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Abstract. SPECTOR3D is a magnetohydrodynamic (MHD) code designed to study
the resistive stability andmode spectrum of stellarators. It finds the spectrum of the
linearized, compressible, resistive MHD equations. Some typical results are given
for a tokamak model with toroidal field ripple and a 17-period Heliotron.

1. Introduction
We describe a code, SPECTOR3D, for the study of the stability and spectrum of
compressible resistive magnetohydrodynamic (MHD) perturbations in stellarators.
The code has been checked for ideal cases against the standard benchmark Large
Helical Device (LHD) equilibria of Nakamura et al. [1]. This code is designed to
find the spectral properties (particularly for the unstable modes) of stellarators. A
version of Variational Moments Equilibrium Code (VMEC) and a Boozer coordinate
mapper based on a module in the TERPSICHORE code provide the equilibrium
data to the stability code SPECTOR3D, which uses the Jacobi–Davidson technique
[2, 3] to find a range of spectral properties.

2. Code formulation
The equations solved for the compressible case are the linearized MHD equa-
tions with appropriate normalization: the factor η = S−1 is the inverse magnetic
Reynolds number (Lundquist number). In the following the capital letters refer
to the equilibrium magnetic field B and pressure P and the lower case letters to
the perturbed magnetic field b, velocity v and pressure p. The normalized density
profile, ρ∗ = ρ(r)/〈ρ〉, can account for variations in plasma density across the radius.
The ratio of specific heats, γ, is usually set to 5

3 , but it can be chosen arbitrarily.
In particular, if γ is taken to be very large, the incompressible limit can be approx-
imated. Thus, we have

ρ∗ ∂v
∂t

= (∇ × B) × b+ (∇ × b) × B− ∇p,

∂p

∂t
= −v · ∇P − γP∇ · v,
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with ∇ · b= 0. To satisfy this last condition the magnetic field is written in terms
of the vector potential b= ∇ × a. Ampere’s law (integrated once) thus becomes

∂a
∂t

= v× B− η(∇ × ∇ × a).

Boundary conditions are given by the imposition of a conducting wall at the plasma
edge, and analyticity at the origin.
The code VMEC is used to find numerical stellarator equilibria, and an ex-

ternal program is used to convert this equilibrium into Boozer coordinates. The
equilibrium is then interpolated on to the stability grid using cubic splines of
appropriately scaled equilibrium quantities, to account for any singularities at
the origin. The magnetic vector potential is expressed in term of its covariant
components and the velocity in terms of its contravariant components; seven scalar
variables (v1, v2, v3, p, a1, a2, a3) represent the physical quantities (v, p, a), which are
discretized radially using finite elements, and poloidally and toroidally using Four-
ier components. A divergence-free and sufficiently smooth finite element scheme is
ensured by representing v1, a2 and a3 by cubic spline functions, and v2, v3, p and
a1 by quadratic Hermite polynomials. The algebraic complexities were assisted
by using Mathematica to output the matrix elements in a form which could be
directly inserted into a Fortran code. Integral forms of the linearized resistive MHD
equations are expanded using the finite element representations and the resulting
coupled equations are reduced to matrix form: the overall formulation which is
similar to the two-dimensional resistive code CASTOR [4]. The code has been
tested using some analytical one-dimensional results [5], two-dimensional Solov’ev
equilibria [6] and LHD model equilibria [1, 6, 7].

3. Some results
3.1. Toroidal ripple

We have investigated resistive ballooning modes in a model tokamak system with
toroidal field ripple as shown in Fig. 1. The rotational transform profile is ι ≈ (0.80−
0.75ψ+0.22ψ2), where ψ is the normalized toroidal flux. In this case the modes are
toroidally localized in the region of bad curvature. Perturbation components with
toroidal mode numbers n = 1, −4, 6, . . . are considered, and a range of m is chosen
so that the field-line-resonant components have n = 1. The most unstable mode is
then at relatively small wavenumber.

3.2. A 17-period Heliotron

We consider the stability of a two parameter family of 17-field-period Heliotrons.
The shape of the plasma boundary is specified in VMEC coordinates: the position
of the plasma boundary is parameterized by angles θ, ζ and expressed in cylindrical
coordinates R,Z, ζ with R =

∑
RM,N cos(mθ−nζ) and Z =

∑
ZM,N sin(mθ−nζ).

The rotational transform arises in the model Heliotron due to the m = 1/n= 17
components which produce the helical twist: we chooseR1,17 = ε andZ1,17 = −1.05ε.
The vacuum rotational transform is dependent on ε, with ι ≈ ιε(0.286 + 0.714ψ),
where ψ is the normalized toroidal flux. We then introduce a strongly peaked
toroidal plasma current into these configurations, with J = J0(1 − ψ)4, with the
pressure gradient profile still constrained to be zero. For a range of ιε and J0

we consider perturbations in the n= · · · −16, 1, 18 . . . toroidal mode family, with
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Figure 1. A tokamak-like equilibrium with a strong toroidal field modulation with toroidal
mode number n=5 and the mode structure, plotted against flux coordinate (horizontal) and
poloidal Boozer angle (θ), for various toroidal Boozer angles (ζ). The maximum displacement
is at the edge of the section with largest minor radius (ζ =π/5). We could expect the
dominant poloidal mode m to be approximately n/ι, which starts from about 7 for n=6.
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Figure 2. Kink mode (m=1, n=1 dominant; bars) and resistive tearing modes (m=2,
n=1 dominant; diamonds), showing relative growth rates for varying vacuum rotational
transform ιε (measured at the plasma boundary) and plasma current generated transform
for a 17-period Heliotron and the growth rate of an m=2/n=1 tearing mode as a function
of S. The straight line shows the predicted asymptotic dependence λ ∝ S−3/5.

poloidal mode numbers chosen so that only the components with n = 1 are field-
line resonant. (Note that a mode family consists of groups of n values differing by
integral multiples of the number of field periods [8]). Figure 2 shows the tearing
and internal kink modes resolved by the code.

4. Conclusion
The code SPECTOR3D has been developed to calculate the spectrum and, in
particular, the most unstable mode for resistive MHD modes in stellarators. The
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two applications described in the paper are the first steps in a numerical survey of
the nature of global resistive MHD stability in stellarators.
In the first application, a Heliotron test case, current-driven tearing modes are

found only in configurations with very small vacuum transforms. It is possible that
stellarators in general will not be found to be strongly unstable to global tearing
modes. The second investigation, of the toroidally modulated Tokamak, demon-
strated that toroidal localization of global resistive MHDmodes can occur. Toroidal
localization is expected from local stability analysis, but it is still interesting to have
resolved this effect in a global code.
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