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for example), situations in which this relative motion results
in significant over-exposure of critical organs must be
avoided. More advanced 4D deliveries should aim at using
motion as another degree of freedom available for sparing
critical organs. Temporally optimized DMLC tracking is a
promising tool to investigate in this context.
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Abstract
Poincare indices are usually applied to HRV to summarise long data sets collected over 24 hrs. Many applications of
HRV are interested in dynamic, short term changes «lmin). This study uses Poincare indices published through the
1990's to the present, to determine which of them are correlated over the short term (25 beats). Dynamic changes were
observed in 12 subjects pre-operatively receiving fentanyl and midazolam sedation with ECG collected for 5 mins
before and 5 mins after fentanyl administration. Poincare indices with a strong correlation (r>0.85) between the indices
for each of the 12 subjects (p<O.OO 1) (particularly with the common measures SDNN, RMSSD, pNN50 and meanRR)
were identified. These indices will not be used for further investigation of dynamic effects of fentanyl and midazolam,
two sedative drugs used in anaesthesia and intensive care. Indices that proved less suitable for short term analysis
(eg. presence of outliers, inability to produce a valid index with smaller number of beats) were also identified. A
shortlist of Poincare indices that do not con"elate strongly with commonly used measures may prove interesting in
determining dynamic characteristics of the effect of sedative drugs on autonomic nervous system activity.

Figure 1. Typical Poincare plot (subject 3) for J() mins ol R-R
intervals. Legend: x=baseline, o=fentanyl administration,
+=post-fentanyl.

Key words Poincare plot, heart rate variability, HRV,
fentanyl, sedative

Introduction

Poincare plot is the common name used for a scatter plot to
analyse heart rate variability (HRV) where the time
between R-waves on an ECG, the R-R interval (RR!) is
plotted against the succeeding RRI. A typical plot can be
seen in Fig 1. Traditionally, Poincare plots are made with
data collected over 24hrs l

-
6 or 12 hrs7

. Shorter time periods
have also been used more recently: 5-20minsx-13

, and
<2mins 14.15.

Many indices have been developed to characterise the
nonperiodic behaviour of HRV displayed in Poincare plots,
particularly with 24hr data, and these have been compared
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Figure 2. A. Portion oltypical data set (subject 3). B. Poincare
plots/or each subset ol25 RRI.
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Indices
A survey of published methods of Poincare analysis

with literature from the 1990's to the present day
(Table 1)25 found 48 indices applicable for short period
HRV analysis. Indices not used were those using patterns,
3D, and density indices 1.2·6.

In addition to the surveyed Poincare indices, three
statistical time-domain indices (SDNN, RMSSD and
pNN50), and an index of sympathovagal balance (mean RR
interval 18

, meanRR) were used to analyse the same data set:
12 subjects undergoing fentanyl and midazolam sedation.

with known markers for autonomic nervous system activity:
time-domain, and spectral power indices.

The time-domain indices are well described and
extensively used as markers of autonomic system activiti 6.
SDNN, the standard deviation of the RRI, reflects all cyclic
components responsible for variability, the variance being
mathematically equal to total power of spectral analysis.
RMSSD, the square root of the mean squared differences of
successive RRI, is a purely vagal index. pNN50, the
proportion of intervals greater then 50 ms, is used as a
reliable marker of vagal activity 17. Furthermore, the RRI
itself is an index of sympathovagal balance 1X

.
19.

This study will compare these common measures of
HRV with the published Poincare indices. Indices which do
not correlate strongly with commonly used measures may
be useful in investigating dynamic and short-lived changes
to HRV, such as those that occur during exercise~o and
fentanyl and midazolam sedation.

This study uses the dynamic effect of fentanyl on HRV
to assess these indices. Fentanyl is a well-known depressor
of the respiratory system, heart rate, and HRV power.
Fentanyl was used because of its lipophilic nature; it enters
the brain rapidly after intravenous injection. Contradictory
results have been reported regarding the effect of fentanyl to
cause a shift to increased parasympathetic dominance21-~4.

This study will determine indices that may be useful in
further analysis of the effect of sedative drugs on autonomic
nervous system activity.
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Table 2. Slllnmmy ofpatient data.

F M Total
n=lO n=2 n=12

Mean (SD) Mean (SD) Mean (SD)

Age 40.5 (14.3) 36.0 (25.5) 39.8 (15.1)

Weight 75.6 (12.3) 93.0 (5.7) 78.4 (13.2)

Subjects
Ethics approval for the study was given by Flinders

Medical Centre Ethics Committee. Consenting subjects
were recruited if they were scheduled for minor surgical
procedures, aged between 18 and 80 years, weight 40-120
kg, with a low frequency of ventricular arrhythmias « 10
premature complexes/hr), no recent history of cardiac-rate
controlling drugs, and no clinical signs of peripheral
neuropathy. They were studied in the ten minutes before
anaesthesia was induced. Before testing they had been
supine for at least l5mins, however, they were not all
relaxed. As could be expected before surgery, they were
often anxious. Baseline ECG, Sp02 and spirometry was
recorded (Datex-Ohmeda AS/3 Anaesthetic monitor with
S/5 Collect) for 5 minutes then a standard dose of
midazolam (2.5 milligram) was given, followed by a
randomly selected bolus of fentanyl (50, 75, 100 or 150
microgram). A further 5 minutes was then recorded.
Oxygen was administered by facemask throughout.

Data collection
The analog ECG, lead 11 (Hewlett Packard 78353B,

CA, USA) was digitised at 1000 Hz with 12 bits resolution
(N16035E DAQ, National Instruments Corp, TX, USA)
and stored (LabVIEW, National Instruments Corp, TX,
USA) for off-line analysis.

Analysis of the data was performed using custom
software"developed for this study on a PC using MatLab
(The MathWorks Inc., Natick, MA, USA). The ECG R­
waves were identified by whichever of two methods
produced the least artifacts: simple threshold or mean of
backward differences26

. Artifacts were automatically
identified if the RRI was more than 30% from the mean
RRI and then visually verified and corrected to the actual
ECG R-wave peak. The few remaining artifacts were
visually identified and manually corrected.

Data analysis
The indices were measured over data sets of 25 beats.

This window size was selected as a trade-off between a
small window size that captures dynamic changes, and the
ability to generate meaningful indices from the number of
beats. This provided at least 26 observations for each
subject (some data sets were longer than 10 minutes).

The linear relationship strength between variables was
determined by measuring Pearson correlation coefficients
between the common indices and the Poincare indices, and
also between the Poincare indices. For a correlation
coefficient to be meaningful there are some conditions that
must be met27

: a) the relationship is linear, b) no outliers,
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c) no subgroups, and d) one of the variables has a nOffi1al
distribution. Visual analysis of the index values confirmed
linear relationship and no subgroups. Normal distribution of
the main indices was assessed with Shapiro-Wilks test.
Outliers were recorded for analysis. The criteria for a strong
correlation was an average coefficient r>0.85 (explained
variance of 72%) and p<O.OO 1 for each of the 12 subjects.

Results

Summary of the patient data is shown in Table 2.
Female subjects predominated in the scheduled operating
lists available for this study.

The Shapiro-Wilks test showed the main indices were
normally distributed for most subjects. Normal distribution
was rejected in only a few subjects for each of the main
indices: SDNN 1, RMSSD 2, meanRR 3, rRR 2. The test
for pNN50 could not be calculated due to the low number
of counts in some subjects.

Strong correlations with an average coefficient r>0.85
(explained variance of 72%) and p<O.OOl for each of the 12
subjects with total variance (SDNN) and vagal activity
(RMSSD, pNN50), and sympathovagal balance (meanRR),
were seen in 18 of the 48 published indices(Table 3). In the
(Table 3) column headed Subjects p<O.OO 1, an asterisk
indicates all 12 subjects had p<O.OO 1. Where a number is
written it indicates the number of subjects who had
p<O.OO1. However for the mean correlation coefficients
given, all subjects at least had a p<0.05.

One other index was observed to have multiple strong
correlations: rRR, the correlation of each RR interval with
the subsequent RR interval. This was strongly correlated
with 3 other indices (Table 3).

Table 3 also includes four less-strongly correlated
indices: C.Area, E.pNN6.25, M.A & M.B. These indices
failed to meet the criteria of r>0.85 and p<O.OO 1 for each of
the 12 subjects. These indices also had the highest counts of
outliers.

The surveyed Poincare indices that were not strongly
correlated with SDNN, RMSSD, meanRR or rRR are listed
in Table 4.

Discussion

Technical problems
Some index calculations proved difficult to detennine

with smaller window length, and some required changes to
the published method (previously published25

).

Correlation
The criteria for a strong correlation were set high for

this small sample of subjects undergoing limited dynamic
change in heart rate variability. Using r>0.85 explained
72% of the variance in the sample. Requiring a p<O.OO 1 for
all 12 subjects reduced the likelihood of chance correlation.

The number of outliers varied between indices: the
highest (12) in Table 4 is only 2.2% of data points. Useful
indices would be expected to have fewer outliers.
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Table 4. Shortlist o{ indices for ve,y short periods (25 beats):
common measures and uncorrelated indices.

Table 3. Pearson correlation coefficients, mean 0{12 subjects, for
well correlated (r>O. 75) indices.

Index Corr r b Subjects Outliers
witha (avg 12) p<o.oor:

A.maglsdl R 0.97 * 3
C.Area R 0.77d 11 + 8
CV S 0.98 * 2
E.pNN6.25 P 0.88 d 10 6
G.RMS M 1.00 * I
Hi.SOI/S02 C 0.89 * 6
K.SOI S 1.00 * 2
K.S02 R 1.00 * 4
L S 0.98 * 2
L/T C 0.91 * 4
10g(L*T) S 0.92 * 5
M.A S 0.76 d 10+ 5
M.B R 0.85 d 11+ 9
nSOI S 0.94 * 2
nS02 R 0.98 * 4
P2 S 0.94 * 1
P3 R 0.92 * 7
p50 M 0.99 * 1
SDsdl0 R 0.89 * 1
SOsd8 R 0.88 * 4
T R 1.00 * 4
T.SDI S 0.98 * 2
T.SDl/S02 C 0.91 * 4
T.SD2 R 1.00 * 4
T.SDsd R 1.00 * 4

a C=rRR, M=meanRR=G.RR, P=pNN50, R=RMSSD, S=SDNN
b n = 26, number of 25 beat observations
C *all subjects p<O.OO I, tall subjects p<0.05
d correlation not considered strong by criteria

Index Outliers

SONN 2
RMSSO 4
meanRR 1
rRR 1
A.sgn(sd) 0
K.NRR 11
K.Nsd 8
Qchi2 10
WlO 3
W90 6
Qa 3
Qd 3
O.PLW 0
H.Dl 3
M.G 8
skew.RR 2
skew.sd 6
kurt.RR 12
Gz.acc 0

Correlated with

See Table 3
See Table 3
See Table 3
See Table 3
Qb, Qc (r=0.78)

H.02 (r=0.86)

kurt.sd (r=0.97)
Gz.dec (r=-0.92)
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Agreement

Strong correlations with vagal markers predominate as
found by Hayano et af8

• Vagal effects on the sinus node
occur faster than sympathetically mediated effects4

, causing
instantaneous changes in RRI that are easily measured over
short windows. This is demonstrated by the number of
indices strongly correlated with RMSSD.

This study finds correlations in agreement with
published studies for: E.pNN6.25, K.sdl, K.sd2, L, T,
M.A', nSDI & nSD24

, P2 & P36
, T.SDsd, T.SDI &

T.SD22930
.

The index rRR was known not be equivalent to SDNN
or RMSSO; OtzenbergerJ2 claiming it revealed a different
characteristic of dynamic behaviour.

In this study the set of pNN50, pNN30 and pNN6.25
showed no correlation with RMSSD. This was due to the
absence of intervals greater than 50 msec in many of the 25
beat windows.

Some unexpected strong correlations were found with:
RMSSD: A.maglsdl, C.Area3

, M.B (not M.G 1
), SDsd8 &

SDsd10 (not sympathetic)
SDNN: CV I J, 10g(L*T) & S (not vagal activit/ I)

meanRR: G.RMS (not RMSSD), p50
rRR: Hi.SD l/SD2, LIT (not sympathetic activit/ I),
T.SD l/SD2 12

•

Advantages
Poincare plot indices were chosen because the data

has no requirement for normal distribution as with
summary statistics, no requirement for stationaritiO,
minimum data set (e.g., the low frequency peak needs
2 mins 16) or special processing that spectral analysis
requires, and is more resistant to the influence of ectopic
beats and other arrhythmias9

• Measures of chaotic
behaviour have been found to be reliable on samples as
short as 500 beats31

, however the application of these
indices on shorter 25 beat samples has not been
investigated.

The commonly used time domain indices are
recognised by Carrasc032 as simple-to-calculate surrogates
for many indices that are difficult to measure (including
frequency domain variables).While SDNN reflects total
power of variation, and RMSSO reflects vagal tone, there
are no indices for measuring sympathetic tone. Indexes that
do not correlate strongly with SDNN or RMSSD may prove
useful in detennining dynamic characteristics of cardiac
nervous system activity.

Limitations
Throughout this study, all subjects received oxygen

using a facemask to ensure adequate oxygenation after
fentanyl administration. The application of a facemask does
affect the HRV, but this effect should be consistent over the
10 mins of the study.

This study uses only a limited range of HRVover
a short time (10 mins) to assess correlations of the indices.
This is in agreement with the proposed application:
further assessment of the dynamic effect of fentanyl on
HRV.
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Conclusion

The use of Poincare indices over shorter time periods
may require different methods for calculating for the
indices due to the smaller sample sizes, but even small
windows of only 25 RR intervals can still hold useful
information.

This study using subjects undergoing fentanyl and
midazolam sedation has shown that many published
Poincare indices are strongly correlated over short periods
with commonly used indices SDNN, RMSSD, meanRR and
rRR. Strongly correlated indices can be set aside and not
used in further analysis of the fentanyl effect.

Further investigation of the Poincare indices that do not
correlate strongly with commonly used indices may prove
interesting in detennining dynamic characteristics of the
effect of sedative drugs on autonomic nervous system
activity.
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Abstract
Characterizing respiratory-induced tumour motion is an important step in the effective image-guided radiation
treatment of moving tumours, especially for tumours in the lung and lower abdomen. This study characterized tumour
motion based on a piecewise linear model representing tumour motion at defined stages of the breathing cycle. Lung
tumour locations were categorized based on broncho-pulmonary segments. Association rules between tumour motion
characteristics and their locations in the lung were discovered and parameterized through statistical analysis. Results
show there is a con-elation between tumour motion characteristics and tumour location in the lungs. Generally, tumours
with small motion (amplitude < lOmm) are observed most frequently in the apex region of lung or when attached to a
fixed structure, such as the chest wall or aorta. Tumours with relatively large motion (amplitude> 20mm) are located
close to the diaphragm or mid-level periphery of the lungs close to the chest wall.

Key words tumour locations, respiratory motion,
correlations

Introduction

The goal of radiation therapy is to ensure precise and
accurate delivery of a curative radiation dose to a tumour
while limiting the exposure of surrounding healthy tissues
and critical structures to radiation and so avoid serious
treatment complications I. Radiation therapy for localized
cancers of the lung is common and often applied in daily
fractions over a few weeks. Intra-fraction tumour motion is
often induced by the patient's respiration and it is this
motion that poses a major challenge for precise radiation
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treatment delivery, especially when the amplitude of
tumour motion is greater than a centimeter l

-
3

•

Understanding and characterizing the natural tumour
motion behavior in various locations is of some importance
to precision radiation treatment delivery. Once understood
and characterized, prediction of this tumour motion
behavior will facilitate advanced real-time treatment of
patients under free breathing conditions.

It is known that tumours of the lung, kidney, liver or
prostate have distinctive respiratory-induced motion
properties4

. The objective of this work is to identify the
correlation between respiratory-induced tumour motion
characteristics and its location in the lungs. Establishing
reliable correlations between the motion characteristics and
tumour location will enable refinement of the predictive




