Eq.(43), and Eq.(46) may for the perturbed mass and wave function. A third approach
still be useful for performing practical nonperturbative cal-is the recent formulation of Ivanogt al. [2] whose pertur-
culations ofM? and¥. Indeed, in both the degenerate andbative expansion is expressed in terms of a certain “relativ-
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istic generalization of a projection operator.” In this ap- being considered By contrast, our approach has enabled us
proach the second derivative of the inverse free propagatoto write expressions for the bound state wave function cor-
62G51/&E2, looks very much like a genuine and necessaryrections that are Lorentz covariant at each order of the per-
relativistic feature, yet it does not appear in our formulationturbation, thus avoiding the step of boosting from the rest
at all and is thus just an artifact of the particular derivationframe. Although all perturbation expansions must math-
used. Similarly, the expression for the lowest-order waveematically be identical, it is evident that the expressions pro-
function correction derived directly from E¢Q) of Ref.[2] vided by our Eq(24), Eq.(25), Eq.(43), and Eq.(46) are the

contains four terms against our only one. simplest both practically and conceptually.
In each of the above three alternative approaches, pertur-

bative corrections to the bound state wave function were de-

rived only for the special case where the bound state is at

rest. Thus, in order to describe a scattering process where the
bound state has nonzero total momentum, such wave func- We would like to thank A. G. Rustesky for fruitful discus-

tion corrections need to be modified by the appropriate Lorsions. This work is partially supported by the Engineering
entz boost(that itself depends on the order of perturbationand Physical Sciences Research CoufigiK.).
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