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Titre: Quelques schémas d’approximation en optimisation polynomiale

Résumé: Cette thèse est dédiée à l’étude de la hiérarchie moments-sommes-de-carrés, une
famille de problèmes de programmation semi-définie en optimisation polynomiale, couramment
appelée hiérarchie de Lasserre. Nous examinons différents aspects de ses propriétés et appli-
cations. Comme application de la hiérarchie, nous approchons certains objets potentiellement
compliqués, comme l’abscisse polynomiale et les plans d’expérience optimaux sur des domaines
semi-algébriques. L’application de la hiérarchie de Lasserre produit des approximations par
des polynômes de degré fixé et donc de complexité bornée. En ce qui concerne la complexité
de la hiérarchie elle-même, nous en construisons une modification pour laquelle un taux de
convergence amélioré peut être prouvé. Un concept essentiel de la hiérarchie est l’utilisation
des modules quadratiques et de leurs duaux pour appréhender de manière flexible le cône des
polynômes positifs et le cône des moments. Nous poursuivons cette idée pour construire des
approximations étroites d’ensembles semi-algébriques à l’aide de séparateurs polynomiaux.

Mots-clés: optimisation non-convexe, optimisation non-lisse, approximations polynomiales,
optimisation semi-algébrique, optimisation semi-définie positive



Title: Some approximation schemes in polynomial optimization

Abstract: This thesis is dedicated to investigations of the moment-sums-of-squares hierarchy,
a family of semidefinite programming problems in polynomial optimization, commonly called the
Lasserre hierarchy. We examine different aspects of its properties and purposes. As applications
of the hierarchy, we approximate some potentially complicated objects, namely the polynomial
abscissa and optimal designs on semialgebraic domains. Applying the Lasserre hierarchy results
in approximations by polynomials of fixed degree and hence bounded complexity. With regard
to the complexity of the hierarchy itself, we construct a modification of it for which an improved
convergence rate can be proved. An essential concept of the hierarchy is to use quadratic
modules and their duals as a tractable characterization of the cone of positive polynomials and
the moment cone, respectively. We exploit further this idea to construct tight approximations of
semialgebraic sets with polynomial separators.

Key words: non-convex optimization, non-smooth optimization, polynomial approximations,
semialgebraic optimization, semidefinite programming
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Introduction

Polynomial optimization addresses the problem of optimizing a polynomial function over a given
semialgebraic set, i.e., a set defined by finitely many polynomial inequalities. If not indicated
otherwise, we consider minimization problems. Evidently, we can pass to maximization problems
by simply negating the objective function.

In the literature several methods to find local minima have been proposed. However, when
considering non-linear non-convex functions, searching for global optima is difficult in general.
For instance, problems like the well-known NP-hard maximum stable set and maximum cut
problems from graph theory are contained in this class of problems.

In the situations we encounter, we are confronted with highly non-convex problems, as we
seek to optimize polynomials of arbitrary degree.

Lasserre [Las01] developed a hierarchy of semidefinite programs which allows to numerically
approximate from below the global minimum of a polynomial on a compact basic semialgebraic
set. This is in contrast with methods computing local minima, as these are upper bounds without
any indication on the distance to the global optimum. Conversely, the lower bounds computed
via the Lasserre hierarchy are proved to converge to the global minimum.

The hierarchy is constructed by first rephrasing the global optimization problem in terms of
non-negative polynomials, and then replacing the non-negativity constraint by a certificate of
positivity such that, after truncation, we obtain a problem which is tractable, i.e., a problem
which can be solved numerically in polynomial time. More precisely, the obtained problems are
semidefinite programs. The resulting sequence of solutions converges to the global optimum
from below.

The convergence of the solutions is ensured by Putinar’s Positivstellensatz, which can be
considered as a key result in the construction of the hierarchy. It provides a representation of
positive polynomials which is used as the above mentioned certificate of positivity.

The approach has a dual point of view since positive polynomials are dual to moment
sequences, i.e., sequences of real numbers which have a representing measure. Thus, instead
of rephrasing the optimization problem in terms of positive polynomials, we can also write it
in terms of measures, or rather moments. By the dual facet of Putinar’s Positivstellensatz,
its feasible set can be described by infinitely many semidefinite constraints. When truncated,
the problem therefore again leads to a hierarchy of semidefinite programs. Due to duality, the
solutions are lower bounds of the infimum as well. They also converge to the global optimum
from below.

Since by default we consider minimization problems, we call the hierarchy just described the
Lasserre hierarchy of lower bounds since its solutions converge to the infimum from below. In
contrast, in [Las11] Lasserre proposed a hierarchy of upper bounds, which is established using a
characterization of non-negativity involving measures that allow sum-of-squares densities. The
sequence of solutions to the so constructed hierarchy of semidefinite programs converges to the
infimum from above.

Other hierarchies

Apart from Lasserre, several other authors have proposed hierarchies to approximate polynomial
optimization problems. For further references and detailed information on the history of
hierarchies using representations of non-negativity, the interested reader is referred to [Las15b,
Section 6.5] and [Lau09], and also [Lau03].



2 Introduction

Here we just want to mention that the idea to formulate global minimization of a polynomial
as a convex optimization problem goes back to Shor [Sho87],[Sho98]. Nesterov [Nes00] then
proposed exact semidefinite formulations for the univariate case. The multivariate case was
treated by Parrilo [Par00],[Par03] and Lasserre [Las01]. An advantage of the investigation by
Lasserre was the comprehensive treatment of the duality between positive polynomials and
moments, which allowed to derive a mathematically sound proof of convergence of the hierarchy
based on Putinar’s Positivstellensatz.

Besides, in the meantime there has been developed a vast collection of modifications and
related hierarchies which serve diverse purposes. In addition, extensions to the complex case
and versions exploiting symmetry or sparsity have been proposed.

Contents of the thesis

The PhD thesis on hand assembles investigations of the Lasserre hierarchy. Applications of the
hierarchy arising in different contexts are considered, the important notion of convergence rates is
studied, and we extend ideas on which the hierarchy is based to tightly approximate semialgebraic
sets with quadratic separators. The linking element between these investigations is that we
always approximate potentially complicated objects by simpler objects, like polynomials of small
degree. These are either computed using the hierarchy (or ideas of it) or the approximations are
used to develop a modification of the hierarchy.

The following paragraphs shall give an overview of the topics treated in the manuscript and
how they are integrated into the overall subject of the thesis.

As a start, Chapter 1 is dedicated to a short introduction to the Lasserre hierarchy.
We briefly examine sums of squares and quadratic modules in order to understand Putinar’s
Positivstellensatz which, as already mentioned, is essential to the construction of the hierarchy.
As a preparation for the dual formulations, we continue with some basics on measures and
moments. Then we are ready to build the Lasserre hierarchies, meaning the standard hierarchy
of lower bounds using Putinar’s Positivstellensatz and the hierarchy of upper bounds restricting
the feasible set to measures which allow sum-of-squares densities.

As a first application of the Lasserre hierarchy, in Chapter 2 we search to approximate
the polynomial abscissa, which is relevant in systems control, for example when studying the
stability of linear systems. The abscissa of a polynomial is the maximum real part of its roots
and a function of very low regularity in general. Therefore, it is rather difficult to approximate.
We present an optimization problem whose minimizer is the abscissa function such that by
applying the Lasserre hierarchy we obtain polynomial upper approximations to the abscissa map.
In order to compute approximations from below, we modify the problem in such a manner that
the Lasserre hierarchy gives lower approximations. These are results published in [HHLP16].

As an application of the hierarchy arising in a different context, we consider an optimization
problem occurring in statistics. For regression problems the main objective is to estimate
parameters appearing in an experimental setting. In order to calculate these parameters up
to a given precision, it is necessary to run the experiment multiple times with different input
data. However, since it may be costly or otherwise intricate, the experimenter usually wants to
minimize the required number of runs of the experiment. Therefore, we need a rule to decide
which input data should be chosen from the design space in order to obtain a well posed problem
which leads to relevant output data. These rules are called optimal designs and computing them
is the subject to Chapter 3. Optimal designs on semialgebraic design spaces can be identified
by weighted sums of Dirac measures supported on the design space. These can be approximated
using the Lasserre hierarchy. The result is a sequence of moments, from which we then recover
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the representing measure and hence the optimal design. The chapter is based on [dCGH+17].
In Chapter 4 our goal is to approximate a semialgebraic set by quadratic separators, i.e.,

by polynomials of degree 2 whose zero sublevel set intersected with the semialgebraic set is
empty. Approximating semialgebraic sets, or rather their convex hulls, by linear separators is
an idea introduced by Lasserre in [Las09], which is strongly related to the Lasserre hierarchy
since it is based on replacing non-negativity constraints by certificates of positivity provided
by Putinar’s Positivstellensatz. Here we extend this concept to separators of degree 2, which
results in a nested sequence of outer approximations converging to the semialgebraic set. These
outer approximations are described by semidefinite constraints, hence membership can be tested
by a semidefinite program.

An important question when studying semidefinite programming hierarchies is their rate of
convergence. In practice, the Lasserre hierarchy gives results which converge quickly enough
to the global optimum. However, the theoretical bounds which are known so far are not in
line with the numerical experiments. Accordingly, and as another investigation of the Lasserre
hierarchy, in Chapter 5 we develop a modification of the hierarchy of upper bounds for which
we can prove a better rate of convergence. For this, we approximate the Dirac delta function by
measures which allow densities with Schmüdgen-type representations, instead of approximating
it by measures which allow sum-of-square densities as it is done for the Lasserre hierarchy of
upper bounds. This chapter reports results from [dKHL17].

Overview

We summarize the contributions assembled in this thesis and the links between them. As already
mentioned, we examine the Lasserre hierarchy by approximating potentially complicated objects
either by using the hierarchy or to develop a modified hierarchy.

Chapter 1 Introduction to the Lasserre hierarchies of lower bounds and upper bounds.

Chapter 2 Upper and lower approximations of the abscissa function by applying the Lasserre
hierarchy of lower bounds to a suitable problem.

Chapter 3 Computing approximate optimal designs on semialgebraic design spaces using the
Lasserre hierarchy of lower bounds.

Chapter 4 Outer approximations of semialgebraic sets with quadratic separators using ideas
on which the Lasserre hierarchy is based.

Chapter 5 Approximations of the Dirac delta function with the objective to modify the Lasserre
hierarchy of upper bounds in such a way that a better rate of convergence can be shown.

Contributions not included in the manuscript

Apart from the just presented topics, the candidate also worked on the Minkowski problem,
which might be solvable using the Lasserre hierarchy. The Minkowski problem consists of
reconstructing a convex body when its curvature measure is known; see e.g. [Car04]. It can be
written as such an optimization problem that when applying the Lasserre hierarchy, the zero
sublevel set of the minimizer seems to be an approximation of the convex body that we seek
to recover. Unfortunately, the certificates are only of numerical nature and formal proofs are
lacking. For this reason it is not included in the thesis manuscript.



4 Introduction

Computer configuration

All examples are modeled by YALMIP [Löf04] or GloptiPoly3 [HLL09] and solved by MOSEK
8 [MOS15] or SeDuMi 1.3 [Stu99] under the MATLAB R2014a environment. We ran the
experiments on an HP EliteBook 840 G1 with 16-GB RAM memory and an Intel Core i5-4300U
processor under a Windows 7 Professional 64-bit operating system.



Chapter 1

The Lasserre hierarchy

Contents
1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Sums of squares and quadratic modules . . . . . . . . . . . . . . . . . . . 6

1.3 Measures and moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Moments and the moment cone . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Moment and localizing matrices . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Hierarchies of upper and lower bounds . . . . . . . . . . . . . . . . . . . 9

1.4.1 Hierarchy of lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.2 Hierarchy of upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

The objective of this introductory chapter is to explain the construction of the Lasserre hierarchy
in a brief and compact manner. For a more elaborate and detailed investigation on the hierarchy
the interested reader is referred to the books [Las10] and [Las15b], and to the survey [Lau09].
The chapter is mainly based on these references, and Section 1.4.2 also on [Las11].

The chapter is organized as follows. As a start, the precise problem is stated and we explain
the first step of developing the hierarchy, meaning we rephrase the problem in terms of positive
polynomials. In order to understand Putinar’s Positivstellensatz (Theorem 1.1), which is essential
for the subsequent considerations, we continue with some basics on sums of squares and quadratic
modules (Section 1.2) and, as a preparation for the dual formulations, on measures and moments
(Section 1.3). Then we are ready to build the Lasserre hierarchy (Section 1.4), or more precisely,
the hierarchies, as we first explain how to construct the standard hierarchy of lower bounds and
then the hierarchy of upper bounds.

As a summary, the respective optimization problems are grouped in Figure 1.1 and Figure 1.2
in order to illustrate the process of constructing the hierarchy.

1.1 Problem formulation

Denote by R[x] the infinite dimensional vector space of real polynomials in the variables
x = (x1, . . . , xn), and for d ∈ N define R[x]d := {p ∈ R[x] : deg p 6 d}, where deg p denotes the
degree of p.

We consider the basic closed semialgebraic set

K := {x ∈ Rn : gj(x) > 0, j = 1, . . . ,m} (1.1)

for given polynomials gj ∈ R[x], j = 1, . . . ,m, of which one is of the form R −∑n
i=1 x

2
i for a

constant R ∈ N. Note that the latter assumption implies that K is compact.

Remark. The condition that one of the gj is of the form R−∑n
i=1 x

2
i is not much stronger than

compactness; see the discussion following Assumption 2.14 in [Las15b] for details.
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We are interested in the global polynomial optimization problem

̺min = inf
x∈Rn

f(x) s.t. x ∈ K, (1.2)

where f ∈ R[x] is a polynomial. Since the problem is non-convex in general and we are looking
for a global minimum, this is a non-trivial problem. Solving it is the concern of the Lasserre
hierarchy.

Denoting by P(K) := {p ∈ R[x] : p(x) > 0 ∀x ∈ K} the cone of polynomials which are
non-negative on K, we can write (1.2) as the convex optimization problem

̺min = sup
λ∈R

λ s.t. f − λ ∈ P(K), (1.3)

meaning we are searching the largest lower bound on f .
Although linear, the problem remains difficult, since the cone P(K) is very hard to charac-

terize. Finding tractable subcones of P(K) is the subject of the next section.

1.2 Sums of squares and quadratic modules

As already mentioned, in this section we want to approximate the cone P(K) of polynomials
non-negative on K by tractable subcones. For this we introduce the notion of sums of squares
(sometimes abbreviated by “SOS”). We call a polynomial p ∈ R[x] a sum of squares of polynomials,
if it can be written in the form

p(x) =
s∑

j=1

pj(x)2

for some polynomials pj ∈ R[x], j = 1, . . . , s. We denote by Σ[x] = {p ∈ R[x] : p is SOS} the
cone of SOS polynomials and by Σ[x]2d := Σ[x] ∩ R[x]2d the cone of SOS polynomials of degree
at most 2d.

Obviously, every SOS polynomial is non-negative on Rn. However, the converse is only true
for n = 1, for polynomials of degree 2, and for polynomials of degree 4 in two variables. This
was proved by Hilbert in the 19th century.

Although SOS polynomials and non-negative polynomials are not the same in general, sums
of squares can be used as a certificate of non-negativity. To find a certificate for non-negativity
on K including sums of squares, we introduce the notion of quadratic modules.

Given polynomials g1, . . . , gm ∈ R[x], we call

Q(g1, . . . , gm) :=
{

σ0 +
m∑

j=1

σjgj : σj ∈ Σ[x], j = 0, . . . ,m
}

the quadratic module generated by g1, . . . , gm. A quadratic module is called archimedean, if

∀p ∈ R[x] ∃R ∈ N such that R± p ∈ Q(g1, . . . , gm).

This is equivalent to assuming that there exists a constant R ∈ N such that R − ∑n
i=1 x

2
i ∈

Q(g1, . . . , gm) by [Lau09, Theorem 3.17].
It is easy to verify that Q(g1, . . . , gm) ⊆ P(K). The converse is not true in general, but we

have the following important result.

Theorem 1.1 (Putinar’s Positivstellensatz [Put93]). Let Q(g1, . . . , gm) be archimedean. If

p ∈ R[x] is strictly positive on K, then p ∈ Q(g1, . . . , gm).
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Remark. Putinar’s Positivstellensatz is the reason why we assume in the definition of K that one
of the gj is of the form R −∑n

i=1 x
2
i . Because this implies that Q(g1, . . . , gm) is archimedean,

we will therefore be able to apply this powerful theorem.

To summarize, we have the following inclusions:

{p ∈ R[x] : p(x) > 0 ∀x ∈ K} ⊆ Q(g1, . . . , gm) ⊆ P(K). (1.4)

Thus, membership of the quadratic module Q(g1, . . . , gm) is a certificate of positivity and we
can strengthen problem (1.3) to

̺sos = sup
λ∈R

λ s.t. f − λ ∈ Q(g1, . . . , gm). (1.5)

Since problem (1.3) is equivalent to ̺min = supλ∈R λ s.t. f − λ > 0 on K, meaning we can
replace P(K) by the set of polynomials which are strictly positive on K, equation (1.4) implies
̺min = ̺sos.

Problem (1.5) is still an infinite dimensional optimization problem as we do not impose
a bound on the degree of the sum of squares in the quadratic module, but contrary to the
cone P(K) the quadratic module Q(g1, . . . , gm) can be characterized by semidefinite constraints.
To finally obtain a finite dimensional problem, in Section 1.4.1 we will consider the truncated

quadratic module1

Q2d(g1, . . . , gm) :=
{

σ0 +
m∑

j=1

σjgj : σj ∈ Σ[x]2(d−dj), j = 0, . . . ,m
}

,

where we have set d0 = 0 and dj := ⌈deg(gj)/2⌉, j = 1, . . . ,m. Now, we have a cone which is finite
dimensional and tractable. To be more precise, Q2d(g1, . . . , gm) is semidefinite representable, by
which we mean that it is the projection of a spectrahedron, i.e., the projection of a set described
by a linear matrix inequality constraint.

To see this, note that by, e.g., [Las15b, Proposition 2.1] a polynomial p ∈ R[x]2d is SOS if and
only if there exists a real symmetric and positive semidefinite matrix Q of size

(n+d
n

)
×
(n+d
n

)
such

that p(x) = vd(x)TQvd(x) for all x ∈ Rn, where vd(x) denotes the column vector of monomials
up to order d. See [Las15b, Section 2.4.2] for details on how to test membership in quadratic
modules via semidefinite programs.

Remark. Although finite dimensional, the truncation Pd(K) := P(K) ∩ R[x]d is not suitable for
our purposes due to the lack of a tractable representation. Note in particular, that Pd(K) is not
semidefinite representable for n = 2, d > 6, and n > 3, d > 4, respectively, as recently proved by
Scheiderer in [Sch16, Corollary 4.24].

The above truncations provide a convergent nested sequence of subcones of P(K),

Q2d(g1, . . . , gm) ⊆ Q2(d+1)(g1, . . . , gm) ⊆ · · · ⊆ Q(g1, . . . , gm) ⊆ P(K). (1.6)

Note, however, that for a polynomial p ∈ Q(g1, . . . , gm) the degree 2d for which p ∈
Q2d(g1, . . . , gm) may be arbitrarily large regardless of the size of deg p.

In the following section we consider the duals to the just considered objects.

1Technically, one should also consider truncated quadratic modules of odd degrees, since deg gj might be odd.

In order to avoid confusion with other popular notation, like Qd =
{

σ0 +
∑m

j=1
σjgj : σj ∈ Σ[x], deg(σjgj) 6

2d, j = 0, . . . , m

}

, we ignore them here.
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1.3 Measures and moments

Let C (K) denote the space of continuous functions from K to R. Its topological dual is
isometrically isomorphic to the vector space M (K) of finite signed Borel measures supported
on K. We denote the associated positive cones by C+(K) and M+(K), meaning the cone of
non-negative continuous functions defined on K and the cone of non-negative Borel measures
supported on K, respectively.

The duality pairing of a function f ∈ C (K) and a measure µ ∈ M (K) is defined by

〈f, µ〉 :=
∫

K
fdµ.

The monomials xα1
1 · · ·xαn

n with α = (α1, . . . , αn) ∈ Nn form a basis of the vector space R[x].
We use the multi-index notation xα := xα1

1 · · ·xαn
n to denote these monomials. In the same way,

for a given d ∈ N the vector space R[x]d has dimension s(d) :=
(n+d
n

)
with basis (xα)|α|6d, where

|α| := α1 + · · · + αn. We write

vd(x) := ( 1
︸︷︷︸

degree 0

, x1, . . . , xn
︸ ︷︷ ︸

degree 1

, x2
1, x1x2, . . . , x1xn, x

2
2, . . . , x

2
n

︸ ︷︷ ︸

degree 2

, . . . , xd1, . . . , x
d
n

︸ ︷︷ ︸

degree d

)T

for the column vector of the monomials ordered according to their degree, and where monomials
of the same degree are ordered with respect to the lexicographic ordering.

1.3.1 Moments and the moment cone

For a finite Borel measure µ ∈ M+(K) we call

yα =
∫

K
xαdµ, α ∈ Nn,

the moments of µ. Accordingly, we call the sequence y = (yα)α∈Nn the moment sequence of µ.
Conversely, we say that a sequence y = (yα)α∈Nn ⊆ R has a representing measure, if there exists
a measure µ such that y is the moment sequence of µ. We denote by M(K) the convex cone of
all sequences y which have a representing measure supported on K. We call it the moment cone

of K,

M(K) := {y ∈ RNn

: ∃µ ∈ M+(K), yα =
∫

K
xα dµ ∀α ∈ Nn}.

Given a sequence y = (yα)α∈Nn ⊆ R we define the so-called Riesz linear functional Ly :
R[x] → R which maps a polynomial p =

∑

α∈Nn pαx
α (with pα ∈ R) to

Ly(p) =
∑

α∈Nn

pαyα.

The next result shows that the cones P(K) and M(K) are duals of each other with duality
pairing Ly(p).

Theorem 1.2 (Riesz-Haviland). A sequence y = (yα)α∈Nn has a representing measure µ

supported on K if and only if Ly(p) > 0 for all polynomials p ∈ P(K).

Now, let us consider truncated sequences y = (yα)|α|6d. We define the truncated moment

cone of K of moments up to order d by

Md(K) := {y ∈ Rs(d) : ∃µ ∈ M+(K), yα =
∫

K
xα dµ ∀|α| 6 d}. (1.7)
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Since K is compact, by [Lau09, Theorem 5.13], the cone Md(K) is dual to the convex cone
Pd(K) of polynomials p ∈ R[x]d of degree at most d which are non-negative on K.

1.3.2 Moment and localizing matrices

The moment matrix of order d of a truncated sequence y = (yα)|α|62d is the s(d) × s(d)-matrix
Md(y) with rows and columns indexed by α ∈ Nn, |α| 6 d, and such that

Md(y)(α, β) = Ly(xαxβ) = yα+β ∀|α|, |β| 6 d.

It is symmetric and linear in y, and if y has a representing measure, then Md(y) < 0 for all
d ∈ N.

Similarly, we define the localizing matrix of order d with respect to a polynomial g =
∑

|α|6r gαx
α ∈ R[x]r of degree r and a sequence y = (yα)|α|62d+r as the s(d) × s(d)-matrix

Md(g y) with rows and columns indexed by α and constructed by

Md(g y)(α, β) = Ly(g(x)xαxβ) =
∑

γ∈Nn

gγyγ+α+β ∀|α|, |β| 6 d.

If y has a representing measure µ whose support is contained in the set {x ∈ Rn : g(x) > 0} for
a g ∈ R[x], then Md−dg

(g y) < 0 for all d ∈ N with dg := ⌈deg(g)/2⌉ := min{z ∈ Z : z > deg(g)/2}.
Now we can define the dual to the quadratic module Q(g1, . . . , gm). For this we set dj :=

⌈deg(gj)/2⌉, j = 1, . . . ,m, as half the degrees of the polynomials g1, . . . , gm from the definition of
K. Then the dual cone is given by

M(g1, . . . , gm) := {y ∈ RNn

: Md(y) < 0, Md−dj
(gj y) < 0 ∀d ∈ N, j = 1, . . . ,m}.

The inclusion M(K) ⊆ M(g1, . . . , gm) is clear from the above considerations. The converse is
given by the dual version of Putinar’s Positivstellensatz.

Theorem 1.3 (Dual facet of Putinar’s Positivstellensatz). Let Q(g1, . . . , gm) be archimedean.

Then M(K) = M(g1, . . . , gm).

As for the quadratic modules, we also consider truncations of M(g1, . . . , gm), that is,

M2d(g1, . . . , gm) := {y ∈ Rs(2d) : M(y)d < 0, M(gjy)d−dj
< 0, j = 1, . . . ,m}.

These cones are dual to Q2d(g1, . . . , gm), and accordingly give a nested sequence of supercones2

of M(K),

M(K) = M(g1, . . . , gm) ⊆ · · · ⊆ M2(d+1)(g1, . . . , gm) ⊆ M2d(g1, . . . , gm). (1.8)

1.4 Hierarchies of upper and lower bounds

The objective of the Lasserre hierarchy is to numerically approximate problem (1.2). This is
done by calculating lower, respectively upper, bounds of the optimal value.

Finding lower bounds for a global infimum is generally a difficult task. The method by
Lasserre achieves it by relaxing the problem formulated in terms of measures (to which we refer

2Note the slight abuse of notation. Of course, as a matter of principle, the cone M(g1, . . . , gm) ⊆ RN is not a
subcone of M2d(g1, . . . , gm) ⊆ Rs(2d), but we can embed the former into the latter by considering the truncations
of the moment sequences.
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as the primal problem3), and accordingly strengthening the problem formulated in terms of
sums of squares. We obtain a hierarchy of finite dimensional semidefinite programming (SDP)
problems, i.e., semidefinite programs. These can be implemented and solved numerically leading
to a sequence of lower bounds converging to the optimal value. Describing this procedure is the
subject of the first subsection.

In the second subsection we concentrate on the hierarchy of upper bounds. It consists of the
inverse procedure of the hierarchy of lower bounds, meaning we strengthen the primal and relax
the dual problem.

1.4.1 Hierarchy of lower bounds

As already mentioned, we will relax the primal and strengthen the dual in order to obtain
sequences of lower bounds converging to the infimum in problem (1.2). As a preparation, we
summarize the cones just seen in the previous two sections and their relations to each other.

Q(g1, . . . , gm)2d ⊆ Q(g1, . . . , gm) ⊆ P(K) ⊆ C+(K)

M(g1, . . . , gm)2d ⊇ M(g1, . . . , gm) = M(K) “ ⊇ ” M+(K)
(1.9)

The objects which are aligned are duals of each other. To make sense of the “⊇” one needs to
identify the measures of M+(K) with their moments.

We have seen at the beginning of the chapter that problem (1.2) can be written in terms
of non-negative polynomials (1.3), and that this is equivalent to the SOS formulation (1.5).
Furthermore, we observe that problem (1.2) can also be written in terms of measures:

̺min = inf
µ∈M+(K)

〈f, µ〉 s.t. 〈1, µ〉 = 1. (1.10)

This problem is linear in µ, however, it is infinite dimensional. As an intuition, one can imagine
to search for a Dirac measure at a global minimizer x⋆.

We reformulate (1.10) in terms of moments which yields the primal problem associated to
(1.3):

̺min = inf
y∈M(K)

Ly(f) s.t. y0 = 1. (1.11)

Accordingly, we obtain an infinite dimensional linear programming (LP) problem. In order to
be able to truncate it and obtain a finite dimensional problem as proposed by Lasserre [Las10],
we relax it to the following infinite dimensional SDP problem whose dual (or rather predual) is
(1.5):

̺mom = inf
y∈M(g1,...,gm)

Ly(f) s.t. y0 = 1, (1.12)

(“mom” for “moments”). We call this a relaxation of (1.11), because generally M(g1, . . . , gm) ⊆
M(K). But since we assume that the gj are such that the quadratic module Q(g1, . . . , gm) is
archimedian, we know by the dual version of Putinar’s Positivstellensatz, Theorem 1.3, that the
cones are actually equal. Hence, (1.11) and (1.12) are equivalent, ̺min = ̺mom.

Now, instead of taking the moment and localizing matrices of all orders, we only consider
the moment and localizing matrices of a certain order d. This leads to a hierarchy of finite
dimensional SDP problems given by

̺mom
d = inf

y∈M2d(g1,...,gm)
Ly(f) s.t. y0 = 1 (1.13)

3Consequently, we call the SOS problem the dual problem, although it would be more precise to call it the
predual, since the cone C+(K) is a strict subset of the topological dual of the cone M+(K).
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with d ∈ N and d > max{⌈deg(f)/2⌉ , ⌈deg(gj)/2⌉ , j = 1, . . . ,m}. Since the constraint R−∑n
i=1 x

2
i >

0 is present in the description of K, the infimum is attained by [Lau09, Proposition 6.2]. The
dual is the truncation of problem (1.5), that is,

̺sos
d = sup

λ∈R
λ s.t. f − λ ∈ Q2d(g1, . . . , gm). (1.14)

By weak duality we have ̺sos
d 6 ̺mom

d , but the duality gap is not necessarily zero. However, if
K has non-empty interior, i.e., there exists a full dimensional ball contained in K, by [Lau09,
Theorem 6.1] strong duality holds for all d > max{⌈deg(f)/2⌉ , ⌈deg(gj)/2⌉ , j = 1, . . . ,m}, meaning
̺sos
d = ̺mom

d . Moreover, (1.14) attains its supremum for d sufficiently large in this case.
Due to (1.6), problem (1.14) is a strengthening of problem (1.5), so we get the sequence

̺sos
d 6 ̺sos

d+1 6 ̺sos = ̺min.

On the contrary, problem (1.13) is a relaxation of the infinite dimensional problem (1.12),
since the set of feasible sequences y of the former is a subset of the set of feasible sequences
of the latter due to the consideration of moment and localizing matrices only up to order d,
compare (1.8). Because we are minimizing, we therefore have

̺mom
d 6 ̺mom

d+1 6 ̺mom = ̺min.

This is consistent with the fact that in optimization a relaxation of the primal problem
induces a strengthening of its dual, which becomes clear when considering that a sequence of
supercones on the primal side corresponds to a sequence of subcones on the dual side, as in (1.9)
in our case. Thus, in both cases we get an ascending sequence of lower bounds on the infimum.
Since we assume Q(g1, . . . , gm) to be archimedean, these sequences converge to the infimum by
[Lau09, Theorem 6.8], i.e.,

lim
d→∞

̺mom
d = ̺min = lim

d→∞
̺sos
d . (1.15)

One may wonder under which conditions the moment relaxation is exact for a finite d,
meaning ̺mom

d = ̺min. If the optimal value ̺mom
d of problem (1.13) is attained at some optimal

solution y⋆, then for dK := max{⌈deg(gj)/2⌉ , j = 1, . . . ,m} the condition

rank Md(y⋆) = rank Md−dK
(y⋆) (1.16)

is sufficient for ̺mom
d = ̺min by [Las15b, Theorem 6.6].

In the same way, finite convergence takes place, when at every global minimizer the gradients
are linearly independent and strict complementarity and second-order sufficiency hold. This is a
result due to Nie, see [Las15b, Theorem 6.5] for details.

With the problems (1.13) and (1.14) we have finally found semidefinite programs whose
optimal values converge from below to the optimal value of our original problem (1.2). Therefore,
we are now able to compute lower bounds numerically.

See Figure 1.1 at the end of the chapter for an overview of the Lasserre hierarchy of lower
bounds.

1.4.2 Hierarchy of upper bounds

In this section we consider the counterpart of the hierarchy of lower bounds. Instead of relaxing
the primal and strengthening the dual problem, we strengthen the primal and relax the dual
which leads to a sequence of upper bounds converging to the optimal value ̺min.
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For simplicity, in this section we additionally assume K ⊆ [−1, 1]n. We need the following
preliminary result:

Theorem 1.4. [Las11, Theorem 3.2] Let K ⊆ [−1, 1]n be compact and let ν ∈ M+(K) be

arbitrary and fixed and such that supp(ν) = K. Let yν = (yνα)α∈Nn be its moment vector. Then

p ∈ R[x] is non-negative on K if and only if

∫

K
p g2 dν > 0 ∀g ∈ R[x],

or, equivalently, if and only if Md(pyν) < 0 for all d ∈ N.

Now, let us start by building the hierarchy on the SOS side, i.e., we relax (1.3) to a finite
dimensional SDP problem. For this, fix a finite Borel measure ν with supp(ν) = K. We call
yν = (yνα)α∈Nn the moment vector of ν and consider the problem

ϑλd = sup
λ∈R

λ s.t. Md(f yν) − λMd(yν) < 0. (1.17)

This is a relaxation of problem (1.3), since by Theorem 1.4 its constraint Md((f − λ) yν) < 0 is
only a necessary condition for f − λ to be non-negative on K. To obtain a sufficient constraint,
we would need to consider the localizing matrices of all orders d ∈ N. Hence, the set of feasible
solutions of (1.17) is larger than that of (1.3), which means that the supremum over the former
is greater than the supremum over the latter. Therefore, we get a sequence of upper bounds for
the optimal value, ϑλd > ϑλd+1 > ̺min.

By [Las11, Theorem 4.1], problem (1.17) has an optimal solution and the sequence (ϑλd)d∈N
is monotone non-increasing and converges to ̺min from above, ϑλd ց ̺min.

The dual to problem (1.17) is given by

ϑσd = inf
σ∈Σ[x]2d

∫

K
f σ dν s.t.

∫

K
σ dν = 1. (1.18)

Here, we optimize over all probability measures which have a density σ ∈ Σ[x]2d with respect to
ν. Since these measures form a subset of M+(K), problem (1.18) is a strengthening of (1.10).
Thus, consistent with the SOS side, we obtain a sequence of upper bounds, ϑσd > ϑσd+1 > ̺min.

As an intuition, one can imagine to approximate the Dirac measure at a global minimizer
x⋆ (which would be the solution to the infinite dimensional problem (1.10)) by measures which
admit sum-of-squares densities of increasing degree.

In general, it is not clear, whether (ϑσd )d∈N converges to ̺min, but in case K has a non-empty
interior, we know by [Las11, Theorem 4.2] that the duality gap between (1.17) and (1.18) is zero
and that (1.18) has an optimal solution. However, generally the convergence is only asymptotic
and not finite.

Remark. In order to implement problem (1.18), respectively (1.17), we would need the moments
yνα :=

∫

K xα dν explicitly. So we can only solve it numerically, when K and ν are such that the
moments can be computed for all α ∈ Nn.

See Figure 1.2 at the end of the chapter for an overview of the Lasserre hierarchy of upper
bounds.
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̺min = inf
x
f(x) s.t. x ∈ K,

with
K := {x ∈ Rn : gj(x) > 0, j = 1, . . . ,m},

f, gj ∈ R[x], 1 6 j 6 m, ∃j : gj(x) = R−∑n
i=1 x

2
i for some R ∈ N.

Primal formulation Dual formulation

̺min = inf
µ

∫

K
f(x)µ(dx)

s.t. µ(K) = 1, µ ∈ M+(K)

̺min = inf
y∈RN

∑

α∈Nn

fαyα

s.t. y0 = 1, y has a representing

measure supported on K

̺mom = inf
y∈RN

∑

α∈Nn

fαyα

s.t. y0 = 1, M(y) < 0,

M(gjy) < 0, 1 6 j 6 m

̺mom
d = inf

y∈Rs(2d)

∑

α∈Nn

fαyα

s.t. y0 = 1, Md(y) < 0,

Md−dj
(gjy) < 0, 1 6 j 6 m

̺mom
d 6 ̺mom

d+1 6 ̺mom = ̺min

̺min = sup
λ∈R

λ

s.t. f − λ ∈ C+(K)

̺min = sup
λ∈R

λ

s.t. f − λ > 0 on K

̺sos = sup
λ,σ0,...,σm

λ

s.t. f − λ = σ0 +
m∑

j=1

σjgj ,

λ ∈ R, σj ∈ Σ[x], 0 6 j 6 m

̺sos
d = sup

λ,σ0,...,σm

λ

s.t. f − λ = σ0 +
m∑

j=1

σjgj , λ ∈ R

σj ∈ Σ[x]2(d−dj), 0 6 j 6 m

̺sos
d 6 ̺sos

d+1 6 ̺sos = ̺min

moments

Dual facet of Putinar’s
Positivstellensatz

truncation4

polynomials

Putinar’s
Positivstellensatz

truncation

Figure 1.1 – Summary of the Lasserre hierarchy of lower bounds
Compare with equations (1.10) - (1.13) for the moment side and with equations (1.3), (1.5) and
(1.14) for the SOS side.

4By M(y), and M(gjy) respectively, we mean the infinite moment and localizing matrices, respectively.
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̺min = inf
x
f(x) s.t. x ∈ K,

with
K := {x ∈ Rn : gj(x) > 0, j = 1, . . . ,m} ⊆ [−1, 1]n,

f, gj ∈ R[x], 1 6 j 6 m, ∃j : gj(x) = R−∑n
i=1 x

2
i for some R ∈ N.

Primal formulation Dual formulation

̺min = inf
µ

∫

K
f(x)µ(dx)

s.t. µ(K) = 1, µ ∈ M+(K)

ϑσ = inf
σ∈Σ[x]

∫

K
f σ dν

s.t.
∫

K
σ dν = 1

ϑσd = inf
σ∈Σ[x]2d

∫

K
f σ dν

s.t.
∫

K
σ dν = 1

ϑσd > ϑσd+1 > ϑσ > ̺min

̺min = sup
λ∈R

λ

s.t. f − λ ∈ C+(K)

̺min = sup
λ∈R

λ

s.t. f − λ > 0 on K

ϑλ = sup
λ∈R

λ

s.t. M(f yν) − λM(yν) < 0

ϑλd = sup
λ∈R

λ

s.t. Md(f yν) − λMd(yν) < 0

ϑλd > ϑλd+1 > ϑλ = ̺min

measures with
sum-of-squares-densities
with respect to a fixed
measure ν ∈ M+(K) with
supp(ν) = K

truncation

polynomials

Theorem 1.4

truncation5

Figure 1.2 – Summary of the Lasserre hierarchy of upper bounds
Compare with equations (1.10) and (1.18) for the moment side and with equations (1.3) and
(1.17) for the SOS side.

5Again, M(y) and M(fy) stand for the infinite moment and localizing matrices, respectively.
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In this chapter, as a first application of the Lasserre hierarchy of lower bounds, we want to
approximate a function of very low regularity, namely the polynomial abscissa.

Given a univariate polynomial p whose coefficients depend polynomially on parameters, its
abscissa maps the parameter vector to the maximum real part of the roots of p for this parameter.
When studying linear differential equations, the abscissa of the characteristic polynomial of the
equation is used as a measure of the decay or growth rate of the solution. In linear systems
control, the abscissa function is typically parametrized by a small number of real parameters
(the controller coefficients), and it should be minimized so as to ensure a sufficiently fast decay
rate of closed-loop trajectories.

As a function of the polynomial coefficients (expressed in some basis), the abscissa is a Hölder
continuous function (with exponent equal to the reciprocal of the polynomial degree), but it is
not locally Lipschitz in general. As a consequence of this low regularity, numerical optimization
of the polynomial abscissa is typically a challenge.

Here, we use the Lasserre hierarchy of lower bounds to approximate the abscissa by poly-
nomials of fixed degree. Hence, we get approximations of controlled complexity. When their
degree tends to infinity, the polynomial approximations converge in L1 norm to the abscissa,
either from above or from below. The chapter reports results from [HHLP16].

The outline of the chapter is as follows. First, we give a short overview of research concerning
the abscissa, and motivate our investigations. Then, after introducing in Section 2.1 the abscissa
function and some relevant notation, we address in Section 2.2 the problem of finding an
upper approximation of the abscissa. In Section 2.3, we address the more difficult problem of
approximating the abscissa from below, first by using elementary symmetric functions, and
second by using the Gauß-Lucas theorem, inspired by [BLO04]. Explicit numerical examples
illustrate our findings throughout the text. Finally, we complete the chapter with a short
conclusion and some comments on uniform approximations of the abscissa.
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State of the art

For a recent survey on the abscissa function and its applications in systems control, see [Cro10].
A detailed variational analysis of the abscissa was first carried out in [BO01] and [BLO04]. These
ideas were exploited in a systems control setup in [BHLO06], using randomized techniques of
non-convex non-smooth local optimization, however without rigorous convergence guarantees.

In the space of controller parameters, the zero sublevel set of the abscissa function of the
characteristic polynomial of a linear system is the so-called stability region, and it is typically
non-convex and non-smooth; see [HPAŠ03], where this set is approximated with simpler sets such
as balls or ellipsoids. In [HL12], ellipsoidal approximations of the stability region were generalized
to polynomial sublevel set approximations, obtained by replacing negativity of the abscissa
function with positive definiteness of the Hermite matrix of the characteristic polynomial.

2.1 The abscissa function

Let Q ⊆ Rn be a compact semialgebraic set on which a Borel measure with support Q can be
defined and whose moments are easy to compute. For simplicity, we choose Q = [−1, 1]n = {q ∈
Rn : 1 − q2

1 > 0, . . . , 1 − q2
n > 0}.

Consider the monic non-constant polynomial p ∈ R[s] defined by

p : s 7→ p(q, s) :=
ℓ∑

k=0

pk(q)sk

with s ∈ C complex, q = (q1, . . . , qn) ∈ Q, and given polynomials pk ∈ R[q] for k = 0, 1, . . . , ℓ
with pℓ(q) ≡ 1 and ℓ > 0. Hence, we have a polynomial whose coefficients depend polynomially
on the parameter q.

Denote by sr(q), r = 1, . . . , ℓ, the roots of p(q, ·) and by a : Q → R (or ap if it is necessary
to clarify the dependence on the polynomial) the abscissa map of p, i.e., the function which
maps q ∈ Q to the maximal real part of the roots of p(q, ·),

a : q 7→ a(q) := max
r=1,...,ℓ

ℜ(sr(q)).

Equivalently, with i =
√

−1 and s = u+ i z write

p(q, s) = pℜ(q, u, z) + i pℑ(q, u, z)

for two real polynomials pℜ, pℑ ∈ R[q, u, z] of degree ℓ in the variable u (resp. z). Then

a : q 7→ a(q) = max{u ∈ R : ∃z ∈ R : pℜ(q, u, z) = pℑ(q, u, z) = 0}.

We observe that the function a : Q → R is semialgebraic and we define the basic closed
semialgebraic set

Z := {(q, u, z) ∈ Rn × R2 : q ∈ Q, pℜ(q, u, z) = pℑ(q, u, z) = 0}.

Remark. Set Z is compact, since Q is compact and p is monic in s.

Now we can write the abscissa map as

a : q 7→ a(q) = max{u ∈ R : ∃z ∈ R : (q, u, z) ∈ Z}.
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Since p is monic, its abscissa a is continuous, though in general not Lipschitz continuous. For
example, for n = 1 and p(q, s) = s6 + q the map a(q) is only Hölder continuous with exponent
1
6 near the origin. To be precise, a is always Hölder continuous by the Łojasiewicz inequality
[BCR98], since Q is compact.

Stability regions for linear systems

For continuous-time dynamical systems described by linear differential equations, stability
analysis amounts to studying the location of the roots of the characteristic polynomial obtained
by applying the Laplace transform. A polynomial is then called stable, if all its roots lie in
the open left part of the complex plane, i.e., if its abscissa is negative. In systems control, the
characteristic polynomial depends on parameters, which are typically controller coefficients that
must be chosen so that the polynomial is stable. For a polynomial with parameterized coefficients,
as we consider in the chapter on hand, the stability region is then the set of parameters for
which the abscissa is negative, that is, the zero sublevel set of the abscissa, in our notation
{q ∈ Q : a(q) < 0}.

2.2 Upper abscissa approximation

Our principal goal is to numerically approximate the abscissa function from above. Thus, we
formulate a linear programming problem whose solution is the abscissa and apply the procedure
described in Section 1.4.1 in order to obtain a hierarchy of semidefinite programs whose solution
converges to the abscissa from above.

2.2.1 Primal and dual formulation

Given a polynomial p defined as above, any function v admissible for the following infinite-
dimensional linear programming problem gives an upper approximation of the abscissa function
ap on Q:

̺ = inf
v∈C (Q)

∫

Q
v(q) dq

s.t. v(q) − u > 0 for all (q, u, z) ∈ Z.
(2.1)

We can consider problem (2.1) as a generalization of problem (1.3), since although the optimiza-
tion variable v ∈ C (Q) is a continuous function, the problem is linear in v and the constraints
are with respect to the cone C+(Z), where Z is a compact basic closed semialgebraic set. Note in
passing that, in contrast to (1.3), here we are minimizing instead of maximizing, so the Lasserre
hierarchy of lower bounds described in Section 1.4.1 will give upper bounds instead of lower
bounds.

Importantly, there is a substantial difference from the situation encountered in problem (1.3).
Here, we are not interested in the value ̺, but in the function v : q 7→ v(q) solving LP problem
(2.1). It is v, which is an approximation to the abscissa function, and since the constraint in
(2.1) implies v(q) > a(q) for all q ∈ Q, it is an upper approximation. On the contrary, the value
̺ just bounds

∫

Q v(q) dq from above.

Remark. Since the continuous functions defined on the compact set Q can be uniformly approxi-
mated by polynomials by the Stone-Weierstraß theorem [Zor04, §16.4.3], we can replace C (Q)
in problem (2.1) with the ring of polynomials R[q].
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The primal LP problem corresponding to problem (2.1) can be constructed as described in
[Bar02, Chapter IV] and reads

̺∗ = sup
µ∈M+(Z)

∫

Z
u dµ(q, u, z)

s.t.
∫

Z
qα dµ =

∫

Q
qα dq for all α ∈ Nn.

(2.2)

This problem can be seen as a generalization of (1.10) in the sense that we have infinitely many
moment constraints in contrast to only one.

Remark 2.2.1. The constraint
∫

Z q
α dµ =

∫

Q qα dq for all α ∈ Nn implies that the marginal of µ
on Q is the Lebesgue measure on Q, i.e., for every g ∈ C (Q) it holds that

∫

Z
g(q) dµ(q, u, z) =

∫

Q
g(q) dq.

In particular this implies that the mass ‖µ‖ = volQ, where vol(·) denotes the volume or Lebesgue
measure.

Lemma 2.1. The supremum in LP problem (2.2) is attained, and there is no duality gap between

LP problem (2.1) and LP problem (2.2), i.e., ̺ = ̺∗.

Proof. The set of feasible solutions for the dual LP problem (2.2) is a bounded subset of M+(Z)
with Z compact and therefore it is weak-star compact. Since the objective function is linear, its
supremum on this weak-star compact set is attained. For elementary background on weak-star
topology, see, e.g., [Bar02, Chapter IV].

To prove that there is no duality gap, we apply [Bar02, Theorem IV.7.2]. For this purpose
we introduce the notation used in [Bar02] in this context. There, the primal and the dual are
written in the following canonical form:

̺∗ = sup
x∈E1

〈x, c〉1 ̺ = inf
y∈F2

〈b, y〉2

s.t. Ax = b, x ∈ E+
1 s.t. A∗y − c ∈ F+

1

So we set E1 := M (Z) with its cone E+
1 := M+(Z). Then their (pre-)duals are F1 := C (Z) and

F+
1 := C+(Z), respectively. Similarly, we define E2 := M (Q) and F2 := C (Q).

Setting x := µ ∈ E1, c := u ∈ F1, b ∈ E2 the Lebesgue measure on Q, and y := v ∈ F2, the
linear operator A: E1 → E2 is given by x 7→ πQx, where πQ denotes the projection onto Q, i.e.,
Ax(B) = x(B × R2) for all B ∈ B(Q), the Borel sigma algebra on Q.

According to [Bar02, Theorem IV.7.2] the duality gap is zero if the cone {(Ax, 〈x, c〉1) : x ∈
E+

1 } is closed in E2 × R. This holds in our setup since x 7→ Ax and x 7→ 〈x, c〉1 are continuous
linear maps and E+

1 = M+(Z) is weak-star closed due to the compactness of Z. So if for some
x̂ ∈ E2, Axn → x̂ as n → ∞, then from the definition of the mapping A and as (xn) ⊂ E+

1 , one
has ‖xn‖ → ‖x̂‖ as n → ∞ (see Remark 2.2.1). Therefore the sequence (xn) ⊂ E+

1 is bounded
and by Banach-Alaoglu’s theorem [Ash00, Bar02], it contains a subsequence (xnk

) ⊂ E+
1 that

converges to some x ∈ E+
1 for the weak-star topology. By continuity of the mappings A and c,

the result follows.

Remark 2.2.2. The infimum in LP problem (2.1) is not necessarily attained, since the set of
feasible solutions is not compact. The reason for this is that we minimize over the L1 norm of v,
which implies that the limit of an optimizing sequence (vl)l∈N does not necessarily need to be
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continuous, because on sets with Lebesgue measure zero it does not need to match the abscissa.
Nor is the infimum attained when we replace C (Q) with R[q], since a is non-Lipschitz, so in
particular not a polynomial.

However, the infimum is attained if we replace C (Q) with R[q]d for d finite. Then, with
M := minq∈Q a(q) > −∞ and ṽ(q) := v(q) − M we can rewrite LP problem (2.1) as the
equivalent problem

inf
ṽ∈R[q]d

∫

Q
ṽ(q)dq s.t. ṽ(q) +M − u > 0 on Z.

Now, any feasible ṽ is non-negative on Q, so
∫

Q ṽ(q)dq = ‖ṽ‖L1 > 0 is a norm because Q has
non-empty interior by assumption, and for every R ∈ R the set {ṽ ∈ R[q]d : R >

∫

Q ṽ(q)dq and
ṽ(q) +M − u > 0 on Z} is closed and bounded in the strong topology, thus compact. Besides,
due to the continuity of a, there always exists an R < ∞ such that the mentioned set is not
empty, hence the infimum is attained.

2.2.2 Lasserre hierarchy

Now, we build the SDP hierarchy for problem (2.1) as described in Section 1.4.1 and examine
its convergence properties. For this, we exchange non-negativity on Z for membership of the
truncated quadratic module generated by the polynomials defining Z, as we did for the hierarchy
(1.14). To be more precise, we exchange C+(Z) (respectively P(Z)) for the quadratic module
Q2d(1 − q2

1, . . . , 1 − q2
n, ±pℜ, ±pℑ) for d ∈ N.

So, let d0 ∈ N be sufficiently large, more precisely let d0 be greater or equal than half the
degree of p, d0 > ⌈ℓ/2⌉. The hierarchy of convex semidefinite programs for LP problem (2.1)
indexed by the parameter d ∈ N, d > d0, reads

̺d = inf
vd,σ0,σj ,τℜ,τℑ

∫

Q
vd(q) dq

s.t. vd(q) − u = σ0(q, u, z) +
n∑

j=1

σj(q, u, z)(1 − q2
j )

+ τℜ(q, u, z)pℜ(q, u, z) + τℑ(q, u, z)pℑ(q, u, z)

(2.3)

for all (q, u, z) ∈ Rn × R2 and with vd ∈ R[q]2d, σ0 ∈ Σ[q, u, z]2d, σj ∈ Σ[q, u, z]2d−2 for
j = 1, . . . , n, and τℜ, τℑ ∈ R[q, u, z]2d−ℓ.

We have seen in the previous chapter that this is a strengthening of (2.1), so since we are
minimizing (in contrast to Section 1.4.1), we get ̺d > ̺.

Furthermore, the quadratic module generated by the polynomials 1−q2
1, . . . , 1−q2

n, ±pℜ, ±pℑ
is archimedean by [Lau09, Lemma 3.17], since it contains the polynomial f(q, u, z) :=

∑n
j=1(1 −

q2
j )−p2

ℜ −p2
ℑ and the set {(q, u, z) ∈ Rn×R2 : f(q, u, z) > 0} is compact. By the same argument

as for (1.15), this implies that the hierarchy converges, i.e., limd→∞ ̺d = ̺.
But as already mentioned, the value ̺d is not our main concern. What we actually want to

show, is that the solution vd converges to the abscissa function. Before approaching this task,
we need to consider that there might be no optimal solution.

Example 2.2.1. The infimum in SDP problem (2.3) is not necessarily attained, e.g., consider
the polynomial p(q, s) = s2. Then pℜ(q, u, z) = u2 − z2, pℑ(q, u, z) = 2uz and Z = Q × {(0, 0)}.
Obviously, the optimal solution to LP problem (2.1) is v ≡ 0. For SDP problem (2.3) we would
want

v(q) − u = σ0(q, u, z) + σ1(q, u, z)(1 − q2)

+ τℜ(q, u, z)(u2 − z2) + 2τℑ(q, u, z)uz,
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meaning 0 ≡ v = u+ σ0 + σ1(1 − q2) + τℜu2 − τℜz2 + 2τℑuz with σ0, σ1 sums of squares. This
is impossible, since it would require the construction of the term −u, which in this case is only
possible as a summand of σ0. Then, however, we would always also produce a constant positive
term. Practically this means that the multipliers σ0, σ1, τℜ, τℑ blow up.

Hence, an optimal solution might not exist, but we always have a near optimal solution.
This means we should allow solutions vd with

∫

Q vd(q) dq 6 ̺d + 1
d , e.g., in the above example

we would search for v ≡ ε for an ε > 0 sufficiently small.

Remark. The existence of an optimal solution depends on further conditions, such as the ideal
generated by the polynomials 1 − q2

j , pℜ, and pℑ being radical, and goes beyond the scope of
this thesis. The interested reader is referred to the proof of [HL12, Lemma 1] for further details.

In the following theorem we prove that the associated sequence of solutions converges.

Theorem 2.2. Let vd ∈ R[q]2d be a near optimal solution for SDP problem (2.3), i.e.,
∫

Q vd(q) dq 6 ̺d + 1
d , and consider the associated sequence (vd)d>d0 ⊆ L1(Q). Then

this sequence converges to the abscissa a in L1 norm on Q as d tends to infinity, i.e.,

limd→∞
∫

Q |vd(q) − a(q)| dq = 0.

Proof. Recall that ̺∗ = ̺ according to Lemma 2.1. First we show that ̺ =
∫

Q a(q) dq. For every
(q, u, z) ∈ Z we have u 6 a(q) and since

∫

Z q
αdµ =

∫

Q qαdq for all α ∈ Nn which means that the
marginal of µ on Q is the Lebesgue measure on Q (see Remark 2.2.1), it follows that for every
feasible solution µ ∈ M+(Z)

∫

Z
u dµ(q, u, z) 6

∫

Z
a(q) dµ(q, u, z) =

∫

Q
a(q) dq.

Hence ̺ 6
∫

Q a(q) dq. On the other hand, for every q ∈ Q there exists (q, uq, zq) ∈ Z such that
a(q) = uq. Let µ̂ be the Borel measure concentrated on (q, uq, zq) for all q ∈ Q, i.e., for A in the
Borel sigma algebra of Z it holds that

µ̂(A) := 1A(q, uq, zq).

Then µ̂ is feasible for problem (2.2) with value
∫

Z
u dµ̂(q, u, z) =

∫

Q
a(q) dq,

which proves that ̺ >
∫

Q a(q) dq, hence ̺ =
∫

Q a(q) dq.
Next we show convergence in L1. Since the abscissa a is continuous on the compact set Q,

by the Stone-Weierstraß theorem [Zor04, §16.4.3] it holds that for every ε > 0 there exists a
polynomial hε ∈ R[q] such that

sup
q∈Q

|hε(q) − a(q)| < ε

2
.

Hence, the polynomial vε := hε + ε satisfies vε − a > 0 on Q and we have vε(x) − u > 0 on Z.
Since the corresponding quadratic module is archimedean (see discussion following (2.3)), by
Putinar’s Positivstellensatz, Theorem 1.1, there exist σε0, σ

ε
j ∈ Σ[q, u, z], τ εℜ, τ

ε
ℑ ∈ R[q, u, z] such

that for all (q, u, z) ∈ Rn × R2 we can write

vε(q) − u = σε0(q, u, z) +
n∑

j=1

σεj (q, u, z)(1 − q2
j )

+ τ εℜ(q, u, z)pℜ(q, u, z) + τ εℑ(q, u, z)pℑ(q, u, z).
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Therefore, for d > dε := ⌈deg(vε)/2⌉ the tuple (vε, σε0, σ
ε
j , τ

ε
ℜ, τ

ε
ℑ) is a feasible solution for SDP

problem (2.3) satisfying

0 6

∫

Q
(vε(q) − a(q)) dq 6

3ε
2

∫

Q
dq.

Together with
∫

Q a(q) dq = ̺ 6 ̺d which is due to the first part of the proof and ̺d being a
strengthening of ̺, it follows that whenever d > dε,

0 6 ̺d −
∫

Q
a(q) dq 6

∫

Q
(vε(q) − a(q)) dq 6

3ε
2

∫

Q
dq.

As ε > 0 was arbitrary, we obtain limd→∞ ̺d =
∫

Q a(q) dq and since a 6 vd for all d, this is the
same as convergence in L1:

0 6 lim
d→∞

‖vd − a‖1 = lim
d→∞

∫

Q
|vd(q) − a(q)| dq

= lim
d→∞

∫

Q
(vd(q) − a(q)) dq 6 lim

d→∞

(

̺d +
1
d

)

−
∫

Q
a(q) dq = 0.

As mentioned in Section 2.1, the abscissa function is important when studying stability
of linear differential equations, and the zero sublevel set of the abscissa of the characteristic
polynomial {q ∈ Q : a(q) < 0} is called the stability region. The following statement on
polynomial inner approximations of this set follows immediately from the L1 convergence result
of Theorem 2.2; see also [HL12].

Corollary 2.3. Let vd ∈ R[q]2d denote, as in Theorem 2.2, a near optimal solution for SDP

problem (2.3). Then {q ∈ Q : vd(q) < 0} ⊆ {q ∈ Q : a(q) < 0} and limd→∞ vol {q ∈ Q : vd(q) <
0} = vol {q ∈ Q : a(q) < 0}.

2.2.3 Examples

As stated in Corollary 2.3, while approximating the abscissa function from above we also get an
inner approximation of the stability region. The authors of [HL12] surveyed a different approach.
They described the stability region via the eigenvalues of the Hermite matrix of the polynomial
and approximated it using an SDP hierarchy. In the following examples we compare the two
different methods and highlight the specific advantages of our abscissa approximation.

Example 2.2.2 (The damped oscillator [Cro10]). Consider the second degree polynomial
depending on n = 1 parameter q ∈ Q = [−1, 1],

p : s 7→ p(q, s) = s2 + 2qs+ 1 − 2q.

Then Z = {(q, u, z) ∈ [−1, 1]×R2 : u2 −z2 +2qu+1−2q = 2uz+2qz = 0} and the corresponding
hierarchy of SDP problems (2.3) reads

̺d = inf
vd,σ0,σ1,τℜ,τℑ

∫ 1

−1
vd(q) dq

s.t. vd(q) − u = σ0(q, u, z) + σ1(q, u, z)(1 − q2)

+ τℜ(q, u, z)(u2 − z2 + 2qu+ 1 − 2q) + τℑ(q, u, z)(2uz + 2qz)
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Figure 2.1 – Abscissa a(q) (black) and its polynomial upper approximations vd(q) of degree
2d = 4 (left, red) and 2d = 10 (right, red) for Example 2.2.2. The quality of the approximation
deteriorates near the minimum, where the abscissa is not Lipschitz.

for all (q, u, z) ∈ R3 and with vd ∈ R[q]2d, σ0 ∈ Σ[q, u, z]2d, σ1 ∈ Σ[q, u, z]2d−2, and τℜ, τℑ ∈
R[q, u, z]2d−2. Apart from that, we only need the moments of the Lebesgue measure on [−1, 1]
for a successful implementation. These are readily given by

yα =
∫ 1

−1
qα dq =

1 − (−1)α+1

α+ 1
,

meaning that
∫ 1

−1 vd(q) dq =
∑d
α=1 vdαyα with vdα denoting the coefficient of the monomial qα

of vd. See Figure 2.1 for the graphs of the degrees 4 (i.e., d = 2) and 10 (i.e., d = 5) polynomial
upper approximations of the abscissa.

For the Hermite approximation we compute the Hermite matrix H of p (see [HPAŠ03] for
details)

H(q) =

(

4q − 8q2 0
0 4q

)

and write the hierarchy of optimization problems as presented in [HL12]:

max
gd,σ0,σ1,τ

∫ 1

−1
gd(q) dq

s.t. uTH(q)u − gd(q) = σ0(q,u) + σ1(q,u)(1 − q2) + τ(q,u)(1 − uTu)

for all (q,u) ∈ [−1, 1] × R2 and with gd ∈ R[q]2d, σ0 ∈ Σ[q,u]2d, σ1 ∈ Σ[q,u]2d−2, and
τ ∈ R[q,u]2d−2. Already for degree 2d = 6 we observe a close match between the genuine
stability region, which is {q ∈ [−1, 1] : a(q) < 0} = (0, 1

2), the Hermite inner approximation
{q ∈ [−1, 1] : −g3(q) < 0}, and the polynomial upper approximation {q ∈ [−1, 1] : v5(q) < 0}.
These three intervals are visually indistinguishable, so we do not represent them graphically.

Example 2.2.3. Consider the polynomial

p : s 7→ p(q, s) = s3 + 1
2s

2 + q2s+ (q − 1
2)q(q + 1

2)

for q ∈ Q = [−1, 1]. The abscissa function a(q) of p is not differentiable at three points and
therefore it is rather hard to approximate in their neighborhoods. In Figure 2.2 we see the abscissa
and its polynomial upper approximations of degrees 6 (d = 3) and 12 (d = 6). Comparing
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Figure 2.2 – Abscissa a(q) (black) and its polynomial upper approximations vd(q) of degree
2d = 6 (left, red) and 2d = 12 (right, red) for Example 2.2.3. The quality of the approximation
deteriorates near the points of non-differentiability of the abscissa.

the genuine stability region {q ∈ [−1, 1] : a(q) < 0}, the polynomial inner approximation
{q ∈ [−1, 1] : v6(q) < 0}, and the Hermite inner approximation {q ∈ [−1, 1] : −g5(q) < 0}, we
observe, maybe surprisingly, that the approximations are very similar and miss the same parts
of the stability region. These are not reproduced graphically.

Remark. The approach via the Hermite matrix does not tell us anything about the abscissa
function itself but just approximates its zero sublevel set, the so-called stability region defined in
Section 2.1. As an illustration consider a polynomial of the form p(q, s) = s2 + p0(q) for n = 1.
Then p(q, ·) has either 0 as a multiple root, two real roots (of which one is positive), or only
imaginary roots. Since these are all possible cases it follows that the stability region of p is
empty and its Hermite matrix H(q) is zero. Therefore its eigenvalues and their approximation
gd are also zero for every d. In contrast, the upper abscissa approximation vd always gives a
suitable approximation for the abscissa function.

On the other hand, practical experiments (not reported here) reveal that computing the
abscissa approximation is typically more challenging numerically than computing the Hermite
approximation. For instance, computing the upper abscissa approximation may fail for polyno-
mials with large coefficients, while the Hermite approximation continues to provide a proper
inner approximation of the stability region.

Example 2.2.4. Consider the polynomial

p : s 7→ p(q, s) = s3 + (q1 + 3
2)s2 + q2

1s+ q1q2

depending on n = 2 parameters q ∈ Q = [−1, 1]2. Then Z = {(q, u, z) ∈ [−1, 1]2 × R2 :
u3 − 3uz2 + (q1 + 3

2)u2 − (q1 + 3
2)z2 + q2

1u+ q1q2 = −z3 + 3u2z + 2(q1 + 3
2)uz + q2

1z = 0}. See
Figure 2.3 for the plot of the abscissa of p.

In Figure 2.4 we represent the graphs of the abscissa a and its polynomial approximations
v3 and v5. In Figure 2.5 we represent the stability region, i.e., the zero sublevel set of the
abscissa {q ∈ [−1, 1]2 : a(q) < 0} (blue region), the degree 8 (d = 4) Hermite sublevel set
{q ∈ [−1, 1]2 : −g4(q) < 0} (green region, left), and the degree 10 (d = 5) polynomial sublevel
set {q ∈ [−1, 1]2 : v5(q) < 0} (red region, right).

Remark. In the examples we always chose lower degrees for the Hermite approximation than for
the upper abscissa approximation. The Hermite approximation converges relatively fast, making
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Figure 2.4 – Abscissa a(q) (light, below) and its polynomial upper approximations vd(q) of degrees
2d = 6 (dark, left) and 2d = 10 (dark, right) for Example 2.2.4. See Figure 2.3 for the graph of
a only. We observe that the approximation deteriorates near the regions of non-differentiability
of the abscissa.

it unnecessary to consider higher degrees, especially since they require much more time. On
the contrary, the upper abscissa approximation usually needs higher degrees to provide a useful
approximation, but it is faster to compute.

2.3 Lower abscissa approximation

At first thought, finding a lower approximation for the abscissa map might sound like a straight-
forward task, since one is tempted to just solve the analogue of LP problem (2.1),

sup
w∈C (Q)

∫

Q
w(q) dq

s.t. u− w(q) > 0 for all (q, u, z) ∈ Z.
(2.4)

This, indeed, gives a valid lower bound on the abscissa function, although in general a very
bad one since it is approximating not the abscissa but the minimal real part of the roots of p.
To understand the reason we recall that

Z = {(q, u, z) ∈ Rn × R2 : q ∈ Q, pℜ(q, u, z) = pℑ(q, u, z) = 0}

and therefore this set contains all roots of p and not only those with maximal real part.
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Figure 2.5 – Stability region (blue region) and its inner approximations with degree 2d = 8
Hermite (green region, left) and degree 2d = 10 upper polynomial approximation (red region,
right) for Example 2.2.4 (compare with Figure 2.4).

Example 2.3.1. On the left of Figure 2.6 we show the degree 12 (d = 6) solution to the SDP
hierarchy corresponding to LP problem (2.4) for the polynomial p(q, s) = s2 + 2qs+ 1 − 2q of
Example 2.2.2, which gives a tight lower approximation to the abscissa only in the left part of the
domain, corresponding to a pair of complex conjugate roots. On the right of Figure 2.6 we show
the degree 2d = 12 solution to the SDP hierarchy corresponding to LP problem (2.4) for the
polynomial p(q, s) = s3 + 1

2s
2 + q2s+ (q− 1

2)q(q+ 1
2) of Example 2.2.3. The lower approximation

is nowhere tight, due to the presence of roots with real parts smaller than the abscissa.
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Figure 2.6 – Real parts of the roots (black) and degree 2d = 12 polynomial lower approximations
(red) for the second degree polynomial (left) and third degree polynomial (right) of Example 2.3.1.

To find a tighter approximation for the abscissa map from below we pursue two different
approaches:

• First, we reformulate the set Z with the help of elementary symmetric functions, in order
to have access to the roots directly. This is a very neat way with options for variation, such
as approximating the second largest real part of the roots from above or below, but it also
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includes many additional variables and it is therefore not very efficient when implemented.
However, it can be useful for small problems.

• Second, we restrict LP problem (2.4) further using the Gauß-Lucas theorem, i.e., instead
of Z we use a subset of Z which contains only the roots with the abscissa as its real parts.
This approach is much more complicated, and relies on assumptions and one needs to
solve two optimization problems in order to get the lower approximation. Nevertheless,
the implementation is much faster, so it can be used for bigger problems.

2.3.1 Lower approximation via elementary symmetric functions

2.3.1.1 Problem formulation

Let us derive another description of the set of roots of p which allows us to pick single roots
according to the size of their real part. For this purpose let us recall the definition of our
polynomial:

p : s 7→ p(q, s) :=
ℓ∑

k=0

pk(q)sk with pℓ(q) ≡ 1.

Following the notation of the previous sections, we denote the roots of p(q, ·) by sr(q), r = 1, . . . , ℓ,
and split them up into their real and imaginary parts, sr(q) = ur(q)+i zr(q) with ur(q), zr(q) ∈ R.
To simplify notation we omit the dependence on q whenever it is clear and write only sr, ur,
and zr.

Now we write the coefficients of the polynomial as elementary symmetric functions (in the
following sometimes abbreviated as ESF) of its roots:

pℓ−k(q) = (−1)k
∑

16l1<l2<···<lk6ℓ
sl1sl2 · · · slk , k = 1, . . . , ℓ.

This allows us to define the set of roots of p in the following way, where we can order the roots
according to the size of their real part:

Z′
o :=

{

(q, u1, . . . , uℓ, z1, . . . , zℓ) ∈ Q × Rℓ × Rℓ : ur 6 uℓ, r = 1, . . . , ℓ− 1,

pℓ−k(q) = (−1)k
∑

16l1<l2<···<lk6ℓ
sl1sl2 · · · slk , k = 1, . . . ℓ

}

.

To avoid the complex variables slk in the description of the set, we could replace them by
slk = ulk + izlk and split the sum

∑

16l1<···<lk6ℓ sl1sl2 · · · slk into its real and imaginary parts.
The latter would be zero, since all pℓ−k(q) are real. In what follows we omit this procedure,
since it would only complicate notation.

For illustrative reasons let us fix q for a moment. Then the set Z′
o contains only one element

(q, u1, . . . , uℓ, z1, . . . , zℓ). From this it holds that uℓ = a(q) and the points (q, ur, zr), r = 1, . . . , ℓ,
are exactly the elements of Z.

Remark. One could order the roots further by adding more conditions, such as ur 6 uℓ−1, r =
1, . . . , ℓ− 2. Then one could also access the root with the second largest real part. Of course,
this would imply another ℓ− 2 constraints in an implementation and therefore this would slow
down further the solution process.

In theory, ℓ variables suffice to characterize the roots of a real polynomial via the elementary
symmetric functions, but since we need all variables ur explicitly in order to identify the maximal
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one, we can only eliminate ⌊ℓ/2⌋ = max{c ∈ Z : c 6 ℓ/2} variables. We set

zr−1 = −zr, r = 2, 4, . . . , ℓ if ℓ is even,

meaning we decide which roots will be pairs in case they are complex. If ℓ is odd, we cannot
assign the pairs of conjugate roots as easily as we did in the even case, because it is necessary to
keep the variable zℓ, since we defined uℓ as the abscissa. Furthermore, we need to consider that
we do not know whether sℓ is real. In fact, sℓ(q) can be real for some q and complex for others.
So we set

zr−1 = −zr, r = 2, 4, . . . , ℓ− 3 and zℓ−2 = −zℓ−1 − zℓ if ℓ is odd,

where the latter assignment comes from the imaginary part of the constraint pℓ−1(q) = −s1 −
s2 − · · · − sℓ which reads 0 = −z1 − z2 − · · · − zℓ, and means that at least one of the roots
sℓ−2, sℓ−1, sℓ is real, but we do not specify which.

Remark. Even though we know for ℓ odd that one root must be real, we cannot eliminate ⌈ℓ/2⌉
variables, since it might happen that sℓ(q) is the single real root for some q while it is complex
for other q.

Now we can write the set of roots with fewer variables and fewer constraints. As above,
we keep the variables sr in the description of the set for readability reasons but remark that
with the reduced amount of z variables the constraints 0 = ℑ(

∑

16l1<···<lk6ℓ sl1sl2 · · · slk) for
k = 1, . . . , ⌊ℓ/2⌋ are superfluous. We have

Zo :={(q, u1, . . . , uℓ, z2, z4, . . . , z2⌊(ℓ−1)/2⌋, zℓ) ∈ Q × Rℓ × R⌈ℓ/2⌉ :

ur 6 uℓ, r = 1, . . . , ℓ− 1,

pℓ−k(q) = (−1)k
∑

16l1<l2<···<lk6ℓ
sl1sl2 · · · slk , k = 1, . . . ℓ}.

Example 2.3.2. For ℓ = 3 the set Zo is given by

Zo = {(q, u1, u2,u3, z2, z3) ∈ Q × R3 × R2 : u1 6 u3, u2 6 u3,

−p2(q) = u1 + u2 + u3,

p1(q) = u1u2 + u1u3 + u2u3 + z2
2 + z2z3 + z2

3 ,

−p0(q) = u1u2u3 + (−u1 + u2 + u3)z2z3 + u2z
2
3 + u3z

2
2 ,

0 = (u1 − u2)z2 + (u1 − u3)z3,

0 = (u1 − u2)u3z2 + (u1 − u3)u2z3 + z2
2z3 + z2z

2
3}.

To clarify the formula also for ℓ even, we write Zo explicitly for ℓ = 4,

Zo = {(q, u1, u2,u3, u4, z2, z4) ∈ Q × R4 × R2 : u1 6 u4, u2 6 u4, u3 6 u4,

−p3(q) = u1 + u2 + u3 + u4,

p2(q) = u1u2 + u1u3 + u1u4 + u2u3 + u2u4 + u3u4 + z2
2 + z2

4 ,

−p1(q) = u1u2(u3 + u4) + (u1 + u2)u3u4 + (u1 + u2)z2
4 + (u3 + u4)z2

2 ,

p0(q) = u1u2u3u4 + (u1 − u2)(u4 − u3)z2z4 + u1u2z
2
4 + u3u4z

2
2 + z2

2z
2
4 ,

0 = (u1 − u2)(u3 + u4)z2 + (u1 + u2)(u3 − u4)z4,

0 = (u1 − u2)(u3u4 + z2
4)z2 + (u3 − u4)(u1u2 + z2

2)z4}.

Here we have set z1 = −z2 and z3 = −z4, so the constraint 0 = ℑ(
∑

16l1<···<lk6ℓ sl1sl2 · · · slk) for
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k = 1 is obviously superfluous, because it reduces to 0 = 0. The second superfluous constraint is
the one for k = 2, that is, 0 = (u1 − u2)z2 + (u3 − u4)z4, since we have u1 = u2, respectively,
u3 = u4, in the case s2, respectively, s4, is complex.

Finally, we can reformulate LP problem (2.4) in such a way that it provides a proper
approximation of the abscissa function from below:

ϑ = sup
w∈C (Q)

∫

Q
w(q) dq

s.t. uℓ − w(q) > 0 for all (q, u1, . . . , uℓ, z2, z4, . . . , z2⌊(ℓ−1)/2⌋, zℓ) ∈ Zo.
(2.5)

With the notation of Section 2.2.1 its dual LP problem reads

ϑ∗ = inf
µ∈M+(Zo)

∫

Zo

uℓ dµ(q, u1, . . . , uℓ, z2, z4, . . . , z2⌊(ℓ−1)/2⌋, zℓ)

s.t.
∫

Zo

qα dµ =
∫

Q
qα dq for all α ∈ Nn.

(2.6)

In analogy with the upper approximation we have no duality gap and the infimum is attained.

Lemma 2.4. The infimum in LP problem (2.6) is attained, and there is no duality gap between

LP problem (2.5) and LP problem (2.6), i.e., ϑ = ϑ∗.

Since Zo is compact, the proof is identical to that of Lemma 2.1.

Remark 2.3.1. For the same reasons as for the upper approximation (2.1), the supremum in (2.5)
is not attained for C (Q) or R[q], but it is attained for R[q]d with d finite. See Remark 2.2.2 with
M := minq∈Q a(q) −N for N ∈ N sufficiently large, and R :=

∫

Q (a(q) −M) dq.

2.3.1.2 Lasserre hierarchy

Similarly to the upper bound, we apply the method described in Section 1.4.1, meaning we
exchange non-negativity on Zo by membership of the truncated quadratic module generated by
the polynomials describing Zo.

Let d0 ∈ N be sufficiently large, d0 > ⌈ℓ/2⌉. Then for d ∈ N, d > d0 the corresponding
hierarchy of SDP problems reads

ϑd = sup
wd,σ0,σj ,σur ,τℜ,k,τℑ,k

∫

Q
wd(q) dq (2.7)

s.t. uℓ − wd(q) = σ0 +
n∑

j=1

σj(1 − q2
j ) +

ℓ−1∑

r=1

σur (uℓ − ur)

+
ℓ∑

k=1

τℜ,k



(−1)kpℓ−k(q) − ℜ



∑

16l1<l2<···<lk6ℓ
sl1sl2 · · · slk









+
ℓ∑

k=⌊ℓ/2⌋
τℑ,kℑ




∑

16l1<l2<···<lk6ℓ
sl1sl2 · · · slk





for all (q, u1, . . . , uℓ, z2, z4, . . . , z2⌊(ℓ−1)/2⌋, zℓ) ∈ Rn × Rℓ × R⌈ℓ/2⌉ and with wd ∈ R[q]2d, σ0, σur ∈
Σ[q, u1, . . . , uℓ, z2, z4, . . . , zℓ]2d for r = 1, . . . , ℓ− 1, σj ∈ Σ[q, u1, . . . , uℓ, z2, z4, . . . , zℓ]2d−2 for k =
1, . . . , n, τℜ,k ∈ R[q, u1, . . . , uℓ, z2, z4, . . . , zℓ]2d−k for k = 1, . . . , ℓ, and τℑ,k for k = ⌊ℓ/2⌋ , . . . , ℓ.

Since we are maximizing, SDP problem (2.7) is a strengthening of LP problem (2.5), mean-
ing ϑd 6 ϑ. Furthermore, the quadratic module corresponding to Zo is archimedean, i.e.,
limd→∞ ϑd = ϑ.
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We conclude the section with the following result.

Theorem 2.5. Let wd ∈ R[q]2d be a near optimal solution for SDP problem (2.7), i.e.,
∫

Qwd(q) dq > ϑd − 1
d , and consider the associated sequence (wd)d>d0 ⊆ L1(Q). Then this

sequence converges to a in L1 norm on Q.

Unsurprisingly, one can prove this result in exactly the same way as Theorem 2.2, so we do
not detail the proof here. We remark that the first part of the proof can be shortened, since
∫

Zo
uℓ dµ(q, u1, . . . , uℓ, z2, z4, . . . , zℓ) =

∫

Zo
a(q) dµ(q, u1, . . . , uℓ, z2, z4, . . . , zℓ).

2.3.1.3 Examples

Just as the upper abscissa approximation automatically approximates the stability region from
inside, the lower approximation gives, as a side effect, an outer approximation. In this section
we will examine the same examples as for the upper approximation.

Example 2.3.3. As in Example 2.2.2, consider the polynomial

p : s 7→ p(q, s) = s2 + 2qs+ 1 − 2q.

We have z1 = −z2, so Zo := {(q, u1, u2, z2) ∈ Q × R3 : u1 6 u2, −2q = u1 + u2, 1 − 2q =
u1u2 + z2

2 , 0 = (u1 − u2)z2}. In Figure 2.7 we see the graphs of the degrees 6 (d = 3) and 10
(d = 5) polynomial lower approximations obtained by solving SDP problem (2.7). Due to the
rather large number of variables and constraints, computing the degree 10 solution is already
relatively expensive, with a few seconds of CPU time.
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Figure 2.7 – Abscissa a(q) (black) and its polynomial lower ESF approximations wd(q) of degree
2d = 6 (red, left) and 2d = 10 (red, right) for Example 2.3.3. The quality of the approximation
deteriorates near the minimum, where the abscissa is not Lipschitz. Compare with Figure 2.1.

Example 2.3.4. As in Example 2.2.3, consider the polynomial

p : s 7→ p(q, s) = s3 + 1
2s

2 + q2s+ (q − 1
2)q(q + 1

2).

With z1 = −z2 − z3 we calculate Zo as in Example 2.3.2. In Figure 2.8 we see the graphs of the
degrees 6 (d = 3) and 10 (d = 5) polynomial lower approximations obtained by solving SDP
problem (2.7). The computation time to get the degree 10 solution is nearly 7 minutes, which is
arguably unreasonable given the quality of the approximation.
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Figure 2.8 – Abscissa a(q) (black) and its polynomial lower ESF approximations wd(q) of degree
2d = 6 (red, left) and 2d = 10 (red, right) for Example 2.3.4. The quality of the approximation
deteriorates near the minimum, where the abscissa is not differentiable. Compare with Figure 2.2.

Remark. As for the upper abscissa approximation, we observe practically that the implementation
for the lower approximation is rather sensitive to polynomials with large coefficients.
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Figure 2.9 – Stability region (blue region) and its degree 2d = 6 outer ESF approximation (red
region, left) and degree 2d = 8 outer ESF approximation (red region, right) for Example 2.3.5.
Compare with Figure 2.5.

Example 2.3.5. As in Example 2.2.4, consider the polynomial

p : s 7→ p(q, s) = s3 + (q1 + 3
2)s2 + q2

1s+ q1q2.

Since we have degree ℓ = 3, the set Zo is again given in Example 2.3.2. In Figure 2.9 we see
the outer approximation of degrees 6 (d = 3) and 8 (d = 4) obtained by solving SDP problem
(2.7). In the lower half of the picture we notice that the approximation of the stability region is
rather bad near q1 = 0, even for degree 2d = 8. This is due to a being zero and non-smooth
for q1 = 0, meaning a(0, q2) = 0 for all q2 ∈ [−1, 1], which makes the abscissa especially hard
to approximate in this region. This phenomenon also prevents w4 from getting closer to a for
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q2 > 0 than we observe in the picture. The degree 6 solution is computed in around 5 seconds,
the degree 8 solution takes more than 4 minutes.

2.3.2 Lower approximation via Gauß-Lucas

2.3.2.1 Problem formulation

As indicated above, we want to find a semialgebraic subset of Z which contains only those roots
of p whose real part is maximal. In contrast to the approach of Section 2.3.1, we will not redefine
Z but formulate further constraints.

In order to do this we must distinguish between the roots of p(q, ·) according to the size
of their real parts. For this purpose we use the following result (in the following sometimes
abbreviated as GL).

Theorem 2.6 (Gauß-Lucas). The critical points of a non-constant polynomial lie in the convex

hull of its roots.

We refer to [BLO04] for further information and a proof. Let us denote the derivative of
p(q, s) with respect to s by p′(q, s). By Theorem 2.6, the roots of p′(q, ·) are contained in the
convex hull of the roots of p(q, ·). It follows readily that the abscissa ap′ of p′ lies below the
abscissa ap of p,

ap′(q) 6 ap(q) for all q ∈ Q.

However, p may have some roots with real part strictly smaller than ap and strictly bigger
than ap′ , meaning that the root whose real part is the abscissa is not the only one whose real part
lies above ap′ . Of course, this cannot happen for polynomials R → R because of monotonicity,
and neither can it for polynomials C → C of degree 2. But, for example, for n = 1 (i.e. Q ⊆ R)
the polynomial p(q, ·) : C → C, p(q, s) = s4 + (q2 + 1)s + q has two roots with different real
parts greater than ap′ for q ∈ [−1,−0.4].

To prevent the lower abscissa approximation from converging to the real part of a root
smaller than the abscissa, we make the following assumption.

Assumption 1. None of the real parts of any root of p that differ from the abscissa coincide

with ap′ or lie strictly between ap and ap′, i.e., u /∈ [ap′(q), ap(q)[ for all (q, u, z) ∈ Z.

Remark. Unfortunately, we do not know how restrictive this assumption is. For n = 1 it was
rather difficult to find examples that violate it.

Now let v̂ ∈ C (Q) be a near optimal solution to LP problem (2.1) for the polynomial p′,
meaning

∫

Q v̂(q) dq 6 ̺+ ε for an ε > 0. Then, v̂ is an upper approximation of the abscissa ap′

of p′. We define the following subset:

Ẑ := {(q, u, z) ∈ Z : u− v̂(q) > 0}.

In order to see where we are going, let us suppose for a moment that v̂ is actually an optimal
solution. Then, under Assumption 1, the set Ẑ would contain exactly the points (q, ap(q), zq)
(with zq denoting the imaginary part of the root of p(q, ·)) with maximal real part. Hence, the
solution to the following LP problem would give a lower approximation of the abscissa function
ap of p:

sup
w∈C (Q)

∫

Q
w(q) dq

s.t. u− w(q) > 0 for all (q, u, z) ∈ Ẑ.
(2.8)
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Since v̂ might not be optimal, the projection of Ẑ onto Q might not be Q as required, but differ
from it on a set of volume ε. As a consequence, w might not be a valid lower bound of the
abscissa on this set.

Taking this into account, we build an SDP hierarchy for LP problem (2.8) in the next section.
The issue is that we have to consider the hierarchy for the upper approximation of ap′ first and
the solution to it might interfere with ap.

2.3.2.2 Lasserre hierarchy

For d′
0 ∈ N sufficiently large we denote by v̂d′ , d′ > d′

0, the solutions to the SDP problems (2.3)
for the polynomial p′. Thus, the v̂d′ are polynomials in R[q]2d′ and by Theorem 2.2 the sequence
(v̂d′)d′∈N converges to ap′ from above in L1 norm.

Next, we want to describe the set Ẑ via the polynomials v̂d′ in order to have an implementable
problem, i.e., we define

Ẑd′ := {(q, u, z) ∈ Z : u− v̂d′(q) > 0}.

Of course, the set Ẑd′ is highly dependent on the quality of v̂d′ and hence on the choice of d′.
Evidently, Ẑd′ is a subset of Ẑ, possibly strictly. To ensure that Ẑd′ contains all roots of p with
the abscissa as their real parts we need v̂d′ 6 ap. However, in practice this is impossible in some
cases.

Example 2.3.6. The abscissa ap of p(q, s) = (s3 + q)2 and the abscissa ap′ of p′ coincide and
have a point of non-differentiability at q = 0. As another example consider the polynomial
p(q, s) = s4 + qs for which both ap and ap′ are not differentiable at q = 0 and ap(0) = ap′(0) = 0.

For these examples we cannot achieve v̂d′ 6 ap with d′ finite, since v̂d′ is a polynomial and
therefore differentiable everywhere.

As a consequence, we formulate another assumption. In general, the points that may cause
problems are the ones where ap and ap′ coincide, i.e., the points of the set

D := {q ∈ Q : ap(q) = ap′(q)}.

On this set the polynomial v̂d′ should approximate ap′ perfectly for a finite d′, meaning v̂d′(q) =
ap′(q) for all q ∈ D. Calling a solution v̂d′ near optimal if it satisfies

∫

Q v̂d′(q) dq 6 ̺d′ + 1
d′ , we

assume as follows:

Assumption 2. There is a near optimal solution v̂d′ to SDP problem (2.3) for the polynomial

p′ with d′ finite such that v̂d′ and ap′ coincide on D.

Remark. A sufficient condition for a violation of Assumption 2 is the existence of a value of q for
which ap′ is not differentiable and ap(q) = ap′(q). This is the case for the examples given above.
Note also that they are of degenerate nature.

To face another issue, we denote the projection of Ẑd′ onto the set Q by πQ(Ẑd′), i.e.,

πQ(Ẑd′) = {q ∈ Q : ∃u, z ∈ R : (q, u, z) ∈ Ẑd′}.

Since v̂d′ converges to a in L1, but not necessarily uniformly, it might have spikes or similar
irregularities, meaning that the set Q \ πQ(Ẑd′) is not empty. However, the L1 convergence of
v̂d′ , or more precisely the convergence in measure, implies that there is a subsequence (v̂d′

l
)l∈N

which converges to ap′ almost uniformly (see, e.g., [Ash00, Theorem 2.5.3]). In other words, for
all δ > 0, there exists a set Aδ in the Borel sigma algebra of Q such that

∫

Aδ
dq < δ and v̂d′

l
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converges uniformly on AC
δ to ap′ when l → ∞, where AC

δ is the set-theoretic complement of
Aδ in Q. With this notation we have

πQ(Ẑd′) ⊆ AC
δ ⊆ Q.

Lemma 2.7. Let Assumption 2 hold. Then, for every δ > 0 there exists a finite d′ ∈ N and a

set Aδ in the Borel sigma algebra of Q with
∫

Aδ
dq < δ such that v̂d′ 6 ap on AC

δ .

Proof. Fix δ > 0. As discussed above there exists a set Aδ in the Borel sigma algebra of Q such
that

∫

Aδ
dq < δ and v̂d′

l
converges uniformly to ap′ on AC

δ as l → ∞. Obviously we want

0 6 ap(q) − v̂d′(q) = ap(q) − ap′(q) + ap′(q) − v̂d′(q) (2.9)

for every q ∈ AC
δ ⊆ Q. By Theorem 2.6, we have ap(q) − ap′(q) > 0 for all q ∈ Q. On the

contrary, the difference ap′(q) − v̂d′(q) is negative by construction, but due to Theorem 2.2 we
find a subsequence v̂d′

l
converging uniformly to ap′ on AC

δ . Hence, there is a finite d′
l∗ such

that (2.9) is fulfilled for all q ∈ {q ∈ AC
δ : ap(q) > ap′(q)}. Because of Assumption 2 there is

also a finite d∗ such that ap′(q) − v̂d∗(q) vanishes on {q ∈ AC
δ : ap(q) = ap′(q)} ⊆ D. Taking

d′ = d′
l′ > d∗ with l′ > l∗ completes the proof.

Remark. Choosing d′ according to Lemma 2.7 implies πQ(Ẑd′) = AC
δ .

Under Assumption 1 and Assumption 2 and with an appropriate choice of d′ (depending on
δ) the solution to the following LP problem gives a lower approximation of the abscissa function
ap of p on the set AC

δ ⊆ Q:

ϑd′ = sup
w∈C (Q)

∫

πQ(Ẑd′ )
w(q) dq

s.t. u− w(q) > 0 for all (q, u, z) ∈ Ẑd′ .

(2.10)

Remark. Note that under Assumption 1, LP problem (2.10) always provides a proper approxi-
mation for the abscissa ap from below on πQ(Ẑd′), but this might not be very useful, since for
bad v̂d′ this set may have big holes or even be empty. To achieve suitable results on AC

δ we need
Assumption 2 and an appropriate d′, meaning a sufficiently good v̂d′ ensuring πQ(Ẑd′) = AC

δ .

In analogy with (2.2), the dual LP problem reads

ϑ∗
d′ = inf

µ∈M +(Ẑd′ )

∫

Ẑd′

u dµ(q, u, z)

s.t.
∫

Ẑd′

qα dµ =
∫

πQ(Ẑd′ )
qα dq for all α ∈ Nn

(2.11)

with the notation of Section 2.2.1.

Lemma 2.8. The infimum in LP problem (2.11) is attained, and there is no duality gap between

LP problem (2.10) and LP problem (2.11), i.e., ϑd′ = ϑ∗
d′.

Since Ẑd′ is a compact subset of Z, we can mimic the proof of Lemma 2.1 in order to obtain
a proof of Lemma 2.8.

Remark. As in Remark 2.2.2, the supremum in LP problem (2.10) is not attained for C (Q)
or R[q], but it is attained for R[q]d with d finite. To adjust the proof of Remark 2.2.2, set
M := minq∈Q a(q) − N for an N ∈ N sufficiently large, and R :=

∫

Q (a(q) −M) dq as in
Remark 2.3.1.
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Finally, for d′ as in Lemma 2.7 and d0 > d′ sufficiently large, e.g. d0 > ⌈ℓ/2⌉, we can write an
SDP hierarchy indexed by d ∈ N, d > d0:

ϑd′,d = sup
wd,σ0,σj ,σv̂ ,τℜ,τℑ

∫

πQ(Ẑd′ )
wd(q) dq (2.12)

s.t. u− wd(q) = σ0(q, u, z) +
n∑

j=1

σj(q, u, z)(1 − q2
j ) + σv̂(q, u, z)(u− v̂d′(q))

+ τℜ(q, u, z)pℜ(q, u, z) + τℑ(q, u, z)pℑ(q, u, z)

for all (q, u, z) ∈ Rn × R2 and with wd ∈ R[q]2d, σ0 ∈ Σ[q, u, z]2d, σj ∈ Σ[q, u, z]2d−2 for
j = 1, . . . , n, σv̂ ∈ Σ[q, u, z]2(d−d′), and τℜ, τℑ ∈ R[q, u, z]2d−ℓ.

As in Section 2.2.2, SDP problem (2.12) is a strengthening of LP problem (2.10), meaning
ϑd′,d 6 ϑd′ . Besides, the archimedean quadratic module corresponding to the set Z is contained
in the quadratic module corresponding to Ẑd′ . Hence, the latter is also archimedean, i.e.,
limd→∞ ϑd′,d = ϑd′ = ϑ∗

d′ .

Remark. In practice one can assume that Aδ is empty and substitute πQ(Ẑd′) by Q.

The associated sequence converges as follows:

Theorem 2.9. Let Assumption 1 and Assumption 2 hold and let AC
δ and d′ be as in Lemma 2.7.

Let wd ∈ R[q]2d be a near optimal solution for SDP problem (2.12), i.e.,
∫

Qwd(q) dq > ϑd,d′ − 1
d .

Consider the associated sequence (wd)d>d0 ⊆ L1(Q). Then wd is a valid lower bound of ap on

AC
δ and it converges to ap in L1 norm on AC

δ .

The proof of this result is very similar to the proof of Theorem 2.2, so we omit it. Note that
by Lemma 2.7 every feasible solution to SDP problem (2.12) is a valid lower bound of ap on AC

δ

and that we have πQ(Ẑd′) = AC
δ due to our choice of d′. As for the proof of Theorem 2.5, the

first part can be shortened, since for every (q, u, z) ∈ Ẑd′ it holds that u = a(q).

2.3.2.3 Examples

Example 2.3.7. As in Example 2.2.2 and Example 2.3.3 consider

p : s 7→ p(q, s) = s2 + 2qs+ 1 − 2q.

Assumption 1 is naturally fulfilled, since p is of degree 2. In the same way, Assumption 2 is
fulfilled, since ap′(q) = −q is polynomial. We have Ẑd′ = {(q, u, z) ∈ [−1, 1] × R2 : u− v̂d′(q) >
0, u2 − z2 + 2qu+ 1 − 2q = 2uz + 2qz = 0} and the corresponding SDP problem (2.3) reads

ϑd′,d = sup
wd,σ0,σ1,σv̂ ,τℜ,τℑ

∫ 1

−1
wd(q) dq

s.t. u− wd(q) = σ0(q, u, z) + σ1(q, u, z)(1 − q2) + σv̂(q, u, z)(u− v̂d′(q))

+ τℜ(q, u, z)(u2 − z2 + 2qu+ 1 − 2q) + τℑ(q, u, z)(2uz + 2qz)

for all (q, u, z) ∈ R3 and with wd ∈ R[q]2d, σ0 ∈ Σ[q, u, z]2d, σ1 ∈ Σ[q, u, z]2d−2, σv̂ ∈
Σ[q, u, z]2(d−d′), and τℜ, τℑ ∈ R[q, u, z]2d−2. Due to the simplicity of ap′ it suffices to choose
d′ = 1, meaning deg v̂d′ = 2. We see the degrees 6 (d = 3) and 12 (d = 6) polynomial lower
approximations in Figure 2.10. They are both computed in less than a second.

Example 2.3.8. As in Example 2.2.3 and Example 2.3.4 consider

p : s 7→ p(q, s) = s3 + 1
2s

2 + q2s+ (q − 1
2)q(q + 1

2).
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Figure 2.10 – Abscissa ap(q) (black) and its polynomial lower GL approximations wd(q) of degree
2d = 6 (red, left) and 2d = 12 (red, right) for Example 2.3.7. The quality of the approximation
deteriorates near the minimum, where the abscissa is not Lipschitz. Compare with Figure 2.1
and Figure 2.7 .

The abscissa ap′ of p′ is not differentiable in two points, hence it is not a polynomial and it
cannot be described perfectly by v̂d′ for finite d′. Let us choose d′ = 4 and d = 3 (resp., d = 6).
We observe in Figure 2.11 that w3 (resp., w6) is not everywhere a valid lower bound. Indeed,
the set D = {q ∈ Q : ap(q) = ap′(q)} contains three points and for two of these (near q = −0.5
and q = 0), the approximation v̂4 of degree 8 is not tight enough to ensure πQ(Zr,4) = Q.
Consequently, Assumption 2 is violated. The CPU time for the degree 12 solution is less than 4
seconds.
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Figure 2.11 – Abscissa ap(q) (black) and its polynomial lower GL approximations wd(q) of degree
2d = 6 (red, left) and 2d = 12 (red, right) for Example 2.3.8. We observe that the approximations
are not valid near q = −0.5 and q = 0, as Assumption 2 is violated.

Example 2.3.9. In order to discuss another example for which D is a non-empty interval,
consider the polynomial

p : s 7→ p(q, s) = s2 + (20q2 − 1)s+ q + 1
2 .

Here ap′(q) = −10q2 + 1
2 is a quadratic polynomial. Thus, Assumption 2 is fulfilled, in particular

v̂1 = ap′ , and the lower approximations are valid; see Figure 2.12.
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Figure 2.12 – Abscissa ap(q) (black) and its polynomial lower GL approximations wd(q) of degree
2d = 6 (red, left) and 2d = 12 (red, right) for Example 2.3.9 (d′ = 1).

Example 2.3.10. As in Example 2.2.4 and Example 2.3.5 consider the polynomial

p : s 7→ p(q, s) = s3 + (q1 + 3
2)s2 + q2

1s+ q1q2.

We have Ẑd′ := {(q, u, z) ∈ Z : u− v̂d′(q) > 0} with Z given in Example 2.2.4. In Figure 2.13 we
see the outer approximations of degree 2d = 8 (resp., 2d = 12) of the stability region obtained for
the choice d′ = 4. A careful examination reveals that Assumption 2 is slightly violated here, yet
this has no effect on the validity of the zero sublevel set approximation. Computing the degree
12 approximation takes nearly 10 minutes. For comparison, the computation of the degree 10
solution takes less than 2 minutes and the degree 8 solution around 20 seconds. Therefore, it is
much faster than the computation via the elementary symmetric functions.
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Figure 2.13 – Stability region (blue region) and its degree 2d = 8 outer GL approximation (red
region, left) and degree 2d = 12 outer GL approximation (red region, right) for Example 2.3.10
(d′ = 4). Compare with Figure 2.9.
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2.4 Concluding remarks

As mentioned in the introduction, this thesis consists of investigations of the Lasserre hierarchy
by approximating potentially complicated objects with simple objects, namely, polynomials of
given degrees. The complicated object of interest here was the polynomial abscissa, which has
low regularity, while being ubiquitous in linear systems control.

Note that we focused exclusively on the polynomial abscissa, but our techniques readily
extend to the polynomial radius (defined as the maximum modulus of the roots) or to any
semialgebraic function of the polynomial roots. By semialgebraic function, we mean any function
whose graph can be described by finitely many intersections and unions of polynomial sublevel
sets or level sets (see, e.g., [BCR98]).

In Section 2.2 we described how to construct polynomial upper approximations to the
abscissa with guarantees of L1 convergence (or equivalently almost uniform convergence) on
compact sets via the Lasserre hierarchy. Constructing polynomial lower approximations with
similar convergence guarantees has proved to be much more challenging. We proposed a first
approach in Section 2.3.1 using elementary symmetric functions which is quite general but also
computationally challenging due to the introduction of many lifting variables. This motivated
the study of a second approach in Section 2.3.2 using the Gauß-Lucas theorem, which is less
computationally demanding but unfortunately much more involved and subject to working
assumptions.

As illustrated by our numerical examples, a shortcoming of our methods is that they can
be computationally demanding and not applicable when the degree of the polynomial p and/or
the number of parameters in q is large. Moreover, it is unknown which level in the semidefinite
programming hierarchy can guarantee an a priori given precision level on the abscissa. In terms
of complexity, whereas interior-point algorithms can provably solve semidefinite programs at
given accuracy in polynomial time, it turns out that the number of variables is exponential in
the degree of the polynomial p and the number of parameters q, and only the first levels of the
semidefinite programming hierarchy can be solved in practice in a reasonable amount of time.

Uniform approximations

An interesting theoretical question that deserves careful investigation is whether our L1 con-
vergence guarantees can be strengthened to L∞, i.e., to uniform convergence, since we know
that the polynomial abscissa is continuous and hence that it can be uniformly approximated by
polynomials on compact sets.

A natural idea to achieve this would be to replace the L1 norm of v(q) − a(q) in problem
(2.1) by its L∞ norm. However, this would not lead to a useful result, since the infimum
‖v(q) − a(q)‖∞ = supq∈Q |v(q) − a(q)| with respect to the constraint v(q) − u > 0 for all
(q, u, z) ∈ Z would be the maximal distance between two real parts of the roots as a consequence
of the presence of the real part of all roots in the set Z. Thus, in general the optimal value is
not zero, and therefore, v would not be a proper approximation to the abscissa.

This problem does not occur when using the formulation via elementary symmetric functions,
since there we can explicitly access the real part of the root corresponding to the abscissa.
Indeed, we obtain uniform approximations when optimizing the L∞ norm of v(q) − a(q) instead
of its L1 norm in problem (2.5).

As is typical for best uniform approximations, the solution oscillates by the Chebyshev
Equioscillation theorem [Dav63, Theorem 7.6.2]. Due to this and the large amount of variables,
this formulation has practical drawbacks. The approach can be improved significantly, when
considering rational approximations instead of polynomial approximations. Rational minimax
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approximations are an active field of research [FNTB17] and may be used for uniform one-sided
approximations of the abscissa.
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As a second application of the hierarchy of lower bounds, we consider the optimal design problem.
It arises in statistics when regarding regression problems, where the experimenter wants to
estimate parameters up to a certain precision. For this, it is necessary to repeat the experiment
multiple times with different input data. Optimal designs are rules to decide which input data
need to be chosen in order to reduce the necessary runs of the experiment. The problem shall
be rendered more precisely below. Before, we shortly explain the objective of this chapter in
more detail.

We introduce a general method to compute so-called approximate optimal designs—in the
sense of Kiefer’s φq-criteria—on a large variety of design spaces, namely semialgebraic sets.
We apply the Lasserre hierarchy to solve numerically and approximately the optimal design
problem. The theoretical guarantees are given by Theorem 3.3 and Theorem 3.4. These theorems
demonstrate the convergence of our procedure towards the approximate optimal designs as
the order of the hierarchy increases. Furthermore, they give a characterization of finite order



40 Chapter 3. Approximate polynomial optimal designs

convergence of the hierarchy. In particular, our method recovers the optimal design when finite
convergence of the hierarchy occurs. To recover the geometry of the design we use SDP duality
theory and Christoffel-like polynomials (to be defined in Remark 3.3.1) involved in the optimality
conditions.

We have run several numerical experiments for which finite convergence holds, leading to a
surprisingly fast and reliable method to compute optimal designs. As illustrated by our examples,
in polynomial regression models with degree order higher than one we obtain designs with
points in the interior of the domain. This contrasts with the classical use of ellipsoids for linear
regressions where points are obtained on the boundary.

The chapter is based on [dCGH+17] and it is organized as follows. After a short introduction
to convex design theory and a paragraph on the state of the art, we consider in Section 3.1
polynomial optimal designs and approximations of the moment cone which slightly differ from
those considered in Chapter 1. In Section 3.2 we introduce approximate optimal designs and
propose a two step procedure to solve the approximate design problem. Solving the first step is
subject to Section 3.3. There, we find a sequence of moments associated with the optimal design
measure. Recovering this measure (step two of the procedure) is discussed in Section 3.4. We
finish the chapter with some illustrating examples and a short conclusion.

Convex design theory

The optimum experimental designs are computational and theoretical objects that aim to
minimize the uncertainty contained in the best linear unbiased estimators in regression problems.
In this frame, the experimenter models the responses z1, . . . , zN of a random experiment whose
inputs are represented by a vector ξi ∈ Rn with respect to known regression functions f1, . . . , fp,
namely,

zi =
p
∑

j=1

θjfj(ξi) + εi , i = 1, . . . , N,

where θ1, . . . , θp are unknown parameters that the experimenter wants to estimate, εi is some
noise, and the inputs ξi are chosen by the experimenter in a design space X ⊆ Rn. Assume that
the inputs ξi for i = 1, . . . , N are chosen within a set of distinct points x1, . . . ,xℓ with ℓ 6 N ,
and let nk denote the number of times the particular point xk occurs among ξ1, . . . , ξN . This
would be summarized by

ζ :=

(

x1 · · · xℓ
n1
N · · · nℓ

N

)

, (3.1)

whose first row gives distinct points in the design space X where the input parameters have to
be taken and the second row indicates to the experimenter which proportion of experiments
(frequencies) have to be done at these points. The goal of the design of experiment theory is
then to assess which input parameters and frequencies the experimenter has to consider. For a
given ζ the standard analysis of the Gaussian linear model shows that the minimal covariance
matrix (with respect to Löwner ordering) of unbiased estimators can be expressed in terms of
the Moore-Penrose pseudo-inverse of the information matrix which is defined by

I(ζ) :=
ℓ∑

i=1

wiF(xi)FT(xi), (3.2)

where F := (f1, . . . , fp) is the column vector of regression functions and wi := ni

N is the weight
corresponding to the point xi. One major aspect of designs in experiment theory seeks to
maximize a suitable functional of the information matrix over the set of all possible ζ. Notice
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that the Löwner ordering is partial and, in general, there is no greatest element among all
possible information matrices I(ζ). The standard approach is then to consider some statistical
criteria, namely Kiefer’s φq-criteria [Kie74], in order to describe and construct the “optimal

designs” with respect to those criteria. Observe that the information matrix belongs to S+
p ,

the space of symmetric positive semidefinite matrices of size p. For all q ∈ [−∞, 1] define the
function

φq : S+
p → R, M 7→ φq(M),

where for positive definite matrices M

φq(M) :=







(1
ptrace(M q))1/q if q 6= −∞, 0

det(M)1/p if q = 0
λmin(M) if q = −∞

and for singular positive semidefinite matrices M

φq(M) :=

{

(1
ptrace(M q))1/q if q ∈ (0, 1]

0 if q ∈ [−∞, 0].

We recall that trace(M), det(M) and λmin(M) denote the trace, determinant and least eigenvalue
of the symmetric positive semidefinite matrix M , respectively. Those criteria are meant to be
real valued, positively homogeneous, non-constant, upper semi-continuous, isotonic (with respect
to the Löwner ordering) and concave functions.

In particular, we search for solutions ζ⋆ to the following optimization problem

max φq(I(ζ)), (3.3)

where the maximum is taken over all ζ of the form (3.1). Standard criteria are given by the
parameters q = 0,−1, 1,−∞ and are referred to D-, A-, T - or E-optimum designs, respectively.

State of the art

Optimal design is at the heart of statistical planning for inference in the linear model, see for
example [BHH78]. While the case of discrete input factors is generally tackled by algebraic and
combinatoric arguments (e.g., [Bai08]), the one of continuous input factors often leads to an
optimization problem. In general, the continuous factors are generated by a vector F of linearly
independent regular functions on the design space X .

One way to handle the problem is to focus only on X ignoring the function F and to try to
draw the design points filling the set X in the best way. This is generally done by optimizing a cost
function on XN that reflects the way the design points are positioned between each other and/or
how they fill the space. Generic examples are the so-called MaxMin or MinMax criteria (see for
example [PM12, WPN97]) and the minimum discrepancy designs; see for example [LQX05].

Another point of view—which is the one developed here—relies on the maximization of the
information matrix. Of course, as explained before, the set of information matrices is a partially
ordered set with respect to the Löwner ordering, and so the optimization cannot be performed
directly on this matrix but on a real function on it. A pioneer paper adopting this point of view is
the one of Elfving [Elf52]. In the early 60’s, in a series of papers, Kiefer and Wolwofitz throw new
light on this kind of methods for experimental design by introducing the equivalence principle
and proposing algorithms to solve the optimization problem for some cases; see [Kie74] and
references therein. Following the early works of Karlin and Studden [KS66a, KS66b], the case of
polynomial regression on a compact interval on R has been widely studied. In this framework,
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the theory is almost complete and many things can be said about the optimal solutions for
the design problem; see for instance [DS93]. Roughly speaking, the optimal design points are
related to the zeros of orthogonal polynomials built on an equilibrium measure. We refer to the
inspiring book of Dette and Studden [DS97] and references therein for a complete overview on
the subject.

In the one dimensional frame, other systems of functions F—trigonometric functions or
T -systems, see [KN77] for a definition—are studied in the same way in [DS97], [LS85] and [IS01]
(see also the recent paper [KW17] for another perspective on the subject). In the multidimensional
case, even for polynomial systems, very few cases of explicit solutions are known. Using tensoring
arguments the case of a rectangle is treated in [DS97, Sch12]. Particular models of degree two
are studied in [DG14, PW94].

Apart from these particular cases, the construction of the optimal design relies on numerical
optimization procedures. The case of the determinant—which corresponds to the choice q = 0,
i.e., the D-optimality—is studied for example in [Wyn70] and [VBW98]. Another criterion based
on matrix conditioning—referred to as G-optimality—is developed in [MYZ15]. In the latter
paper, the construction of an optimal design is performed in two steps. In the first step one only
deals with an optimization problem on the set of all possible information matrices, while in the
second step, one wishes to identify a possible probability distribution associated with the optimal
information matrix. General optimization algorithms are discussed in [Fed10] and [ADT07]. A
general optimization frame on measure sets including gradient descent methods is considered in
[MZ04]. In the frame of fixed given support points, efficient SDP based algorithms are proposed
and studied in [Sag11] and [SH15]. Let us mention the paper [VBW98] which is one of the
original motivations to develop SDP solvers, especially for Max-Det-Problems—corresponding
to D-optimal design—and the so-called problem of analytical centering.

3.1 Preliminaries

3.1.1 Polynomial optimal design

We will restrict our attention to polynomial optimal design problems, i.e., we consider polynomial
regression functions and semialgebraic design spaces. To be more precise, we assume that
the regression functions are multivariate polynomials of degree smaller than d, that is, F =
(f1, . . . , fp) ∈ (R[x]d)p. Moreover, we consider that the design space X ⊆ Rn is a given basic
closed semialgebraic set

X := {x ∈ Rn : gj(x) > 0, j = 1, . . . ,m} (3.4)

for given polynomials gj ∈ R[x], j = 1, . . . ,m. Assume one of the polynomial inequalities
gj(x) > 0 is of the form R − ∑n

i=1 x
2
i > 0 for a sufficiently large constant R. Note that this

implies that X is compact.
We remark that the set X is of the same form as the set K defined in (1.1). However, as

design spaces are traditionally called X , we follow this notation.
Notice further that these assumptions cover a large class of problems in optimal design

theory, see for instance [DS97, Chapter 5]. In particular, observe that the design space X defined
by (3.4) is not necessarily convex.

Since we consider polynomial regression functions F = (f1, . . . , fp), there exists a unique
matrix A of size p×

(n+d
n

)
such that

F(x) = Avd(x), (3.5)
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where vd(x) is the vector of monomials up to order d as defined in Section 1.3.

3.1.2 Approximations of the moment cone

We recall the notation s(d) =
(n+d
n

)
and the definition of the truncated moment cone Md(X )

defined in (1.7),

Md(X ) := {y ∈ Rs(d) : ∃µ ∈ M+(X ), yα =
∫

X
xα dµ ∀|α| 6 d}.

In Chapter 1 we approximated the moment cone M(X ) by the semidefinite representable cones
M2d(g1, . . . , gm). Now, we consider projections of these.

As in Chapter 1, let dj := ⌈deg gj/2⌉, j = 1, . . . ,m, denote half the degree of the gj . For δ ∈ N
we approximate the truncated moment cone M2d(X ) by the cones

M2d
2(d+δ)(g1, . . . , gm) :=

{

y ∈ Rs(2d) : ∃yδ ∈ Rs(2(d+δ)), y = (yδ,α)|α|62d,

Md+δ(yδ) < 0, Md+δ−dj
(gjyδ) < 0, j = 1, . . . ,m

}

. (3.6)

These are projections of the cones M2(d+δ)(g1, . . . , gm), and evidently they are semidefinite
representable. Since M2d(X ) is contained in every M2d

2(d+δ)(g1, . . . , gm), δ ∈ N, the latter are
outer approximations of the truncated moment cone. Moreover, they form a nested sequence, so
we can build the hierarchy

M2d(X ) ⊆ · · · ⊆ M2d
2(d+2)(g1, . . . , gm) ⊆ M2d

2(d+1)(g1, . . . , gm) ⊆ M2d
2d(g1, . . . , gm). (3.7)

This hierarchy actually converges, meaning M2d(X ) =
⋂∞
δ=0 M2d

2(d+δ)(g1, . . . , gm), where A

denotes the topological closure of the set A. Note in passing that M2d
2d(g1, . . . , gm) =

M2d(g1, . . . , gm).
The topological dual of M2d

2(d+δ)(g1, . . . , gm) is given by the following quadratic module:

Q2d
2(d+δ)(g1, . . . , gm) :=

{

h = σ0 +
m∑

j=1

gjσj : deg(h) 6 2d,

σ0 ∈ Σ[x]2(d+δ), σj ∈ Σ[x]2(d+δ−dj), j = 1, . . . ,m
}

. (3.8)

In line with (3.7) we have the inclusions

P2d(X ) ⊇ · · · ⊇ Q2d
2(d+2)(g1, . . . , gm) ⊇ Q2d

2(d+1)(g1, . . . , gm) ⊇ Q2d
2d(g1, . . . , gm),

and Q2d
2d(g1, . . . , gm) = Q2d(g1, . . . , gm).

3.2 Approximate Optimal Design

For i = 1, . . . , p write fi(x) :=
∑

|α|6d ai,αx
α for appropriate ai,α ∈ R. Then A = (ai,α) where A

is defined by (3.5). For µ ∈ M+(X ) with moment sequence y define the information matrix

Id(y) :=
( ∫

X
fifjdµ

)

16i,j6p
=
( ∑

|α|,|β|6d
ai,αaj,β yα+β

)

16i,j6p
=

∑

|γ|62d

Aγyγ ,
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where we have set Aγ :=
(
∑

α+β=γ ai,αaj,β
)

16i,j6p
for |γ| 6 2d. Observe that

Id(y) = AMd(y)AT . (3.9)

If y is the moment sequence of µ =
∑ℓ
i=1wiδxi

, where δx denotes the Dirac measure
at the point x ∈ X and the wi are again the weights corresponding to the points xi, then
Id(y) =

∑ℓ
i=1wiF(xi)FT (xi) as in (3.2).

Consider the optimization problem

max φq(M)

s.t. M =
∑

|γ|62d

Aγyγ < 0, yγ =
ℓ∑

i=1

ni
N

xγi ,
ℓ∑

i=1

ni = N,

xi ∈ X , ni ∈ N, i = 1, . . . , ℓ,

(3.10)

where the maximization is with respect to xi and ni, i = 1, . . . , ℓ, subject to the constraint
that the information matrix M is positive semidefinite. By construction, it is equivalent to the
original design problem (3.3). In this form, problem (3.10) is difficult because of the integrality
constraints on the ni and the nonlinear relation between y, xi and ni. We will address these
difficulties in the sequel by first relaxing the integrality constraints.

3.2.1 Relaxing the integrality constraints

In problem (3.10), the set of admissible frequencies wi = ni

N is discrete, which makes it a
potentially difficult combinatorial optimization problem. A popular solution is then to consider
“approximate” designs defined by

ζ :=

(

x1 · · · xℓ
w1 · · · wℓ

)

, (3.11)

where the frequencies wi belong to the unit simplex W := {w ∈ Rℓ : 0 6 wi 6 1,
∑ℓ
i=1wi = 1}.

Accordingly, any solution to problem (3.3), where the maximum is taken over all matrices of
type (3.11), is called “approximate optimal design”. This yields the following relaxation of
problem (3.10):

max φq(M)

s.t. M =
∑

|γ|62d

Aγyγ < 0, yγ =
ℓ∑

i=1

wix
γ
i ,

xi ∈ X , w ∈ W,

(3.12)

where the maximization is with respect to xi and wi, i = 1, . . . , ℓ, subject to the constraint
that the information matrix M is positive semidefinite. In this problem the nonlinear relation
between y, xi and wi is still an issue.

3.2.2 Moment formulation

Let us introduce a two-step-procedure to solve the approximate optimal design problem (3.12).
For this, we first reformulate our problem again.

By Carathéodory’s theorem, the subset of moment sequences in the truncated moment cone
M2d(X ), which we recalled in Section 3.1.2, with y0 = 1, is exactly the set



3.3. The ideal problem on moments and its approximation 45

{

y ∈ M2d(X ) : y0 = 1
}

=
{

y ∈ Rs(2d) : yα =
∫

X
xα dµ ∀|α| 6 2d,

µ =
ℓ∑

i=1

wiδxi
, xi ∈ X , w ∈ W

}

,

where ℓ 6 s(2d), see the so-called Tchakaloff theorem [Las10, Theorem B12]. Hence, problem
(3.12) is equivalent to

max φq(M)

s.t. M =
∑

|γ|62d

Aγyγ < 0,

y ∈ M2d(X ), y0 = 1,

(3.13)

where the maximization is now with respect to the sequence y. The moment problem (3.13)
is finite-dimensional and convex, yet the constraint y ∈ M2d(X ) is difficult to handle. We
will show that by approximating the truncated moment cone M2d(X ) by the nested sequence
of semidefinite representable cones introduced in (3.7), we obtain a hierarchy of semidefinite
programs converging to the optimal solution of problem (3.13). Since semidefinite programming
problems can be solved efficiently, we can compute a numerical solution to problem (3.11).

This describes step one of our procedure. The result of it is a sequence y⋆ of moments.
Consequently, in a second step, we need to find a representing atomic measure µ⋆ of y⋆ in order
to identify the approximate optimal design ζ⋆.

The next section is dedicated to consider step one in more detail. Step 2 is then the subject
of Section 3.4.

3.3 The ideal problem on moments and its approximation

For notational simplicity, let us use the standard monomial basis of R[x]d for the regression
functions, meaning F = (f1, . . . , fp) := (xα)|α|6d, i.e., p = s(d). This case corresponds to A = Id
the identity matrix in (3.5). Note that this is not a restriction, since one can get the results
for other choices of F by simply performing a change of basis. Indeed, in view of (3.9) one
should substitute Md(y) by AMd(y)AT to get the statement of our results in whole generality;
see Section 3.3.5 for a statement of the results in this case. Different polynomial bases can be
considered and, for instance, one may consult the standard framework described in the book
[DS97, Chapter 5.8].

For the sake of conciseness, we do not expose the notion of incomplete q-way m-th degree
polynomial regression here, but the reader may note that the strategy developed in this chapter
can handle such a framework.

Before stating the main results, we recall the gradients of the Kiefer’s φq-criteria in Table 3.1.

3.3.1 The ideal problem on moments

The ideal formulation (3.13) of our approximate optimal design problem reads

ρ = max
y

φq(Md(y))

s.t. y ∈ M2d(X ), y0 = 1.
(3.14)



46 Chapter 3. Approximate polynomial optimal designs

Name q φq(M) ∇φq(M)

D-optimal 0 det(M)1/p det(M)1/pM−1/p

A-optimal −1 p(trace(M−1))−1 p(trace(M−1)M)−2

T -optimal 1 1
p trace(M) 1

p Id

E-optimal −∞ λmin(M) Πmin(M)

generic case q 6= 0,−∞
[

trace(Mq)
p

]1/q
[

trace(Mq)
p

]1/q−1
Mq−1

p

Table 3.1 – Gradients of the Kiefer’s φq-criteria. We recall that Πmin(M) = uuT /||u||22 is only
defined when the least eigenvalue of M has multiplicity one and u denotes a nonzero eigenvector
associated to this least eigenvalue. If the least eigenvalue has multiplicity greater than 2, then
the subgradient ∂φq(M) of λmin(M) is the set of all projectors on subspaces of the eigenspace
associated to λmin(M); see for example [Lew96]. Notice further that φq is upper semi-continuous
and is a positively homogeneous function

For this we have the following standard result.

Theorem 3.1 (Equivalence theorem). Let q ∈ (−∞, 1) and let X ⊆ Rn be a compact semial-

gebraic set as defined in (3.4) and with nonempty interior. Then problem (3.14) is a convex

optimization problem with a unique optimal solution y⋆ ∈ M2d(X ). Denote by p⋆d the polynomial

p⋆d(x) := vd(x)TMd(y⋆)q−1vd(x) = ||Md(y⋆)
q−1

2 vd(x)||22. (3.15)

Then y⋆ is the vector of moments up to order 2d of a discrete measure µ⋆ supported on at least
(n+d
n

)
and at most

(n+2d
n

)
points in the set

Ω := {x ∈ X : trace(Md(y⋆)q) − p⋆d(x) = 0}.

In particular, the following statements are equivalent:

◦ y⋆ ∈ M2d(X ) is the unique solution to problem (3.14);

◦ y⋆ ∈ {y ∈ M2d(X ) : y0 = 1} and p⋆ := trace(Md(y⋆)q) − p⋆d > 0 on X .

Proof. A general equivalence theorem for concave functionals of the information matrix is stated
and proved in [Kie74, Theorem 1]. The case of φq-criteria is tackled in [Puk06] and [DS97,
Theorem 5.4.7]. In order to be self-contained and because the proof of Theorem 3.3 follows the
same road map, we recall a sketch of the proof.

First, let us prove that problem (3.14) has an optimal solution. The feasible set is nonempty
with finite associated objective value (take as feasible point the vector y ∈ M2d(X ) associated
with the Lebesgue measure on the compact set X , scaled to be a probability measure). Moreover,
as X is compact with nonempty interior, it follows that M2d(X ) is closed (as the dual of P2d(X )).

In addition, the feasible set {y ∈ M2d(X ) : y0 = 1} of problem (3.14) is compact. Indeed,
there exists M > 1 such that

∫

X x2d
i dµ < M for every probability measure µ on X and every

i = 1, . . . , n. Hence, max{y0, maxi{Ly(x2d
i )}} < M , which by, e.g., [LN07] implies that |yα| 6M

for every |α| 6 2d, which in turn implies that the feasible set of (3.14) is compact.
Next, as the function φq is upper semi-continuous, the supremum in (3.14) is attained at

some optimal solution y⋆ ∈ M2d(X ). Moreover, as the feasible set is convex and φq is strictly
concave (see, e.g., [Puk06, Chapter 6.13]), y⋆ is the unique optimal solution.
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Now, we examine the properties of the polynomial p⋆ and show the equivalence statement.
For this we notice that there exists a strictly feasible solution because the cone M2d(X ) has
nonempty interior by [Las15a, Lemma 2.6]. Hence, Slater’s condition1 holds for (3.14). Further,
by an argument in [Puk06, Chapter 7.13], the matrix Md(y⋆) is non-singular. Therefore, φq
is differentiable at y⋆. Since additionally Slater’s condition is fulfilled and φq is concave, this
implies that the Karush-Kuhn-Tucker (KKT) optimality conditions2 at y⋆ are necessary and
sufficient for y⋆ to be an optimal solution.

The KKT-optimality conditions at y⋆ read

λ⋆ e0 − ∇φq(Md(y⋆)) = p̂⋆ with p̂⋆(x) := 〈p̂⋆,v2d(x)〉 ∈ P2d(X ),

where p̂⋆ ∈ Rs(2d), e0 = (1, 0, . . . , 0), and λ⋆ is the dual variable associated with the constraint
y0 = 1. The complementarity condition reads 〈y, p̂⋆〉 = 0.

Writing Bα, |α| 6 2d, for the real symmetric matrices satisfying

∑

|α|62d

Bαx
α = vd(x)vd(x)T,

and 〈A,B〉 = trace(AB) for the dot product of two real symmetric matrices A and B, this can
be expressed as

(1α=0 λ
⋆ − 〈∇φq(Md(y⋆)),Bα〉)|α|62d = p̂⋆, p̂⋆ ∈ P2d(X ). (3.16)

Taking the dot product of (3.16) with y⋆ and invoking the complementarity condition yields

λ⋆ = λ⋆ y⋆0
(3.16)

=

〈

∇φq(Md(y⋆)),
∑

|α|62d

y⋆αBα

〉

= 〈∇φq(Md(y⋆)),Md(y⋆)〉 Euler= φq(Md(y⋆)) , (3.17)

where the last equality holds by Euler’s homogeneous function theorem for the positively
homogeneous function φq.

Similarly, taking the dot product of (3.16) with v2d(x) gives for all x ∈ X :

0 6 p̂⋆(x)
(3.16)

= λ⋆ −
〈

∇φq(Md(y⋆)),
∑

|α|62d

Bαxα
〉

= λ⋆ − 〈∇φq(Md(y⋆)),vd(x)vd(x)T 〉. (3.18)

For q 6= 0 let c⋆ := s(d)
(

1
s(d)trace(Md(y⋆)q)

)1−1/q

. As Md(y⋆) is positive semidefinite and
non-singular, we have c⋆ > 0. If q = 0, let c⋆ := 1 and replace φ0(Md(y⋆)) by log det Md(y⋆),
for which the gradient is Md(y⋆)−1.

1For the optimization problem max {f(x) : Ax = b; x ∈ C}, where A ∈ Rm×n and C ⊆ Rn is a nonempty
closed convex cone, Slater’s condition holds, if there exists a feasible solution x in the interior of C.

2For the optimization problem max {f(x) : Ax = b; x ∈ C}, where f is differentiable, A ∈ Rm×n and C ⊆ Rn

is a nonempty closed convex cone, the KKT-optimality conditions at a feasible point x state that there exist
λ⋆ ∈ Rm and u⋆ ∈ C

⋆ such that AT λ⋆ − ∇f(x) = u⋆ and 〈x, u⋆〉 = 0.
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Using Table 3.1, we find that c⋆∇φq(Md(y⋆)) = Md(y⋆)q−1. It follows that

c⋆λ⋆
(3.17)

= c⋆ 〈∇φq(Md(y⋆)),Md(y⋆)〉 = trace(Md(y⋆)q)

and c⋆
〈

∇φq(Md(y⋆)),vd(x)vd(x)T
〉

(3.15)
= p⋆d(x).

Therefore, equation (3.18) is equivalent to p⋆ := c⋆ p̂⋆ = c⋆ λ⋆ − p⋆d ∈ P2d(X ). To summarize,

p⋆(x) = trace(Md(y⋆)q) − p⋆d(x) ∈ P2d(X ).

Since the KKT-conditions are necessary and sufficient, the equivalence statement follows.
Finally, we investigate the measure µ⋆ associated with y⋆. Multiplying the complementarity

condition 〈y⋆, p̂⋆〉 = 0 with c⋆, we have
∫

X
p⋆(x)
︸ ︷︷ ︸

>0 on X

µ⋆(dx) = 0.

Hence, the support of µ⋆ is included in the set Ω = {x ∈ X : p⋆(x) = 0}.
The measure µ⋆ can be chosen to be an atomic measure supported on ℓ 6 s(2d) points

by Tchakaloff’s theorem,3 [Las10, Theorem B.12]. If ℓ < s(d), then rank Md(y⋆) < s(d) in
contradiction to Md(y⋆) being non-singular. Therefore, s(d) 6 ℓ 6 s(2d).

Remark 3.3.1 (On the optimal dual polynomial). The polynomial p⋆d contains all the information
concerning the optimal design. Indeed, its level set Ω supports the optimal design points. The
polynomial is related to the so-called Christoffel function (see Section 3.3.2). For this reason, in
the sequel, the polynomial p⋆d defined in (3.15) will be called a Christoffel-like polynomial.

Notice further that
X ⊆ {p⋆d 6 trace(Md(y⋆)q)}.

Hence, the optimal design problem related to φq is similar to the standard problem of com-
putational geometry consisting in minimizing the volume of a polynomial level set containing
X (Löwner-John’s ellipsoid theorem). Here, the volume functional is replaced by φq(M) for

the polynomial ||M q−1
2 vd(x)||22. We refer to [Las15a] for a discussion and generalizations of

Löwner-John’s ellipsoid theorem for general homogenous polynomials on non- convex domains.

Remark 3.3.2 (Equivalence theorem for T -optimality). Theorem 3.1 also holds for q = 1. This is
the T -optimal design case for which the objective function is linear. Hence, in this case y⋆ is not
unique. Further, note that the polynomial p⋆d can be explicitly written as it does not depend on
y⋆. Namely,

p⋆d(x) = ||vd(x)||22.

Thus, the support of any solution is included in the level set

Ω = arg max
x∈X

p⋆d(x) .

It follows that the set of solutions is exactly the set of probability measures supported by Ω.

Remark 3.3.3 (Equivalence theorem for E-optimality). Theorem 3.1 also holds for q = −∞.
This is the E-optimal design case, in which the objective function is not differentiable at points
for which the least eigenvalue has multiplicity greater than 2. We get that y⋆ is the vector of

3Tchakaloff’s theorem states that for every finite Borel probability measure on X and every r ∈ N, there exists
an atomic measure µr supported on ℓ 6 s(r) points such that all moments of µr and µ⋆ agree up to order r.
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moments up to order 2d of a discrete measure µ⋆ supported on at most s(2d) points in the set

Ω :=
{

x ∈ X : λmin(Md(y⋆))||u||22 −
( ∑

|α|62d

uαx
α
)2

= 0
}

,

where u = (uα)|α|62d is a nonzero eigenvector of Md(y⋆) associated to λmin(Md(y⋆)). In
particular, the following statements are equivalent

◦ y⋆ ∈ M2d(X ) is a solution to problem (3.14);

◦ y⋆ ∈ {y ∈ M2d(X ) : y0 = 1} and λmin(Md(y⋆))||u||22 −
(
∑

α uαx
α
)2

> 0 on X .

Furthermore, if the least eigenvalue of Md(y⋆) has multiplicity one then y⋆ ∈ M2d(X ) is unique.

3.3.2 Christoffel polynomials

In the case of D-optimality it turns out that the unique optimal solution y⋆ ∈ M2d(X ) of
problem (3.13) can be characterized in terms of the Christoffel polynomial of degree 2d associated
with an optimal measure µ whose moments up to order 2d coincide with y⋆.

Definition 3.2 (Christoffel polynomial). Let y ∈ Rs(2d) be such that Md(y) ≻ 0. Then there
exists a family of orthonormal polynomials (Pα)|α|6d ⊆ R[x]d satisfying

Ly(Pα Pβ) = δα=β and Ly(xα Pβ) = 0 ∀α ≺ β,

where monomials are ordered with respect to the lexicographical ordering on Nn. We call the
polynomial

pd(x) :=
∑

|α|6d
Pα(x)2,

the Christoffel polynomial (of degree d) associated with y.

The Christoffel polynomial4 can be expressed in different ways. For instance, via the inverse
of the moment matrix by

pd(x) = vd(x)TMd(y)−1vd(x),

or via its extremal property

1
pd(x)

= min
P∈R[x]d

{∫

P (x)2 dµ(x) : P (x) = 1
}

∀x ∈ Rn,

if y has a representing measure µ. If y does not have a representing measure µ just replace
∫
P (x)2dµ(x) with Ly(P 2) (= P TMd(y)P ). For more details the interested reader is referred to

[LP16] and the references therein. Notice also that there is a regain of interest in the asymptotic
study of the Christoffel function as it relies on eigenvalue marginal distributions of invariant
random matrix ensembles; see for example [Led04].

Remark (Equivalence theorem for D-optimality). In the case of D-optimal designs, observe that

t⋆ := max
x∈X

p⋆d(x) = trace(Id) = s(d) ,

where p⋆d is given by (3.15) for q = 0. Furthermore, note that p⋆d is the Christoffel polynomial of
degree 2d of the D-optimal measure µ⋆.

4Actually, what is referred to as the Chistoffel function in the literature is its reciprocal x 7→ 1
pd(x)

.
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3.3.3 The SDP relaxation scheme

Let X ⊆ Rn be as defined in (3.4), assumed to be compact. So with no loss of generality (and
possibly after scaling), assume that g1(x) = 1 − ‖x‖2 > 0 is one of the constraints defining X .

Since the ideal moment problem (3.14) involves the moment cone M2d(X ), which is not
semidefinite representable, we use the hierarchy (3.7) of outer approximations of the moment
cone to relax problem (3.14) to a samidefinite program. So, for a fixed integer δ > 1 we consider
the problem

ρδ = max
y

φq(Md(y))

s.t. y ∈ M2d
2(d+δ)(g1, . . . , gm), y0 = 1.

(3.19)

Since problem (3.19) is a relaxation of the ideal problem (3.14), necessarily ρδ > ρ for all δ. In
analogy with Theorem 3.1, we have the following result characterizing the solutions of the SDP
relaxation (3.19) by means of sum-of-squares polynomials.

Theorem 3.3 (Equivalence theorem for SDP relaxations). Let q ∈ (−∞, 1) and let X ⊆ Rn be

a compact semialgebraic set as defined in (3.4) and with non-empty interior. Then,

a) SDP problem (3.19) has a unique optimal solution y⋆ ∈ Rs(2d).

b) Let p⋆d be as defined in (3.15), associated with y⋆. Then p⋆ := trace(Md(y⋆)q) − p⋆d > 0 on

X and Ly⋆(p⋆) = 0.

In particular, the following statements are equivalent:

◦ y⋆ ∈ M2d
2(d+δ)(g1, . . . , gm) is the unique solution to problem (3.19);

◦ y⋆ ∈
{

y ∈ M2d
2(d+δ)(g1, . . . , gm) : y0 = 1

}

and the polynomial p⋆ = trace(Md(y⋆)q) − p⋆d
belongs to the quadratic module Q2d

2(d+δ)(g1, . . . , gm).

Proof. We follow the proof of Theorem 3.1.

a) Let us prove that problem (3.19) has an optimal solution. The feasible set is nonempty
with finite associated objective value (take as feasible point the vector ỹ associated with
the Lebesgue measure on the compact set X , scaled to be a probability measure).

Next, let y ∈ Rs(2d) be an arbitrary feasible solution and yδ ∈ M2(d+δ)(g1, . . . , gm) an
arbitrary lifting of y—recall the definition of M2d

2(d+δ)(g1, . . . , gm) given in (3.6). As

g1(x) = 1 − ‖x‖2 and Md+δ−1(g1 yδ) < 0, we have Lyδ
(x2(d+δ)
i ) 6 1, i = 1, . . . , n, and so

by [LN07],

|yδ,α| 6 max{yδ,0
︸︷︷︸

=1

, max
i

{Lyδ
(x2(d+δ)
i )}} 6 1 ∀|α| 6 2(d+ δ). (3.20)

This implies that the set of feasible liftings yδ is compact, and therefore, the feasible set
of (3.19) is also compact. As the function φq is upper semi-continuous, the supremum in
(3.19) is attained at some optimal solution y⋆ ∈ Rs(2d). It is unique due to convexity of the
feasible set and strict concavity of the objective function φq; e.g., see [Puk06, Chapter 6.13].
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b) Let Bα, B̃α and Cjα be real symmetric matrices such that

∑

|α|62d

Bαx
α = vd(x) vd(x)T

∑

|α|62(d+δ)

B̃αx
α = v(x)d+δ vd+δ(x)T

∑

|α|62(d+δ)

Cjαx
α = gj(x) vd+δ−dj

(x) vd+δ−dj
(x)T , j = 1, . . . ,m.

First, we notice that there exists a strictly feasible solution to (3.19) because the cone
M2d

2(d+δ)(g1, . . . , gm) has nonempty interior as a supercone of M2d(X ), which has nonempty
interior by [Las15a, Lemma 2.6]. Hence, Slater’s condition holds for (3.19). Further, by an
argument in [Puk06, Chapter 7.13]) the matrix Md(y⋆) is non-singular. Therefore, φq is
differentiable at y⋆. Since additionally Slater’s condition is fulfilled and φq is concave, this
implies that the Karush-Kuhn-Tucker (KKT) optimality conditions at y⋆ are necessary
and sufficient for y⋆ to be an optimal solution.

The KKT-optimality conditions at y⋆ read

λ⋆ e0 − ∇φq(Md(y⋆)) = p̂⋆ with p̂⋆(x) := 〈p̂⋆,v2d(x)〉 ∈ Q2d
2(d+δ)(g1, . . . , gm),

where p̂⋆ ∈ Rs(2d), e0 = (1, 0, . . . , 0), and λ⋆ is the dual variable associated with the
constraint y0 = 1. The complementarity condition reads 〈y, p̂⋆〉 = 0.

Recalling the definition (3.8) of the quadratic module Q2d
2(d+δ)(g1, . . . , gm), we can ex-

press the membership p̂⋆(x) ∈ Q2d
2(d+δ)(g1, . . . , gm) more explicitly in terms of some “dual

variables” Λj < 0, j = 0, . . . ,m,

1α=0 λ
⋆ − 〈∇φq(Md(y⋆)),Bα〉 = 〈Λ0, B̃α〉 +

m∑

j=1

〈Λj ,Cj
α〉, |α| 6 2(d+ δ). (3.21)

Then, for a lifting y⋆δ ∈ M2(d+δ)(g1, . . . , gm) of y⋆ the complementarity condition 〈y⋆, p̂⋆〉 =
0 reads

〈Md+δ(y⋆δ),Λ0〉 = 0, 〈Md+δ−dj
(y⋆δ gj),Λj〉 = 0, j = 1, . . . ,m. (3.22)

Multiplying by y⋆δ,α, summing up, and using the complementarity conditions (3.22) yields

λ⋆ − 〈∇φq(Md(y⋆)),Md(y⋆)〉 = 〈Λ0,Md+δ(y⋆δ)〉
︸ ︷︷ ︸

=0

+
m∑

j=1

〈Λj ,Md+δ−dj
(gj y⋆δ)〉

︸ ︷︷ ︸

=0

. (3.23)

We deduce that λ⋆ = 〈∇φq(Md(y⋆)),Md(y⋆)〉 = φq(Md(y⋆)), where the latter equality
follows from the Euler formula for homogeneous functions.

Similarly, multiplying (3.21) by xα and summing up gives the degree 2d polynomial

λ⋆−
〈

∇φq(Md(y⋆)),vd(x)Tvd(x)
〉

=

〈

Λ0,
∑

|α|62(d+δ)

B̃α x
α

〉

+
m∑

j=1

〈

Λj ,
∑

|α|62(d+δ−dj)

C
j
α x

α

〉

=
〈

Λ0,v(x)d+δ vd+δ(x)T
〉

︸ ︷︷ ︸

=:σ0(x)

+
m∑

j=1

gj(x)
〈

Λj ,vd+δ−dj
(x) vd+δ−dj

(x)T
〉

︸ ︷︷ ︸

=:σj(x)
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= σ0(x) +
n∑

j=1

σj(x) gj(x) = p̂⋆(x) ∈ Q2d
2(d+δ)(g1, . . . , gm). (3.24)

Note that σ0 ∈ Σ[x]2(d+δ) and σj ∈ Σ[x]2(d+δ−dj), j = 1, . . . ,m, by definition.

For q 6= 0 let c⋆ := s(d)
(

1
s(d)trace(Md(y⋆)q)

)1−1/q

. As Md(y⋆) is positive semidefinite
and non-singular, we have c⋆ > 0. If q = 0, let c⋆ := 1 and replace φ0(Md(y⋆)) by
log det Md(y⋆), for which the gradient is Md(y⋆)−1.

Using Table 3.1, we find that c⋆∇φq(Md(y⋆)) = Md(y⋆)q−1. It follows that

c⋆λ⋆
(3.23)

= c⋆ 〈∇φq(Md(y⋆)),Md(y⋆)〉 = trace(Md(y⋆)q)

c⋆
〈

∇φq(Md(y⋆)),vd(x)vd(x)T
〉

(3.15)
= p⋆d(x).

Therefore, equation (3.24) implies p⋆ := c⋆ p̂⋆ = c⋆ λ⋆ − p⋆d ∈ Q2d
2(d+δ)(g1, . . . , gm). To

summarize,
p⋆(x) = trace(Md(y⋆)q) − p⋆d(x) ∈ Q2d

2(d+δ)(g1, . . . , gm).

We remark that all elements of Q2d
2(d+δ)(g1, . . . , gm) are non-negative on X and that (3.23)

implies Ly⋆(p⋆) = 0. Hence, we have shown b).

The equivalence statement follows from the argument in b).

Remark 3.3.4 (Finite convergence). If the optimal solution y⋆ of problem (3.19) is coming
from a measure µ⋆ on X , that is y⋆ ∈ M2d(X ), then ρδ = ρ and y⋆ is the unique optimal
solution to problem (3.14). In addition, by Theorem 3.1, µ⋆ can be chosen to be atomic and
supported on at least s(d) and at most s(2d) “contact points” on the level set Ω := {x ∈ X :
trace(Md(y⋆)q) − p⋆d(x) = 0}.

Remark 3.3.5 (SDP relaxation for T -optimality). In this case, recall that y⋆ is not unique and
recall that the polynomial p⋆d can be explicitly written as p⋆d(x) = ||vd(x)||22. The above proof
can be extended to the case q = 1 and one derives that any solution y⋆ satisfies trace(Md(y⋆)) −
||vd(x)||22 > 0 for all x ∈ X and Ly⋆(p⋆d) = trace(Md(y⋆)). In particular, the following statements
are equivalent:

◦ y⋆ ∈ M2d
2(d+δ)(g1, . . . , gm) is a solution to problem (3.19) (for q = 1);

◦ y⋆ ∈
{

y ∈ M2d
2(d+δ)(g1, . . . , gm) : y0 = 1

}

and p⋆(x) := trace(Md(y⋆)) − ||vd(x)||22 belongs

to the quadratic module Q2d
2(d+δ)(g1, . . . , gm).

Remark 3.3.6 (SDP relaxation for E-optimality). Theorem 3.3 holds also for q = −∞. This is
the E-optimal design case, in which the objective function is not differentiable at points for which
the least eigenvalue has multiplicity greater than 2. We get that y⋆ satisfies λmin(Md(y⋆)) −
(∑

α uαxα
)2

> 0 for all x ∈ X and Ly⋆(
(∑

α uαx
α
)2) = λmin(Md(y⋆)), where u = (uα)|α|62d

is a nonzero eigenvector of Md(y⋆) associated to λmin(Md(y⋆)). In particular, the following
statements are equivalent:

◦ y⋆ ∈ M2d
2(d+δ)(g1, . . . , gm) is a solution to problem (3.19) (for q = −∞);

◦ y⋆ ∈
{

y ∈ M2d
2(d+δ)(g1, . . . , gm) : y0 = 1

}

and p⋆(x) = λmin(Md(y⋆))||u||22 −
(
∑

α uαx
α
)2

belongs to the quadratic module Q2d
2(d+δ)(g1, . . . , gm).

Furthermore, if the least eigenvalue of Md(y⋆) has multiplicity one, then y⋆ is unique.
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3.3.4 Asymptotics

We now analyze what happens when δ tends to infinity.

Theorem 3.4. Let q ∈ (−∞, 1) and d ∈ N. For every δ = 0, 1, 2, . . . let y⋆d,δ be an optimal

solution to (3.19) and p⋆d,δ ∈ R[x]2d the Christoffel-like polynomial associated with y⋆d,δ as in

Theorem 3.3. Then,

a) ρδ → ρ as δ → ∞, where ρ is the supremum in (3.14).

b) For every |α| 6 2d we have limδ→∞ y⋆d,δ,α = y⋆α, where y⋆ ∈ M2d(X ) is the unique optimal

solution to (3.14).

c) p⋆d,δ → p⋆d as δ → ∞, where p⋆d is the Christoffel-like polynomial associated with y⋆ defined

in (3.15).

d) If the dual polynomial p⋆ := trace(Md(y⋆)q)−p⋆d to problem (3.14) belongs to the quadratic

module Q2d
2(d+δ)(g1, . . . , gm) for some δ, then finite convergence takes place, that is, y⋆d,δ is

the unique optimal solution to problem (3.14) and y⋆d,δ has a representing measure, namely,

the target measure µ⋆.

Proof. We prove the four claims consecutively.

a) For every δ complete the lifted finite sequence y⋆δ ∈ Rs(2(d+δ)) of y⋆d,δ with zeros to make
it an infinite sequence y⋆δ = (y⋆δ,α)α∈Nn . Therefore, every such y⋆δ can be identified with
an element of ℓ∞, the Banach space of bounded sequences equipped with the supremum
norm. Moreover, inequality (3.20) holds for every y⋆δ . Thus, denoting by B the unit ball
of ℓ∞, which is compact in the σ(ℓ∞, ℓ1) weak-⋆ topology on ℓ∞, we have y⋆δ ∈ B. By
Banach-Alaoglu’s theorem, there is an element ŷ ∈ B and a converging subsequence (δk)k∈N
such that

lim
k→∞

y⋆δk,α
= ŷα ∀α ∈ Nn. (3.25)

Let s ∈ N be arbitrary, but fixed. By the convergence (3.25), we also have

lim
k→∞

M s(y⋆δk
) = M s(ŷ) < 0, lim

k→∞
M s(gj y⋆δk

) = M s(gj ŷ) < 0, j = 1, . . . ,m.

Next, by Putinar’s Positivstellensatz (Theorem 1.1), ŷ is the sequence of moments of some
measure µ̂ ∈ M+(X ), and so ŷd := (ŷα)|α|62d is a feasible solution to (3.14), meaning
φq(Md(ŷd)) 6 ρ. On the other hand, as (3.19) is a relaxation of (3.14), we have ρδk

> ρ

for all δk. So the convergence (3.25) yields

φq(Md(ŷd)) = lim
k→∞

ρδk
> ρ,

which proves that ŷd is an optimal solution to (3.14), and limδ→∞ ρδ = ρ.

b) As the optimal solution to (3.14) is unique, we have y⋆ = ŷd with ŷd defined in the proof
of a) and the whole sequence (y⋆d,δ)δ∈N converges to y⋆, that is, for |α| 6 2d fixed,

lim
δ→∞

y⋆d,δ,α = lim
δ→∞

y⋆δ,α = ŷα = y⋆α. (3.26)

c) It suffices to observe that the coefficients of the Christoffel-like polynomial p⋆d,δ are contin-
uous functions of the moments (y⋆d,δ,α)|α|62d = (y⋆δ,α)|α|62d. Therefore, by the convergence
(3.26) one has p⋆d,δ → p⋆d, where p⋆d ∈ R[x]2d as in Theorem 3.1.
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d) The last point follows directly observing that in this case the two programs (3.14) and
(3.19) satisfy the same KKT conditions.

In order to illustrate what happens for general φq-criteria, we give a corollary describing
the relation between the solutions of program (3.14) and program (3.19) for T -optimal designs
(q = 1).

Corollary 3.5. Let q = 1 and δ > 1. Denote by y⋆ (resp. y⋆d,δ) a solution to problem (3.14)
(resp. program (3.19)). Only one of the following two cases can occur.

• Either

{

trace(Md(y⋆))−||vd(x)||22 ∈ Q2d
2(d+δ)(g1, . . . , gm)

}

⇔
{

trace(Md(y⋆d,δ)) − ||vd(x)||22 has a root in X
}

⇔
{

trace(Md(y⋆d,δ)) = trace(Md(y⋆))
}

,

• or

{

trace(Md(y⋆))−||vd(x)||22 /∈ Q2d
2(d+δ)(g1, . . . , gm)

}

⇔
{

trace(Md(y⋆d,δ)) − ||vd(x)||22 > 0 on X
}

⇔
{

trace(Md(y⋆d,δ)) > trace(Md(y⋆))
}

.

Recall that trace(Md(y⋆)) = maxx∈X ||vd(x)||22 for q = 1.

3.3.5 General regression polynomial bases

We return to the general case described by a matrix A of size p×
(n+d
n

)
such that the regression

polynomials satisfy F(x) = Avd(x) on X . Now, the objective function becomes φq(AMd(y)AT )
at point y. Note that the constraints on y are unchanged, i.e., y ∈ M2d(X ), y0 = 1 in the
ideal problem and y ∈ M2d

2(d+δ)(g1, . . . , gm), y0 = 1 in the SDP relaxation scheme. We recall

the notation Id(y) := AMd(y)AT , and we observe that the KKT conditions at y are given by

φq(Id(y)) − F(x)T∇φq(Id(y))F(x)
︸ ︷︷ ︸

p⋆
d
(x)

= p⋆(x),

with p⋆ ∈ P2d(X ) in the ideal problem and p⋆ ∈ Q2d
2(d+δ)(g1, . . . , gm) in the SDP relaxation

scheme. Our analysis leads to the following equivalence results.

Proposition 3.6. Let q ∈ (−∞, 1) and let X ⊆ Rn be a compact semialgebraic set as defined

in (3.4) and with nonempty interior. Problem (3.13) is a convex optimization problem with an

optimal solution y⋆ ∈ M2d(X ). Denote by p⋆d the polynomial

p⋆d(x) := F(x)TId(y)q−1F(x) = ||Id(y)
q−1

2 F(x)||22. (3.27)

Then y⋆ is the vector of moments up to order 2d of a discrete measure µ⋆ supported on at least

s(d) and at most s(2d) points in the set

Ω := {x ∈ X : trace(Id(y)q) − p⋆d(x) = 0}.



3.4. Recovering the measure 55

In particular, the following statements are equivalent:

◦ y⋆ ∈ M2d(X ) is the solution to problem (3.13);

◦ y⋆ ∈ {y ∈ M2d(X ) : y0 = 1} and p⋆ := trace(Id(y)q) − p⋆d(x) > 0 on X .

Furthermore, if A has full column rank then y⋆ is unique.

The SDP relaxation is given by the program

ρδ = max
y

φq(Id(y))

s.t. y ∈ M2d
2(d+δ)(g1, . . . , gm), y0 = 1,

(3.28)

for which the following result holds.

Proposition 3.7. Let q ∈ (−∞, 1) and let X ⊆ Rn be a compact semialgebraic set as defined

in (3.4) and with nonempty interior. Then,

a) SDP problem (3.28) has an optimal solution y⋆ ∈ Rs(2d).

b) Let p⋆d be as defined in (3.27), associated with y⋆. Then p⋆ := trace(Id(y⋆)q) − p⋆d > 0 on

X and Ly⋆(p⋆) = 0.

In particular, the following statements are equivalent:

◦ y⋆ ∈ M2d
2(d+δ)(g1, . . . , gm) is a solution to problem (3.28);

◦ y⋆ ∈ {y ∈ M2d
2(d+δ)(g1, . . . , gm) : y0 = 1} and the polynomial p⋆ = trace(Id(y⋆)q) − p⋆d

belongs to the quadratic module Q2d
2(d+δ)(g1, . . . , gm).

Furthermore, if A has full column rank then y⋆ is unique.

3.4 Recovering the measure

By solving step one as explained in Section 3.3, we obtain a solution y⋆ to SDP problem (3.19).
As y⋆ ∈ M2d

2(d+δ)(g1, . . . , gm), it is likely that it comes from a measure. If this is the case, by
Tchakaloff’s theorem (see page 48), there exists an atomic measure supported on at most s(2d)
points having these moments. For computing the atomic measure, we propose two approaches:
A first one which follows a procedure by Nie [Nie14], and a second one which uses properties of
the Christoffel-like polynomial associated with y⋆. The approaches have the benefit that they
can numerically certify finite convergence of the hierarchy.

3.4.1 Via the Nie method

This approach to recover a measure from its moments is based on a formulation proposed by
Nie in [Nie14]. Let y⋆ ∈ Rs(2d) be a finite sequence of moments. For r ∈ N consider the SDP
problem

min
yr

Lyr (fr)

s.t. yr ∈ M2(d+r)(g1, . . . , gm),
yr,α = y⋆α, |α| 6 2d,

(3.29)

where fr ∈ R[x]2(d+r) is any polynomial strictly positive on X , and again dj = ⌈deg gj/2⌉,
j = 1, . . . ,m. We check whether the optimal solution y⋆r to (3.29) satisfies the rank condition
(1.16), i.e.,

rank Md+r(y⋆r) = rank Md+r−dX
(y⋆r), (3.30)
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where dX := maxj dj . As mentioned in Section 1.4.1, if (3.30) holds, then y⋆r is the moment
sequence of a measure supported on X . If the test is passed, then we stop, otherwise we increase
r by one and repeat the procedure. As y⋆ ∈ M2d(X ), the rank condition (3.30) is satisfied for a
sufficiently large value of r.

We extract the support points x1, . . . ,xℓ ∈ X of the representing atomic measure of y⋆r , and
y⋆ respectively, as described in [Las10, Section 4.3].

Our experience has revealed that in most cases the polynomial fr(x) =
∑

|α|6d+r x
2α =

||vd+r(x)||22 is a good choice. In problem (3.29) this corresponds to minimizing the trace of
Md+r(y) and hence leads to an optimal solution y with low rank matrix Md+r(y).

3.4.2 Via Christoffel-like polynomials

Another possibility to recover the atomic representing measure of an optimal solution y⋆ to
(3.19) is to find the zeros of the polynomial p⋆(x) = trace(Md(y⋆)q) − p⋆d(x), where p⋆d is the
Christoffel-like polynomial associated with y⋆ defined in (3.15). In other words, we compute
the set Ω = {x ∈ X : trace(Md(y⋆)q) − p⋆d(x) = 0}, which due to Theorem 3.3 is the support
of the atomic representing measure. To that end we minimize p⋆ on X . As the polynomial p⋆

is non-negative on X , the minimizers are exactly Ω. For minimizing p⋆, we use the Lasserre
hierarchy of lower bounds, that is, we solve the semidefinite program

min
yr

Lyr (p⋆)

s.t. yr ∈ M2(d+r)(g1, . . . , gm), yr,0 = 1.
(3.31)

By Theorem 3.3, the polynomial p⋆ belongs to the quadratic module Q2d
2(d+δ)(g1, . . . , gm). Thus,

the value of problem (3.31) is zero, i.e., optimal, for all r > δ.
When condition (3.30) is fulfilled, the optimal solution y⋆r comes from a measure. We extract

the support points x1, . . . ,xℓ ∈ X of the representing atomic measure of y⋆r , and y⋆ respectively,
as described in [Las10, Section 4.3].

Alternatively, instead of solving problem (3.31), we can solve the semidefinite program

min
yr

trace(Md+r(yr))

s.t. Lyr (p⋆) = 0, yr,0 = 1,
yr ∈ M2(d+r)(g1, . . . , gm),

(3.32)

which also searches for a moment sequence of a measure supported on the zero level set of p⋆.
Again, if condition (3.30) is holds, the finite support can be extracted.

3.4.3 Calculating the corresponding weights

After recovering the support {x1, . . . ,xℓ} of the atomic representing measure by one of the
previously presented methods, we might be interested in also computing the corresponding
weights w1, . . . , wℓ. These can be calculated easily by solving the following linear system of
equations:

∑ℓ
i=1wix

α
i = y⋆α for all |α| 6 2d, i.e.,

∫

X xαµ⋆(dx) = y⋆α.

3.5 Examples

We illustrate the procedure on three examples: a univariate one, a polygon in the plane and one
example on the three-dimensional sphere. We concentrate on D-optimal designs (q = 0) and
T -optimal designs (q = 1).We do not report computation times, since they are negligible for our
small examples.
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3.5.1 Univariate unit interval

We consider as design space the interval X = [−1, 1] and on it the polynomial measurements
∑d
j=0 θjx

j with unknown parameters θ ∈ Rd+1.

3.5.1.1 D-optimal design

To compute the D-optimal design we first solve problem (3.19). As this includes the projection
of the cone M2d(1 − ‖x‖2), this is equivalent to solving

max
yδ

log det Md(yδ)

s.t. Md+δ(yδ) < 0,
Md+δ−1((1 − x2) yδ) < 0,
y

δ ,0 = 1

(3.33)

for yδ ∈ Rs(2(d+δ)) and given regression order d and relaxation order d+ δ, and then taking the
truncation y⋆ := (y⋆δ,α)|α|62d of an optimal solution y⋆δ . For instance, for d = 5 and δ = 0 we
obtain the sequence y⋆ ≈ (1, 0, 0.56, 0, 0.45, 0, 0.40, 0, 0.37, 0, 0.36)T .

To recover the corresponding atomic measure from the sequence y⋆ we solve problem (3.29),

min
yr

trace Md+r(yr)

s.t. Md+r(yr) < 0,
Md+r−1((1 − x2)yr) < 0,
yr,α = y⋆α, |α| 6 2d.

(3.34)

We find the atomic measure supported on the points -1, -0.765, -0.285, 0.285, 0.765 and 1
(for d = 5, δ=0, r = 1). As a result, our optimal design is the weighted sum of the Dirac
measures supported on these points. The points match with the known analytic solution
to the problem, which are the critical points of the Legendre polynomial, see, e.g., [DS97,
Theorem 5.5.3]. Calculating the corresponding weights as described in Section 3.4.3, we find
w1 = · · · = w6 ≈ 0.166.

Alternatively, we compute the roots of the polynomial p⋆(x) = 6 − p⋆5(x), where p⋆5 is the
Christoffel polynomial of degree 2d = 10 on X associated with y⋆. We find the same points
as in the previous approach by solving problem (3.32). See Figure 3.1 for the graph of the
polynomial p⋆.
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Figure 3.1 – Polynomial p⋆ for Example 3.5.1.1.

We observe that we get less points when using problem (3.31) to recover the support for this
example. This may occur due to numerical issues.
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3.5.1.2 T-optimal design

For the T -optimal design, instead of solving (3.33) we solve

max
yδ

trace Md(yδ)

s.t. Md+δ(yδ) < 0,
Md+δ−1((1 − x2) yδ) < 0,
yδ,0 = 1

for yδ ∈ Rs(2(d+δ)) and given d and δ. Then we take y⋆ := (y⋆δ,α)|α|62d. For example, for d = 3
and δ = 0 we get the sequence y⋆ ≈ (1, 0, 1, 0, 1, 0, 1)T .

To recover the corresponding measure we solve problem (3.34) as before. In contrary to the
D-optimal design, we get the points -1 and 1 with weights w1 = w2 = 0.5 for all d 6 7, meaning
our T -optimal design is the measure µ⋆ = 0.5 δ−1 + 0.5 δ1 independently of the regression order d.
The measure µ⋆ is also the D-optimal design for regression order d = 1, but for the D-optimal
design the support gets larger when d increases.

Note that we can also compute the support points via Christoffel-like polynomials. Evidently,
this gives the same points. Generally, in the case of T -optimal design the method via Christoffel-
like polynomials is numerically more stable than in the D-optimal design case, since p⋆d(x) =
vd(x)Tvd(x) for q = 1. Hence, p⋆d is independent of the moment matrix and it is not necessary
to compute its inverse or the orthogonal polynomials.

3.5.2 Wynn’s polygon

As a two-dimensional example we take the polygon given by the vertices (−1,−1), (−1, 1),
(1,−1) and (2, 2), scaled to fit the unit circle, i.e., we consider the design space

X = {x ∈ R2 : x1, x2 > −1
4

√
2, x1 6 1

3(x2 +
√

2), x2 6 1
3(x1 +

√
2), x2

1 + x2
2 6 1}.

Note that we need the redundant constraint x2
1 + x2

2 6 1 in order to have an algebraic certificate
of compactness.

3.5.2.1 D-optimal design

As before, in order to find the D-optimal design for the regression, we solve problems (3.19)
and (3.29). Let us start by analyzing the results for d = 1 and δ = 3. Solving (3.19) we obtain
y⋆ ∈ R45, which leads to 4 atoms when solving (3.29) with r = 3. For the latter the moment
matrices of order 2 and 3 both have rank 4, so condition (3.30) is fulfilled. As expected, the 4
atoms are exactly the vertices of the polygon.

Again, by solving problem (3.32) instead of (3.29) we obtain the same atoms. As in the
univariate example we get less points when using problem (3.31). To be precise, GloptiPoly is
not able to extract any solutions for this example.

For increasing d, we get an optimal measure with a larger support. For d = 2 we recover 7
points, and 13 for d = 3. See Figure 3.2 for the polygon, the supporting points of the optimal
measure and the

(2+d
2

)
-level set of the Christoffel polynomial p⋆d for different d. The latter

demonstrates graphically that the set of zeros of
(2+d
d

)
− p⋆d intersected with X are indeed the

atoms of our representing measure. In Figure 3.3 we visualized the weights corresponding to
each point of the support for the different d.
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Figure 3.2 – The polygon (bold black) of Section 3.5.2, the support of the optimal design measure
(red points) and the s(d)-level set of the Christoffel polynomial (thin blue) for d = 1 (left), d = 2
(middle), d = 3 (right) and δ = 3.
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Figure 3.3 – The polygon (bold black) of Section 3.5.2 and the support of the optimal design
measure (red points) with the corresponding weights (green bars) for d = 1 (left), d = 2 (middle),
d = 3 (right) and δ = 3.

3.5.2.2 T-optimal design

For the T -optimal design, meaning with the trace as objective function, we obtain a moment
sequence y⋆ ∈ R45 with a rank 1 moment matrix when solving problem (3.19) for d = 1 and
δ = 3. Hence, when recovering the corresponding measure, we obtain a Dirac measure supported
on one point, namely the point (0.7, 0.7), which is the right most vertex of the polygon. For
d = 2 and d = 3 we also obtain moment matrices of rank one and recover the same support
point. See Figure 3.4 for an illustration of the recovered point and the respective zero level set
of the polynomial p⋆.
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Figure 3.4 – The two pictures showing the polygon illustrate the recovered point (red) and the
zero level set of the polynomial p⋆ (blue line) for the T -optimal design example of Section 3.5.2;
we have d = 1 on the left and d = 3 in the middle. The picture on the right shows the support
points recovered in Example 3.5.3.1 for d = 1 (red) and the points which are recovered when
additionally fixing some moments as described in Example 3.5.3.3 (blue).
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3.5.3 The 3-dimensional unit sphere

Last, let us consider the regression for the degree d polynomial measurements
∑

|α|6d θαx
α on

the unit sphere X = {x ∈ R3 : x2
1 + x2

2 + x2
3 = 1}.

3.5.3.1 D-optimal design

Again, we first solve problem (3.19). For d = 1 and δ > 0 we obtain the sequence y⋆ ∈ R10 with
y⋆000 = 1, y⋆200 = y⋆020 = y⋆002 = 0.333 and all other entries zero.

In the second step we solve problem (3.29) to recover the corresponding measure. For r = 2
the moment matrices of order 2 and 3 both have rank 6, meaning the rank condition (3.30) is
fulfilled. We obtain the six atoms {(±1, 0, 0), (0,±1, 0), (0, 0,±1)} ⊆ X , on which the optimal
measure µ ∈ M+(X ) is uniformly supported.

For quadratic regressions, i.e., d = 2, we obtain an optimal measure supported on 14 atoms
evenly distributed on the sphere. Choosing d = 3, meaning cubic regressions, we find a Dirac
measure supported on 26 points, which again are evenly distributed on the sphere. See Figure 3.5
for an illustration of the supporting points of the optimal measures for d = 1, d = 2, d = 3 and
δ = 0.

Figure 3.5 – The red points illustrate the support of the optimal design for d = 1 (left), d = 2
(middle), d = 3 (right) and δ = 0 for Example 3.5.3.1.

Using the method via Christoffel-like polynomials gives again less points. No solution is
extracted when solving problem (3.32) and we find only two supporting points for problem
(3.31).

3.5.3.2 T-optimal design

For this example, the solutions for the D-optimal design and the T -optimal design coincide for
regression order d = 1. As for the other examples, here again the T -optimal design gives the
same solution for all d, so we obtain the same six support points as for d = 1 when choosing
d = 2 or d = 3.

3.5.3.3 Fixing some moments

Our method has an additional nice feature. Indeed, in problem (3.19) one may easily include the
additional constraint that some moments (yα), α ∈ Γ ⊆ Nn2d, are fixed to some prescribed value.
We illustrate this potential on one example. For instance, for Γ = {(020), (002), (110), (101)}
set y020 := 2, y002 := 1, y110 := 0.01 and y101 := 0.95. In order to obtain a feasible problem, we
scale them with respect to the Gauss distribution.
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For the D-optimal design case with d = 1 and δ = 0 and after computing the support of the
corresponding measure using the Nie method, we get 6 points as we obtain without fixing the
moments. However, now four of the six points are shifted and the measure is no longer uniformly
supported on these points. Still, each two opposite points have the same weight. See the picture
on the right hand side of Figure 3.4 for an illustration of the position of the points with fixed
moments with respect to the position of the support points without fixing the points.

3.6 Concluding remark

In this chapter, we gave a general method to compute optimal designs for multidimensional
polynomial regression on semialgebraic sets. The Lasserre hierarchy of lower bounds was used
in both steps of our method, both for the computation of the moment sequence of an optimal
design and to recover the corresponding measure.

The considered method is highly versatile as it can be used for all classical functionals of the
information matrix. Furthermore, it can easily be tailored to incorporate prior knowledge on
some multidimensional moments of the targeted optimal measure (as proposed in [MZ04]). In
future works, one may extend the method to multi-response polynomial regression problems or
to general smooth parametric regression models by linearization.
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In this chapter we exploit further a concept on which the Lasserre hierarchy is based. We
use it to approximate a compact semialgebraic set K with simple objects, that is, quadratic
polynomials. In other words, we express the set K described by polynomials of potentially large
degree with (infinitely many) polynomials of degree 2.

We call a polynomial a separator, if its zero sublevel set intersected with K is empty. So,
the objective is to obtain approximations of K by quadratic separators, meaning separators of
degree 2.

In [Las09], Lasserre approximates the convex hull co(K) of a semialgebraic set K by intersec-
tions of zero superlevel sets of linear separators. Related to this concept is the notion of theta
bodies treated in [GPT10] which are defined for sets K which are algebraic varieties. These
outer approximations of the convex hull motivated further investigations, namely to consider
separators of higher degree, for example of degree 2. The idea is to obtain outer approximations
of the set K itself, in contrast to approximating the convex hull in the linear case.

The concept of approximating a semialgebraic set by polynomial separators is closely related
to the Lasserre hierarchy. To see why, we first recall that P(K) denotes the cone of polynomials
which are non-negative on K, and observe that polynomial separators are elements of P(K).
Now we are in the situation which we have already encountered in the first chapter, since we
need a tractable characterization of the cone P(K). This is where we use the idea by Lasserre,
and instead of taking P(K), we take the quadratic module Q(g1, . . . , gm) generated by the
polynomials gj defining K, which we then truncate.

As a result, we get approximations which are described by semidefinite constraints of smaller
size, since generally the original polynomials gj are no longer part of the description. Hence,
given a point x ∈ Rn, we can decide whether x is an element of the approximation set solving a
small semidefinite program.

The outline of the chapter is as follows. First, we introduce the general concept by considering
separators of arbitrary degree. Then we present the existing results on approximations of the
convex hull using linear separators, and continue with our results about quadratic separators
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which show that these indeed approximate the set K itself. After some illustrating examples,
we conclude the chapter with some remarks on the approach, especially on the difficulties we
encountered and which may require further investigations.

4.1 Separators of arbitrary degree

We consider the compact semialgebraic set

K = {x ∈ Rn : gj(x) > 0, j = 1, . . . ,m}

described by given polynomials gj ∈ R[x], j = 1, . . . ,m. As in (1.1), we assume that one of the
gj is of the form R−∑n

i=1 x
2
i for some R > 0. Additionally, we assume that K has non-empty

interior.

Remark. In Chapter 1 we have seen that the former assumption implies that the quadratic
module Q(g1, . . . , gm) generated by the polynomials gj is archimedean. Consequently, Putinar’s
Positivstellensatz is applicable.

In the chapter on hand, let us abbreviate the quadratic module Q(g1, . . . , gm) by Q. We also
omit the dependence on the gj in the notation for the truncated quadratic module and write

Q2r := Q2r(g1, . . . , gm) =
{

σ0 +
m∑

j=1

σjgj : σj ∈ Σ[x]2(d−dj), j = 0, . . . ,m
}

,

where again d0 = 0 and dj := ⌈deg(gj)/2⌉, j = 1, . . . ,m. For given r, t ∈ N, we define the set

Kr,t := {x ∈ Rn : p(x) > 0 for all p ∈ Q2r ∩ R[x]t}. (4.1)

Since Q2r ∩R[x]t ⊆ P(K), the zero sublevel set of a polynomial p ∈ Q2r ∩R[x]t intersected with
K is empty, and therefore p is a separator of degree t. Hence, the set Kr,t is the intersection of
zero superlevel sets of polynomial separators of degree t.

Remark. Obviously Qt ⊆ Q2r ∩ R[x]t for 2r > t, but in general the inclusion is strict due to
possible cancellations of the higher degree terms. This strict inclusion is the reason why the
approach is successful even if there are gj with deg gj > t.

For x ∈ K we always have p(x) > 0 for all p ∈ Q2r ∩ R[x]t, so K ⊆ Kr,t for all r, t ∈ N.
Hence, Kr,t is an outer approximation, or relaxation, of K.

Furthermore, Kr,t+1 ⊆ Kr,t for all r and t, since the inclusion Q2r ∩ R[x]t ⊆ Q2r ∩ R[x]t+1

implies that an element of Kr,t+1 fulfills the same constraints as Kr,t, and potentially more. In
the same way, it follows from the inclusion Q2r ∩ R[x]t ⊆ Q2(r+1) ∩ R[x]t that Kr+1,t ⊆ Kr,t for
all r and t. Thus, the relaxations become tighter when r or t increases.

The moment side

As seen in the first chapter, the dual of the truncated quadratic module Q2r is the truncated
moment cone

M2r := M2r(g1, . . . , gm) := {y ∈ Rs(2r) : M r(y) < 0, M r−dj
(gjy) < 0, j = 1, . . . ,m},

where s(2r) :=
(n+2r

n

)
, dj := ⌈deg(gj)/2⌉, j = 1, . . . ,m, and r > max{d1, . . . , dm}. As on the

SOS side, we also suppress the dependence on the gj in the notation of the infinite dimensional
moment cone and write M := M(g1, . . . , gm).
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In the following we show that we can express the set Kr,t in terms of moments:

Lemma 4.1. Let r, t ∈ N, and let Kr,t be the set defined in (4.1). Then

Kr,t = {x ∈ Rn : ∃ y ∈ M2r such that yα = xα for all |α| 6 t}. (4.2)

Proof. To see that the right hand side of the equation is indeed the same set as the set defined
in (4.1), let us denote the set described via polynomial separators (4.1) by A and the description
via moments (4.2) by B.

“A ⊆ B”: Let x ∈ A, i.e. p(x) > 0 for all p ∈ Q2r ∩ R[x]t. Define y⋆α := xα for |α| 6 t,
and write y⋆ = (y⋆α)|α|6t. Then 0 6 p(x) =

∑

|α|6t pαxα =
∑

|α|6t pαy
⋆
α = 〈p,y⋆〉 for all

p ∈ Q2r ∩ R[x]t with p = (pα)α denoting the vector of coefficients of p. So y⋆ is an element of
the dual cone of Q2r ∩ R[x]t which is the projection of M2r onto the first s(t) =

(n+t
n

)
entries.

Hence, there exists a lifting y ∈ M2r of y⋆ with yα = y⋆α for |α| 6 t. Since by definition y⋆α = xα

for |α| 6 t, we have x ∈ B.
“B ⊆ A”: Let x ∈ B, i.e. there exists y⋆ ∈ M2r such that y⋆α = xα for all |α| 6 t. Let

p ∈ Q2r ∩ R[x]t. Then p(x) =
∑

|α|6t pαxα =
∑

|α|6t pαy
⋆
α = 〈p,y⋆〉 > 0, since p ∈ Q2r and

y⋆ ∈ M2r. Hence, x ∈ A.

4.2 Linear separators

The case of linear separators (treated in [Las09]) corresponds to approximating K with sets of
the form Kr,1, i.e., we let t = 1 and we let r increase. It turns out that this generates relaxations
of co(K), the convex hull of K, defined as the smallest convex set containing K.

Definition 4.2. We call the sets Kr,1 linear relaxations of K.

The following theorem formally states the above mentioned, i.e. that the linear relaxations
Kr,1 form a converging sequence of outer approximations of co(K). The theorem is a direct
consequence of Putinar’s Positivstellensatz, Theorem 1.1.

Theorem 4.3. co(K) =
⋂

r∈N Kr,1.

Proof. We follow the proof of [Las09, Theorem 2], respectively [Sin10, Corollary 2.2.8].
“⊆”: Choose a point x ∈ co(K). By definition of the convex hull, it holds that x =

∫
xµ(dx)

for some probability measure µ ∈ M+(K). Let y = (yα)α ∈ RNn
be the sequence of moments of

µ, i.e. yα =
∫
xα µ(dx), α ∈ Nn. The sequence y is well-defined because µ has compact support,

and since we are considering probability measures, we have y0 = 1. Furthermore, M r(y),< 0
and M r−dj

(gjy) < 0 for all j = 1, . . . ,m and r ∈ N as y is the moment sequence of a measure
supported on K. This means that y ∈ M2r. Moreover,

∫
xi dµ = xi, i = 1, . . . , n, by the

definition of µ, which implies x ∈ ⋂r∈N Kr,1.
“⊇” by contradiction: Assume there is x ∈ ⋂

r∈N Kr,1 \ co(K). Then, as co(K) is convex
and compact, by the separation theorem for convex sets (see e.g. [Bar02, Theorem III.1.3])
there exists a linear polynomial px ∈ R[x]1 such that px(x) < 0 and px(z) > 0 for all z ∈ co(K).
In particular, px > 0 on K, so Putinar’s Positivstellensatz implies px ∈ Q which contradicts
x ∈ ⋂r∈N Kr,1, meaning p(x) > 0 for all p ∈ Q ∩ R[x]1.

4.2.1 Exactness

An important question for practical purposes is, in which cases there exists a finite r ∈ N such
that Kr,1 = co(K). For this we introduce the notion of exactness.
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Definition 4.4. We say that the linear relaxation Kr,1 of order r ∈ N is exact, if Kr,1 = co(K).

Remark. The existence of a finite r such that the relaxation of order r is exact implies that
the set co(K) is semidefinite representable. For details and further references consult [Las09],
[NPS10] and [KS17]. Note additionally that by the recent result by Scheiderer [Sch16], there are
indeed many convex semialgebraic sets which do not have a semidefinite representation.

In [Las09], Lasserre gives a sufficient condition for exactness, namely, if there exists r⋆ ∈ N
such that Q2r⋆ contains all linear polynomials which are non-negative on K, then the relaxation
Kr⋆,1 is exact [Las09, Theorem 2b]. This condition is also necessary by [NPS10, Proposition
3.1].

As explained in [Las09, Examples 1 and 2], the condition is fulfilled for r⋆ = 1 for convex
polytopes defined by linear inequalities, and also for sets K described by gj ’s which are concave
and quadratic. For convex sets K ⊆ R2 for which the gj ’s are concave with degree 2 or 4, the
condition is fulfilled for r⋆ = 2, [Las09, Example 2]. More generally, [Las09, Theorem 3] says
that the above property holds with order r⋆ = 1, if K ⊆ Rn is defined by two polynomials g1

and g2 of the form gi(x) = xTAix+ ci for some real symmetric matrices Ai and ci ∈ R, i = 1, 2.
Note that this includes sets K which may be disconnected.

So, in these cases we know that the linear relaxation for the given order r⋆ is exact, meaning
co(K) = Kr⋆,1. In addition, very recently Kriel and Schweighofer showed the existence of exact
linear relaxations for convex sets K, where the defining polynomials g1, . . . , gm satisfy a certain
concavity condition, see [KS17, Theorem 4.8].

Conversely, since the above mentioned sufficient condition is also necessary, we can produce
planar examples for which co(K) 6= Kr,1 by choosing K = {x ∈ R2 : g(x) > 0} defined by
one single polynomial g which does not have any linear term. Since this implies that the
truncated quadratic module Q2r does not contain all affine functions which are non-negative on
K, the condition is violated. [Hen08] assembles examples of planar quartics which illustrate this
approach. We cite two of them in Example 4.2.1 and Example 4.2.2.

Furthermore, in [NPS10, Theorem 3.5], it is shown that in case K is convex and has
a non-exposed face, then Kr,1 cannot be exact for any finite r ∈ N. This is illustrated in
Example 4.2.3.

4.2.2 Examples

Example 4.2.1 (Water drop, [Hen08, Example 5.3]). Let K ⊆ R2 be the set defined by the
water drop quartic g(x) = −x2

1 − x3
2 − (x2

1 + x2
2)2. The curve has a singular point at the origin.

On the left hand side of Figure 4.1 we see that the sets Kr,1 for r = 2, 3 and 4 are indeed strict
supersets of co(K). For increasing r the sets are no longer visually distinguishable from co(K),
but one can show that the linear relaxation is not exact for any finite r.

Example 4.2.2 (Folium, [Hen08, Example 5.5]). Let g(x) = −x1(x2
1 − 2x2

2) − (x2
1 + x2

2)2. This
polynomial defines a folium which is a curve of genus zero with a triple singular point at the
origin. See Figure 4.1 (right side) for an illustration of the sets K2,1 and K3,1. While it is
obvious that the linear relaxation of order 2 is not exact, the one of order 3 might be, but we do
not know.

Example 4.2.3 (Non-exposed face, [NPS10, Example 3.7]). Consider the convex set K ⊆ R2

defined by g1(x) = x2 − x3
1, g2(x) = x1 + 1, g3(x) = x2 and g4(x) = 1 − x2. In [NPS10], it is

shown that the point (0, 0) is a non-exposed face of K. Therefore, there is no finite r such that
Kr,1 is exact. See Figure 4.2 for an illustration of K2,1. Already the set K3,1 (not represented)
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Figure 4.1 – The sets K2,1 (red), K3,1 (green) and K4,1 (blue, only left) for Example 4.2.1 on
the left and Example 4.2.2 on the right. The black curves represent the zero level sets of the
respective polynomials g.

is no longer visually distinguishable from K. However, we know that it is a strict superset by
[NPS10, Theorem 3.5].

Note that K is nonetheless semidefinite representable, as is also shown in [NPS10]. However,
its semidefinite representation cannot be found via the linear separators.

Figure 4.2 – The black curves represent the
zero level sets of the polynomials g1, g2, g3

and g4 for Example 4.2.3. The red region
corresponds to the set K2,1, meaning the
approximation via linear separators of the
smallest possible order. One can see that
the approximation is not exact near the non-
exposed face (0, 0).
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4.3 Quadratic separators

Let us denote by dK := maxj=1,...,m deg gj the maximum degree of the polynomials describing K.
Then we have gj ∈ Q ∩ R[x]dK

for all j = 1, . . . ,m, and hence K =
⋂

r∈N Kr,dK
. More generally,

K =
⋂

r∈N
Kr,dK

⊆ · · · ⊆
⋂

r∈N
Kr,2 ⊆

⋂

r∈N
Kr,1 = co(K) ⊆

⋂

r∈N
Kr,0 = Rn, (4.3)

since the relaxations Kr,t get tighter for increasing t, as explained in Section 4.1, and where
the second equality is due to Theorem 4.3. In the following we consider approximations with
quadratic separators.

Definition 4.5. We call the sets Kr,2 quadratic relaxations of K.

Now we show that there is actually a big jump from using linear separators (t = 1), which
model the convex hull of K as shown in Theorem 4.3, to using quadratic separators (t = 2). In
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fact, quadratic relaxations are already enough to model exactly the set K.

Theorem 4.6. K =
⋂

r∈N Kr,2.

Proof. The inclusion “⊆” holds due to (4.3). We prove “⊇” by contraposition, that is, we show
x̂ /∈ K ⇒ x̂ /∈ ⋂r∈N Kr,2.

Let x̂ ∈ Rn \ K, i.e., there exists an open neighborhood of x̂ whose intersection with K is
empty. This means that there exists an εx̂ > 0 such that ||x − x̂||22 > εx̂ for all x ∈ K, i.e., for
any 0 < ε < εx̂ the polynomial

p(x) := ||x− x̂||22 − ε

is strictly positive on K. By Putinar’s Positivstellensatz (Theorem 1.1), it follows that p ∈ Q,
and since deg p = 2, we therefore have p ∈ Q ∩ R[x]2. Evaluating p in x̂ gives p(x̂) = −ε < 0.
This implies x̂ /∈ ⋂r∈N Kr,2.

Remark 4.3.1. In the same way, one can show that, in case there exists an r ∈ N such that all
quadratic polynomials which are positive on K are contained in Q2r, then K = Kr,2. This would
be the quadratic counterpart to [Las09, Theorem 2].

We conclude that

K =
⋂

r∈N
Kr,2 ⊆

⋂

r∈N
Kr,1 = co(K) ⊆

⋂

r∈N
Kr,0 = Rn.

4.3.1 Exactness

As in the linear case one may ask in which cases the relaxation is exact. So we define the notion
of exactness also for quadratic separators.

Definition 4.7. We say that the quadratic relaxation Kr,2 of order r ∈ N is exact, if Kr,2 = K.

As already mentioned in Remark 4.3.1, a sufficient condition for the quadratic relaxation
Kr,2 to be exact is the set inclusion {p ∈ R[x]2 : p(x) > 0 ∀x ∈ K} ⊆ Q2r. With regard to the
proof of Theorem 4.6, we see that already the weaker condition

{||x− x̂||22 − εx̂ : x̂ ∈ Rn, εx̂ > 0 and ||x − x̂||22 − εx̂ > 0 ∀x ∈ K} ⊆ Q2r

is sufficient. However, this condition is not necessary for exactness, since we do not need all
the polynomials ||x− x̂||22 − εx̂ to describe K. Instead, there might be different polynomials to
replace them.

In the quadratic case it is much more difficult to find examples for K  Kr,2 than in the
linear case, because the quadratic module contains sums of squares, meaning it will always
contain quadratic polynomials. In fact, we did not succeed in finding any.

4.3.2 Examples

To represent graphically the set Kr,2 we use a membership oracle, meaning we randomly choose
points x in an appropriate box and solve the problem

inf
y∈M2r

0 s.t. yα = xα for all |α| 6 2

of deciding whether x is an element of Kr,2. Since the constraint y ∈ M2r is equivalent to
Md(y) < 0, Md−dj

(gjy) < 0, j = 1, . . . ,m, this is a semidefinite program, and therefore it can
be solved numerically. If the semidefinite program has a solution, we plot a dot at location x.

We consider the same examples as in the linear case:
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Example 4.3.1 (Water drop). Once again, let us start with the water drop quartic given by
g(x) = −x2

1 − x3
2 − (x2

1 + x2
2)2. Since the degree of g is 4, the smallest possible relaxation order

is r = 2. On the left hand side of Figure 4.3, we see the result of the membership oracle for
10 000 random points in the box [−0.25, 0.25] × [−1.2, 0.2], meaning an illustration for K2,2.
Numerically, the approximation seems to be exact. This is due to the quadratic information
that we take into account when choosing t = 2.

Example 4.3.2 (Folium). Let again g(x) = −x1(x2
1 −2x2

2)− (x2
1 +x2

2)2 be a polynomial defining
a folium. Numerical investigations allow the assumption that, again, the largest approximation
K2,2 is already exact. We found this surprising, since one may expect difficulties near the
singularity at the origin. In Figure 4.3 on the right, we see the result of the membership oracle
for 10 000 points in the box [−1.1, 0.5] × [−0.6, 0.6].
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Figure 4.3 – The result of the membership oracle of K2,2 for 10 000 random points in a suitable
box for Example 4.3.1 on the left and for Example 4.3.2 on the right.

Example 4.3.3 (Non-exposed face). Recall the convex set K ⊆ R2 defined by g1(x) = x2 − x3
1,

g2(x) = x1 +1, g3(x) = x2 and g4(x) = 1−x2 which has a non-exposed face (0, 0). See Figure 4.4.

Figure 4.4 – The black curves represent the
zero level sets of the polynomials g1, g2, g3

and g4 for Example 4.3.3. The red points
illustrate the set K2,2, meaning the approxi-
mation via quadratic separators of the small-
est possible order. Further numerical exami-
nation of the region around the non-exposed
face (0, 0) suggests that the approximation
is exact.

x
1

x
2

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

4.4 Concluding remarks

In this chapter the complicated object to approximate was a semialgebraic set, and we wanted
to describe it by polynomials of degree 2. For this, we extended the approach of approximating
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the convex hull of semialgebraic sets by linear separators proposed by Lasserre in [Las09] to
quadratic separators, which indeed gave an outer approximation of the semialgebraic set itself.

In the case of linear separators, the question of exactness has already been treated extensively
in the literature, see for example [NPS10] and [KS17]. Finding sufficient conditions for exactness
in the case of quadratic separators was a straightforward task. On the contrary, searching
necessary conditions for exactness proved to be much more difficult.

We did not succeed in finding any examples for which the approximation Kr,2 for the smallest
possible value of r does not already seem to be exact. However, we only searched in dimension
2, and we only have numerical certificates for the exactness. Nonetheless, one may wonder, if
this is generic and the approximation is always exact. However, this seems very unlikely.

Another problem that we encountered is how to graphically represent the set Kr,2. Our
method via the membership oracle has obvious drawbacks, as one needs to solve thousands
of semidefinite programming problems to get a good idea of the geometry of the set. So, an
interesting question would be, if there are more efficient or more illustrative ways to represent
Kr,2.
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This final chapter is dedicated to the study of convergence rates, an important notion when
investigating hierarchies. The objective is to construct a modification of the hierarchy of upper
bounds for which we can show an improved rate of convergence. For the construction we use an
approximation of the Dirac delta function. In this sense, the chapter is of slightly different flavor
than the preceding chapters, as we do not approximate an object using the Lasserre hierarchy
(or ideas of it) but we approximate an object - the Dirac delta function - in order to develop a
hierarchy of Lasserre-type.

Once more we consider problem (1.2) with K = [−1, 1]n, meaning

̺min = inf
x∈Rn

f(x) s.t. x ∈ [−1, 1]n (5.1)

for an n-variate polynomial f ∈ R[x]. We are interested in the convergence rate for hierarchies of
upper bounds which solve this problem. For the Lasserre hierarchy of upper bounds introduced
in Section 1.4.2, i.e.,

ϑmom
d = inf

σ∈Σ[x]2d

∫

K
f σ dν s.t.

∫

K
σ dν = 1,

an error bound in O( 1√
d
) can be shown when choosing ν(dx) = dx, the Lebesgue measure. For

this, sum-of-squares polynomials are used as density functions. As densities are positive on the
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support of the corresponding measure, this is the most obvious choice. In order to increase the
convergence rate, we consider more general densities than sums of squares, more precisely we
take polynomials for which the non-negativity is only enforced on the support of the measure.

When considering densities of a beta distribution, an O(1
d) error bound can be proved. In

this chapter, we show an error bound in O( 1
d2 ) for

ν(dx) =

(
n∏

i=1

√

1 − x2
i

)−1

dx

(the well-known measure in the study of orthogonal polynomials) and densities admitting a
Schmüdgen-type representation with respect to [−1, 1]n.

The approach can be interpreted as approximating the Dirac delta function at the global
minimizer not by sums of squares as in the Lasserre hierarchy, but by the above-mentioned
measures with densities admitting a Schmüdgen-type representation.

The convergence rate analysis relies on the theory of polynomial kernels and, in particular, on
Jackson kernels. We also show that the resulting upper bounds may be computed as generalized
eigenvalue problems, as is also the case for sum-of-squares densities.

The chapter reports results from [dKHL17].

Outline of the chapter

The chapter is organized as follows. In the first section, after recalling Lasserre-type hierarchies
of upper bounds whose convergence rates have already been examined, we introduce the new
hierarchy of upper bounds for which we want to show an error bound in O( 1

d2 ).
As a preparation for the convergence analysis, Section 5.2 contains some background infor-

mation about the polynomial kernel method. Specifically, we introduce Chebyshev polynomials
and Jackson kernels which we then use to construct suitable polynomial densities giving good
approximations of the Dirac delta function at a global minimizer of f in the box.

The analysis of the upper bounds is finally carried out in Section 5.3, first for the univariate
case, and then for the general multivariate case. In Section 5.4 we show how the new bounds
can be computed as generalized eigenvalue problems and in Section 5.5 we conclude with some
numerical examples illustrating the behavior of the bounds.

5.1 A Lasserre-type hierarchy with error bound O( 1
d2 )

As aforementioned, we focus on the question of finding a sequence of upper bounds converging to
the global minimum and allowing a known estimate on the rate of convergence. The starting point
is the same as for the construction of the standard Lasserre hierarchy, namely, the formulation
of problem (5.1) as an optimization problem over measures (problem (1.10), recalled below).
Then we restrict it to subclasses of measures that we are able to analyze. Sequences of upper
bounds have been recently proposed and analyzed in [dKLS16, dKLLS15]. Here, we propose
new bounds for which we can prove a sharper rate of convergence.

5.1.1 Background results

For convenience, we recall the formulation of problem (5.1) in terms of measures, i.e., problem
(1.10):

̺min = inf
µ∈M+(K)

〈f, µ〉 s.t. 〈1, µ〉 = 1.
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In Section 1.4.2 we strengthened this problem to the hierarchy (1.18) by optimizing only over
probability measures which have a sum-of-squares density σ ∈ Σ[x]2d with respect to a fixed
measure ν ∈ M+(K). The infinite dimensional problem associated to the truncated problem
(1.18) reads

ϑmom = inf
σ∈Σ[x]

∫

K
f σ dν s.t.

∫

K
σ dν = 1 (5.2)

for a fixed ν ∈ M+(K). By Theorem 1.4, we have ̺min = ϑmom.
In the recent work [dKLLS15], it is shown that for a compact set K ⊆ [0, 1]n one may obtain

a similar result using density functions arising from (products of univariate) beta distributions.
In particular, the following theorem is implicit in [dKLLS15].

Theorem 5.1. [dKLLS15] Let K ⊆ [0, 1]n be a compact set, let ν be an arbitrary finite Borel

measure supported on K, and let p be a continuous function on Rn. Then, p is non-negative on

K if and only if ∫

K
p h dν > 0

for all h of the form

h(x) =
∏n
i=1 x

βi

i (1 − xi)ηi

∫

K

∏n
i=1 x

βi

i (1 − xi)ηi

, (5.3)

where the βi and ηi are non-negative integers. Therefore, the minimum of p over K can be

expressed as

̺min = inf
h

∫

K
p h dν s.t.

∫

K
h dν = 1, (5.4)

where the infimum is taken over all beta-densities h of the form (5.3).

For the box K = [0, 1]n and selecting for ν the Lebesgue measure, we obtain a hierarchy of
upper bounds ϑHd converging to ̺min, where ϑHd is the optimal value of the program (5.4) when
the infimum is taken over all beta-densities h of the form (5.3) with degree d.

The rate of convergence of the upper bounds ϑmom
d (with ν(dx) = dx) and ϑHd have been

investigated recently in [dKLS16] and [dKLLS15], respectively. It is shown in [dKLS16] that
ϑmom
d − ̺min = O( 1√

d
) for a large class of compact sets K (including all convex bodies and thus

the box [0, 1]n or [−1, 1]n) and the stronger rate ϑHd −̺min = O(1
d) is shown in [dKLLS15] for the

box K = [0, 1]n. While the parameters ϑmom
d can be computed using semidefinite optimization (in

fact, a generalized eigenvalue computation problem; see [Las11]), an advantage of the parameters
ϑHd is that their computation involves only elementary operations (see [dKLLS15]).

Another possibility for getting a hierarchy of upper bounds is grid search, where one takes
the best function evaluation at all rational points in K = [0, 1]n with given denominator d. It
has been shown in [dKLLS15] that these bounds have a rate of convergence in O( 1

d2 ). However,
the computation of the order d bound needs an exponential number dn of function evaluations.

5.1.2 The hierarchy and main result

In [dKHL17], on which this chapter is based, we continued this line of research. For the box
K = [−1, 1]n, our objective is to build a new hierarchy of measure-based upper bounds, for
which we are able to show a sharper rate of convergence in O( 1

d2 ). We obtain these upper bounds
by considering a specific Borel measure ν (specified below in (5.6)) and polynomial density
functions with a so-called Schmüdgen-type SOS representation (as in (5.5) below).

We first recall the relevant result of Schmüdgen [Sch91], which gives SOS representations for
positive polynomials on a basic closed semialgebraic set (see also, e.g., [PD01],[Lau09, Theorem
3.16], [Mar08]). Write [m] := {1, . . . ,m}.
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Theorem 5.2 (Schmüdgen [Sch91]). Let K = {x ∈ Rn | g1(x) > 0, . . . , gm(x) > 0} with

g1, . . . , gm ∈ R[x] be compact. If p ∈ R[x] is positive on K, then p can be written as p =
∑

I⊆[m] σI
∏

i∈I gi, with σI ∈ Σ[x] for all I ⊆ [m].

For the box K = [−1, 1]n, described by the polynomial inequalities 1−x2
1 > 0, . . . , 1−x2

n > 0,
we consider polynomial densities that allow a Schmüdgen-type representation of bounded degree
2d,

h(x) =
∑

I⊆[n]

σI(x)
∏

i∈I
(1 − x2

i ), (5.5)

where the polynomials σI ∈ Σ[x]2(d−|I|) are sum-of-squares polynomials with degree at most
2(d − |I|) for |I| denoting the cardinality of I (to ensure that the degree of h is at most 2d).
Further, we fix the following Borel measure ν on [−1, 1]n (which, as will be recalled below, is
associated with some orthogonal polynomials),

ν(dx) =

(
n∏

i=1

π
√

1 − x2
i

)−1

dx. (5.6)

For d ∈ N, this leads to the following new hierarchy of upper bounds ϑhd for ̺min:

ϑhd := inf
h

∫

[−1,1]n
f h dν s.t.

∫

[−1,1]n
h dν = 1, (5.7)

where the infimum is taken over the polynomial densities h that allow a Schmüdgen-type
representation (5.5) with σI ∈ Σ[x]2(d−|I|).

The convergence of the decreasing sequence of parameters ϑhd > ϑhd+1 > ̺min to ̺min follows
as a direct consequence of the convergence of ϑmom

d (with ν as in (5.6)), since sums of squares
allow a Schmüdgen-type representation, so ϑhd 6 ϑmom

d (with ν as in (5.6)). Note that we used
the fact that K = [−1, 1]n has a nonempty interior, since otherwise ϑmom

d might be unbounded.
As a small remark, note also that, again due to the non-empty interior of K, the program (5.7)
has an optimal solution h⋆ for all d by [Las11, Theorem 4.2].

A main result in this chapter is to show that the bounds ϑhd have a rate of convergence in
O( 1

d2 ). Moreover, we will show that the parameter ϑhd can be computed through generalized
eigenvalue computations.

Theorem 5.3. Let f ∈ R[x] be a polynomial and ̺min be its minimum value over the box

[−1, 1]n. For any d large enough, the parameters ϑhd defined in (5.7) satisfy

ϑhd − ̺min = O
(

1
d2

)

.

As already observed above this result compares favorably with the estimate ϑmom
d − ̺min =

O( 1√
d
) shown in [dKLS16] for the bounds ϑmom

d based on using SOS densities and the Lebesgue
measure. (Note however that the latter convergence rate holds for a larger class of sets K that
includes all convex bodies; see [dKLS16] for details.) The new result also improves the estimate
ϑHd − ̺min = O(1

d) shown in [dKLLS15] for the bounds ϑHd obtained by using densities arising
from beta distributions. The theorem follows directly from Theorem 5.12 which will be proven
in Section 5.3.

We now illustrate the optimal densities appearing in the new bounds ϑhd on an example.

Example 5.1.1. Consider the minimization of the Motzkin polynomial

f(x1, x2) = 64(x4
1x

2
2 + x2

1x
4
2) − 48x2

1x
2
2 + 1
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over the hypercube [−1, 1]2, which has four global minimizers at the points
(

±1
2 ,±1

2

)

, and for

which ̺min = 0. Figure 5.1 shows the optimal density function h⋆ computed when solving the
problem (5.7) for degrees 2d = 12 and 2d = 16, respectively. Note that the optimal density h⋆

shows four peaks at the four global minimizers of f in [−1, 1]2. The corresponding upper bounds
from (5.7) are ϑh6 = 0.8098 and ϑh8 = 0.6949.
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Figure 5.1 – Graphs of h⋆ with deg h⋆ = 12 (left) and deg h⋆ = 16 (right) on [−1, 1]2 for the
Motzkin polynomial.

In order to show the convergence rate in O( 1
d2 ) of Theorem 5.3 we need to exhibit a polynomial

density function h2d of degree at most 2d which admits an SOS representation of Schmüdgen-type
and for which we are able to show that

∫

[−1,1]n f h2d dν − ̺min = O( 1
d2 ).

The idea is to find such a polynomial density which approximates well the Dirac delta function
at a global minimizer x⋆ of f over [−1, 1]n. For this we use the well-established polynomial
kernel method (KPM) and, more specifically, we use the Jackson kernel, a well-known tool in
approximation theory to yield best (uniform) polynomial approximations of continuous functions.

5.2 Background on the polynomial kernel method

Our goal is to approximate the Dirac delta function at a given point x⋆ ∈ Rn as well as
possible, using polynomial density functions of bounded degrees. This is a classical question in
approximation theory. In this section we review how this may be done using the polynomial
kernel method and, in particular, using Jackson kernels. This theory is usually developed using
the Chebyshev polynomials, and we start by reviewing their properties.

We follow mainly the work [WWAF06] for our exposition and we refer to the handbook
[AS72] for more background information.

5.2.1 Chebyshev polynomials

We will use the univariate polynomials Tk(x) and Uk(x), respectively, known as the Chebyshev
polynomials of the first and second kind. They are defined as follows:

Tk(x) = cos(k arccos(x)), Uk(x) =
sin
(

(k + 1) arccos(x)
)

sin(arccos(x))
(5.8)
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for x ∈ [−1, 1], k ∈ N. They satisfy the following recurrence relationships:

T0(x) = 1, T−1(x) = T1(x) = x, Tk+1(x) = 2xTk(x) − Tk−1(x), (5.9)

U0(x) = 1, U−1(x) = 0, Uk+1(x) = 2xUk(x) − Uk−1(x). (5.10)

As a direct application one can verify that for k ∈ N,

Tk(0) = 0 for k odd, Tk(0) = (−1)k/2 for k even, Tk(1) = 1,

Uk(1) = k + 1, Uk(−1) = (−1)k(k + 1).
(5.11)

The Chebyshev polynomials have the extrema

max
x∈[−1,1]

|Tk(x)| = 1 and max
x∈[−1,1]

|Uk(x)| = k + 1,

attained at x = ±1 (see, e.g., [AS72, §22.14.4, 22.14.6]).

The Chebyshev polynomials are orthogonal for the following inner product on the space of
integrable functions over [−1, 1]:

〈f, g〉 =
∫ 1

−1

f(x)g(x)

π
√

1 − x2
dx, (5.12)

and their orthogonality relationships read

〈Tk, Ts〉 = 0 for k 6= s, 〈T0, T0〉 = 1, 〈Tk, Tk〉 = 1
2 for k > 1. (5.13)

For any d ∈ N the Chebyshev polynomials Tk (k 6 d) form a basis of the space of univariate
polynomials with degree at most d. One may write the Chebyshev polynomials in the standard
monomial basis using the relations

Tk(x) =
k∑

i=0

t
(k)
i xi =

k

2

⌊k/2⌋
∑

s=0

(−1)s
(k − s− 1)!
s!(k − 2s)!

(2x)k−2s, k > 0,

Uk−1(x) =
k−1∑

i=0

u
(k)
i xi =

⌊ k−1
2 ⌋
∑

s=0

(−1)s
(k − s− 1)!
s!(k − 1 − 2s)!

(2x)k−1−2s, k > 1;

see, e.g. [AS72, Chap. 22]. From this, one may derive a bound on the largest coefficient in
absolute value appearing in the above expansions of Tk(x) and Uk−1(x). A proof for the following
result is given in Appendix 5.A.

Lemma 5.4. For any fixed integer k > 1, one has

max
06i6k−1

|u(k)
i | 6 max

06i6k
|t(k)
i | = 2k−1−2ψ(k) k(k − ψ(k) − 1)!

ψ(k)!(k − 2ψ(k))!
, (5.14)

where ψ(k) = 0 for k 6 4 and ψ(k) =
⌈

1
8

(

4k − 5 −
√

8k2 − 7
)⌉

for k > 4. Moreover, the

right-hand side of (5.14) increases monotonically with increasing k.

In the multivariate case we use the following notation. We let ν(dx) denote the Lebesgue
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measure on [−1, 1]n with the function
∏n
i=1

(

π
√

1 − x2
i

)−1

as the density function, i.e.,

ν(dx) =
n∏

i=1

(

π
√

1 − x2
i

)−1

dx, (5.15)

and we consider the following inner product for two integrable functions f, g on the box [−1, 1]n:

〈f, g〉 =
∫

[−1,1]n
f(x)g(x) ν(dx)

(which coincides with (5.12) in the univariate case n = 1). For α ∈ Nn, we define the multivariate
Chebyshev polynomial

Tα(x) =
n∏

i=1

Tαi
(xi) for x ∈ Rn.

The multivariate Chebyshev polynomials satisfy the following orthogonality relationship:

〈Tα, Tβ〉 =
(

1
2

)| supp(α)|
δα,β for α, β ∈ Nn, (5.16)

where δα,β ∈ {0, 1} is equal to 1 if and only if α = β and supp(α) := {i ∈ {1, . . . , n} : αi 6= 0}.
For any d ∈ N, the set of Chebyshev polynomials {Tα(x) : |α| 6 d} is a basis of the space of
n-variate polynomials of degree at most d.

5.2.2 Jackson kernels

A classical problem in approximation theory is to find a best (uniform) approximation of a given
continuous function f : [−1, 1] → R by a polynomial of given maximum degree d. Following
[WWAF06], a possible approach is to take the convolution f

(d)
KPM of f with a kernel function of

the form

Kd(x, y) =
1

π
√

1 − x2 π
√

1 − y2

(

gd0 T0(x)T0(y) + 2
d∑

k=1

gdk Tk(x)Tk(y)

)

,

where d ∈ N and the coefficients gdk are selected so that the following properties hold:

1. The kernel is positive: Kd(x, y) > 0 for all x, y ∈ [−1, 1].

2. The kernel is normalized: gd0 = 1.

3. The second coefficients gd1 tend to 1 as d → ∞.

The function f
(d)
KPM is then defined by

f
(d)
KPM(x) =

∫ 1

−1
π
√

1 − y2Kd(x, y) f(y) dy. (5.17)

As the first coefficient is gd0 = 1, the kernel is normalized,
∫ 1

−1Kd(x, y) dy =

T0(x)(π
√

1 − x2)−1, and we have
∫ 1

−1 f
(d)
KPM(x) dx =

∫ 1
−1 f(x) dx. The positivity of the kernel Kd

implies that the integral operator f 7→ f
(d)
KPM is a positive linear operator, i.e., a linear operator

that maps the set of non-negative integrable functions on [−1, 1] onto itself. Thus, the general
(Korovkin) convergence theory of positive linear operators applies and one may conclude the
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uniform convergence result
lim
d→∞

‖f − f
(d)
KPM‖ε∞ = 0

for any 0 < ε < 2, where ‖f − f
(d)
KPM‖ε∞ = max−1+ε6x61−ε |f(x) − f

(d)
KPM(x)|. (One needs to

restrict the range to subintervals of [−1, 1] because of the denominator in the kernel Kd.)
In what follows, we select the following parameters gdk for k = 1, . . . , d which define the

so-called Jackson kernel, again denoted by Kd(x, y),

gdk =
1

d+ 2

(

(d+ 2 − k) cos(k θd) +
sin(k θd)

sin θd
cos θd

)

=
1

d+ 2

(

(d+ 2 − k)Tk(cos θd) + Uk−1(cos θd) cos θd
) (5.18)

with θd := π
d+2 . This choice of the parameters gdk minimizes the quantity

∫

[−1,1]2 Kd(x, y) (x−
y)2 dx dy, which ensures that the corresponding Jackson kernel is maximally peaked at x = y

(see [WWAF06, §II.C.3]).
One may show that the Jackson kernel Kd(x, y) is indeed positive on [−1, 1]2; see [WWAF06,

§II.C.2]. Moreover, gd0 = 1 and, for k = 1, we have gd1 = cos(θd) = cos( π
d+2) → 1 for d → ∞, as

required. This is true for all k, as follows from Lemma 5.5 below. Note that one has |gdk| 6 1 for
all k, since |Tk(cos θd)| 6 1 and |Uk−1(cos θd)| 6 k.

For later use, we now give an estimate on the Jackson coefficients gdk, showing that 1 − gdk is
on the order O( 1

d2 ).

Lemma 5.5. Let ℓ > 1 and d > ℓ be given integers, and set θd = π
d+2 . There exists a constant

Cℓ (depending only on ℓ) such that the following inequalities hold:

|1 − gdk| 6 Cℓ(1 − cos θd) 6
Cℓπ

2

2(d+ 2)2
for all 0 6 k 6 ℓ.

For the constant Cℓ we may take Cℓ = ℓ2(1 + 2cℓ), where

cℓ = 2ℓ−1−2ψ(ℓ) ℓ(ℓ− ψ(ℓ) − 1)!
ψ(ℓ)!(ℓ− 2ψ(ℓ))!

and ψ(ℓ) =







0 for ℓ 6 4,
⌈

1
8

(

4ℓ− 5 −
√

8ℓ2 − 7
)⌉

for ℓ > 4.
(5.19)

Proof. Define the polynomial

Pk(x) = 1 − d+ 2 − k

d+ 2
Tk(x) − 1

r + 2
xUk−1(x)

with degree k. Then, in view of relation (5.18), we have 1 − gdk = Pk(cos θd). Recall from relation
(5.11) that Tk(1) = 1 and Uk−1(1) = k for any k ∈ N. This implies that Pk(1) = 0, and thus we
can factor Pk(x) as Pk(x) = (1 − x)Qk(x) for some polynomial Qk(x) with degree k − 1. If we
write Pk(x) =

∑k
i=0 pix

i, then it follows that Qk(x) =
∑k−1
i=0 qix

i with scalars qi given by

qi =
i∑

j=0

pj for i = 0, 1, . . . , k − 1. (5.20)

It now suffices to observe that for any 0 6 i 6 k and k 6 ℓ, the pi’s are bounded by a constant
depending only on ℓ, which will imply that the same holds for the scalars qi. For this, set
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Tk(x) =
∑k
i=0 t

(k)
i xi and Uk−1(x) =

∑k−1
i=0 u

(k)
i xi. Then the coefficients pi of Pk(x) can be

expressed as

p0 = 1 − d+ 2 − k

d+ 2
t
(k)
0 , pi =

d+ 2 − k

d+ 2
t
(k)
i − u

(k)
i−1

d+ 2
(1 6 i 6 k).

For all 0 6 k 6 ℓ the coefficients of the Chebyshev polynomials Tk, Uk−1 can be bounded by an
absolute constant depending only on ℓ. Namely, by Lemma 5.4, |t(k)

i |, |u(k)
i | 6 cℓ for all 0 6 i 6 k

and k 6 ℓ, where cℓ is as defined in (5.19).

As k 6 ℓ 6 d, we have d + 2 − k 6 d + 2, and thus |pi| 6 1 + 2cℓ for all 0 6 i 6 k 6 ℓ.
Moreover, using (5.20), |qi| 6 ℓ(1 + 2cℓ) for all 0 6 i 6 k − 1.

Putting things together we can now derive 1−gdk = (1−cos θd)Qk(cos θd), where Qk(cos θd) =
∑k−1
i=0 qi(cos θd)i, so that |Qk(cos θd)| 6

∑k−1
i=0 |qi| 6 ℓ2(1 + 2cℓ). This implies |1 − gdk| 6 (1 −

cos θd)Cℓ, after setting Cℓ = ℓ2(1 + 2cℓ). Finally, combining this with the fact that 1 − cosx 6 x2

2

for all x ∈ [0, π], we obtain the desired inequality from the lemma statement.

5.2.3 Jackson kernel approximation of the Dirac delta function

If one approximates the Dirac delta function δx⋆ at a given point x⋆ ∈ [−1, 1] by taking its
convolution with the Jackson kernel Kd(x, y), then the result is the function

δ
(d)
KPM(x− x⋆) =

1

π
√

1 − x2

(

1 + 2
d∑

k=1

gdk Tk(x)Tk(x⋆)

)

;

see [WWAF06, eq. (72)]. As mentioned in [WWAF06, eq. (75)–(76)], the function δ
(d)
KPM is a

good approximation to the Gaussian density,

δ
(d)
KPM(x− x⋆) ≈ 1√

2πσ2
exp

(

−(x− x⋆)2

2σ2

)

with σ2 ≃
(

π

d+ 1

)2
[

1 − x⋆2 +
3x⋆2 − 2
d+ 1

]

. (5.21)

(Recall that the Dirac delta measure may be defined as a limit of the Gaussian measure when
σ ց 0.) This approximation is illustrated in Figure 5.2 for several values of d.

By construction, the function δ
(d)
KPM(x − x⋆) is non-negative over [−1, 1] and we have the

normalization
∫ 1

−1 δ
(d)
KPM(x−x⋆)dx =

∫ 1
−1 δx⋆(x)dx = 1 (cf. Section 5.2.2). Hence, it is a probability

density function on [−1, 1] for the Lebesgue measure. It is convenient to consider the univariate
polynomial

hd(x) = 1 + 2
d∑

k=1

gdk Tk(x)Tk(x⋆), (5.22)

so that δ(d)
KPM(x− x⋆) = 1

π
√

1−x2
hd(x). The following facts follow directly, and we use them below

for the convergence analysis of the new bounds ϑhd .

Lemma 5.6. For any d ∈ N the polynomial hd from (5.22) is non-negative over [−1, 1] and
∫ 1

−1 hd(x) dx
π

√
1−x2

= 1. In other words, hd is a probability density function for the measure
(

π
√

1 − x2
)−1

dx on [−1, 1].
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Figure 5.2 – The Jackson kernel approxima-
tion δ(d)

KPM to the Dirac delta function at x⋆ = 0
for d = 8 (green), 16 (black), 32 (blue), 64
(red). The corresponding scatterplots show
the values of the Gaussian density function in
(5.21) with x⋆ = 0.

5.3 Convergence analysis

In this section we analyze the convergence rate of the new bounds ϑhd and we show the result
from Theorem 5.3. We first consider the univariate case in Section 5.3.1 (see Theorem 5.9),
and then the general multivariate case in Section 5.3.2 (see Theorem 5.12). As we will see,
the polynomial hd arising from the Jackson kernel approximation of the Dirac delta function
introduced above in relation (5.22), plays a key role in the convergence analysis.

5.3.1 The univariate case

We consider a univariate polynomial f and let x⋆ be a global minimizer of f in [−1, 1]. As
observed in Lemma 5.6 the polynomial hd from (5.22) is a density function for the measure dx

π
√

1−x2
.

The key observation now is that the polynomial hd admits a Schmüdgen-type representation, of
the form σ(x) + σ1(x)(1 − x2) with σ0, σ1 sums of squares, since it is non-negative over [−1, 1].
This fact allows us to use the polynomial h2d to get feasible solutions for the program defining
the bound ϑhd . It follows from the following classical result (see, e.g., [PR00]) which characterizes
univariate polynomials that are non-negative on [−1, 1]. (Note that this is a strengthening of
Schmüdgen’s theorem (Theorem 5.2) for the univariate case.)

Theorem 5.7 (Fekete, Markov-Lukàcz). Let p(x) be a univariate polynomial of degree ℓ. Then

p(x) is non-negative on the interval [−1, 1] if and only if it can be written as

p(x) = σ0(x) + (1 − x2)σ1(x)

for some sum-of-squares polynomials σ0 of degree 2⌈ℓ/2⌉ and σ1 of degree 2⌈ℓ/2⌉ − 2.

We start the convergence analysis with the following technical lemma.

Lemma 5.8. Let f be a polynomial of degree ℓ written in the Chebyshev basis as f =
∑ℓ
k=0 fkTk,

let x⋆ be a global minimizer of f in [−1, 1], and let hd be the polynomial from (5.22). For any
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integer d > ℓ we have

∫ 1

−1
f(x)hd(x)

dx

π
√

1 − x2
− f(x⋆) 6

Df

(d+ 2)2
,

where Df = Cℓπ
2

2

∑ℓ
k=1 |fk| and Cℓ is the constant from Lemma 5.5.

Proof. As f =
∑ℓ
k=0 fkTk and hd = 1+2

∑d
k=1 g

d
k Tk(x

⋆)Tk, we use the orthogonality relationships
(5.13) to obtain

∫ 1

−1
f(x)hd(x)

dx

π
√

1 − x2
=

ℓ∑

k=0

fk Tk(x⋆) gdk. (5.23)

Combined with f(x⋆) =
∑ℓ
k=0 fk Tk(x

⋆), this gives

∫ 1

−1
f(x)hd(x)

dx

π
√

1 − x2
− f(x⋆) =

d∑

k=1

fk Tk(x⋆) (gdk − 1). (5.24)

Now we use the upper bound on gdk − 1 from Lemma 5.5 and the bound |Tk(x⋆)| 6 1 to conclude
the proof.

We can now conclude the convergence analysis of the bounds ϑhd in the univariate case.

Theorem 5.9. Let f =
∑ℓ
k=0 fkTk be a polynomial of degree ℓ. For any integer d > ⌈ℓ/2⌉ we

have

ϑhd − ̺min
6

Df

(2d+ 2)2
,

where Df = Cℓπ
2

2

∑ℓ
k=1 |fk| and Cℓ is the constant from Lemma 5.5.

Proof. Using the degree bounds in Theorem 5.7 for the sum-of-squares polynomials entering
the decomposition of the polynomial h2d, we can conclude that h2d is feasible for the program
defining the parameter ϑhd . Setting Df = (

∑ℓ
k=1 |fk|)Cℓπ

2

2 and using Lemma 5.8, this implies

ϑhd − ̺min 6
Df

(2d+2)2 . The result of the theorem now follows.

5.3.2 The multivariate case

We consider now a multivariate polynomial f and we let x⋆ = (x⋆1, . . . , x
⋆
n) ∈ [−1, 1]n denote a

global minimizer of f on [−1, 1]n, i.e., f(x⋆) = ̺min.
In order to obtain a feasible solution to the program defining the parameter ϑhd we will

consider suitable products of the univariate polynomials hd from (5.22). Namely, for given
integers d1, . . . , dn ∈ N we define the n-tuple d = (d1, . . . , dn) and the n-variate polynomial

Hd(x1, . . . , xn) =
n∏

i=1

hdi
(xi). (5.25)

We group in the next lemma some properties of the polynomial Hd.

Lemma 5.10. The polynomial Hd satisfies the following properties:

(a) Hd is non-negative on [−1, 1]n.

(b)
∫

[−1,1]n Hd(x) ν(dx) = 1, where dν is the measure from (5.6).

(c) Hd has a Schmüdgen-type representation of the form Hd(x) =
∑

I⊆[n] σI(x)
∏

i∈I(1 − x2
i ),

where each σI is a sum-of-squares polynomial of degree at most 2
∑n
i=1⌈di/2⌉ − 2|I|.
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Proof. (a) and (b) follow directly from the corresponding properties of the univariate polynomials
hdi

, and (c) follows using Theorem 5.7 applied to the polynomials hdi
.

The next lemma is the analog of Lemma 5.8 for the multivariate case.

Lemma 5.11. Let f be a multivariate polynomial of degree ℓ, written in the basis of multivariate

Chebyshev polynomials as f =
∑

|α|6ℓ fαTα, and let x⋆ be a global minimizer of f in [−1, 1]n.

Consider d = (d1, . . . , dn), where each di is an integer satisfying di > ℓ, and the polynomial Hd

from (5.25). We have

∫

[−1,1]n
f(x) Hd(x) ν(dx) − f(x⋆) 6 Df

n∑

i=1

1
(di + 2)2

,

where Df = Cℓπ
2

2

∑

|α|6ℓ |fα| and Cℓ is the constant from Lemma 5.5.

Proof. As Hd(x) =
∏n
i=1 hdi

(xi) =
∏n
i=1(1 + 2

∑di

ki=1 g
di

ki
Tki

(xi)Tki
(x⋆i )) and f =

∑

|α|6ℓ fαTα,
we can use the orthogonality relationships (5.16) among the multivariate Chebyshev polynomials
to derive

∫

[−1,1]n
f(x) Hd(x) ν(dx) =

∑

|α|6ℓ
fαTα(x⋆)

n∏

i=1

gdi
αi
.

Combined with f(x⋆) =
∑

|α|6ℓ fα Tα(x⋆), this gives

∫

[−1,1]n
f(x) Hd(x) ν(dx) − f(x⋆) =

∑

|α|6ℓ
fα Tα(x⋆)

(
n∏

i=1

gdi
αi

− 1

)

.

Using the identity
∏n
i=1 g

di
αi

− 1 =
∑n
j=1(gdj

αj − 1)
∏n
k=j+1 g

dk
αk

and the fact that |gdk
αk

| 6 1, we get

|∏n
i=1 g

di
αi

− 1| 6∑n
j=1 |gdj

αj − 1|. Now use |Tα(x⋆)| 6 1 and the bound from Lemma 5.5 for each

|1 − g
dj
αj | to conclude the proof.

We can now show our main result, which implies Theorem 5.3.

Theorem 5.12. Let f =
∑

|α|6ℓ fαTα be an n-variate polynomial of degree ℓ. For any integer

d > n
⌈
ℓ+2

2

⌉

, we have

ϑhd − ̺min
6

Dfn
3

(2d+ 1)2
,

where Df = Cℓπ
2

2

∑

|α|6ℓ |fα| and Cℓ is the constant from Lemma 5.5.

Proof. Write 2d − n = sn + n0, where s, n0 ∈ N and 0 6 n0 < n, and define the n-tuple
d2 = (d1, . . . , dn) setting di = s + 1 for 1 6 i 6 n0 and di = s for n0 + 1 6 i 6 n, so that
2d−n = d1 + . . .+ dn. Note that the condition d > n

⌈
ℓ+2

2

⌉

implies s > ℓ, and thus di > ℓ for all
i. Moreover, we have 2

∑n
i=1 ⌈di/2⌉ = 2n0 ⌈(s+1)/2⌉ + 2(n−n0) ⌈s/2⌉, which is equal to 2d−n+n0

for even s and to 2d− n0 for odd s, and thus always at most 2d. Hence, the polynomial Hd2

from (5.25) has degree at most 2d. By Lemma 5.10(b),(c), it follows that the polynomial Hd2 is
feasible for the program defining the parameter ϑhd . By Lemma 5.11 this implies that

ϑhd − ̺min
6

∫

[−1,1]n
f(x) Hd2(x) ν(dx) − f(x⋆) 6 Df

n∑

i=1

1
(di + 2)2

.

Finally,
∑n
i=1

1
(di+2)2 = n0

(s+3)2 + n−n0
(s+2)2 6 n

(s+2)2 = n3

(2d+n−n0)2 6 n3

(2d+1)2 , since n0 6 n− 1.
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5.4 Computing the parameter ϑ
h
d as a generalized eigenvalue

problem

As the parameter ϑhd is defined in terms of sum-of-squares polynomials (cf. equation (5.7)), it
can be computed by means of a semidefinite program. As we now observe, ϑhd can in fact be
computed in a cheaper way as a generalized eigenvalue problem, since the program (5.7) has
only one affine constraint. Showing how this can be done, is the concern of the section on hand.

Using the inner product from (5.12), the parameter ϑhd can be rewritten as

ϑhd = min
h∈R[x]

〈f, h〉 s.t. 〈h, T0〉 = 1,

h(x) =
∑

I⊆[n]

σI(x)
∏

i∈I
(1 − x2

i ),

σI ∈ Σ[x]2(d−|I|), I ⊆ [n].

(5.26)

For convenience, we use below the following notation. For a set I ⊆ [n] and an integer d ∈ N
we let ΛId denote the set of sequences β ∈ Nn with |β| 6 ⌊d− |I|⌋.

As is well known, one can express the condition that σI is a sum-of-squares polynomial
as a semidefinite program. More precisely, writing σI(x) =

∑

k pk(x)2 for some pk ∈ R[x] and
using the Chebyshev basis to express the polynomials pk, we obtain that σI is a sum-of-squares
polynomial if and only if there exists a matrix variable M I indexed by ΛI

d which is positive
semidefinite and satisfies

σI =
∑

β,γ∈ΛI
d

M I
β,γTβTγ . (5.27)

For each I ⊆ [n], we introduce the following matrices AI and BI , also indexed by the set ΛI
d,

and whose entries are

AIβ,γ = 〈f, TβTγ
∏

i∈I
(1 − x2

i )〉,

BI
β,γ = 〈T0, TβTγ

∏

i∈I
(1 − x2

i )〉
(5.28)

for β, γ ∈ ΛId. We indicate in Appendix 5.B how to compute the matrices AI and BI .
We can now reformulate the parameter ϑhd as follows.

Lemma 5.13. Let AI and BI be the matrices defined as in (5.28) for each I ⊆ [n]. Then

the parameter ϑhd can be reformulated using the following semidefinite program in the matrix

variables M I , I ⊆ [n]:

ϑhd = min
MI

∑

I⊆[n]

Trace(AIM I) s.t.
∑

I⊆[n]

Trace(BIM I) = 1,

M I
< 0, I ⊆ [n].

(5.29)

Proof. Using relation (5.27) we can express the polynomial variable h in (5.26) in terms of the
matrix variables M I and obtain

h =
∑

I⊆[n]

∑

β,γ∈ΛI
d

M I
β,γTβTγ

∏

i∈I
(1 − xi)2.

First, this permits to reformulate the objective function 〈f, h〉 in terms of the matrix variables
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M I in the following way:

〈f, h〉 =
∑

I

∑

β,γM
I
β,γ〈f, TβTγ

∏

i∈I(1 − x2
i )〉

=
∑

I

∑

β,γM
I
β,γA

I
β,γ

=
∑

I Trace(AIM I).

Second we can reformulate the constraint 〈T0, h〉 = 1 using

〈T0, h〉 =
∑

I

∑

β,γM
I
β,γ〈T0, TβTγ

∏

i∈I(1 − x2
i )〉

=
∑

I

∑

β,γM
I
β,γB

I
β,γ

=
∑

I Trace(BIM I).

From this it follows that the program (5.26) is indeed equivalent to the program (5.29).

The program (5.29) is a semidefinite program with only one constraint. Hence, as we show
next, it is equivalent to a generalized eigenvalue problem.

Theorem 5.14. For I ⊆ [n] let AI and BI be the matrices from (5.28) and define the parameter

λ(I) = max
{

λ | AI − λBI
< 0

}

= min
{

λ | AIx = λBIx for some non-zero vector x
}

.

One then has ϑhd = minI⊆[n] λ
(I).

Proof. The dual semidefinite program of the program (5.29) is given by

supλ s.t. AI − λBI
< 0, I ⊆ [n]. (5.30)

We first show that the primal problem (5.29) is strictly feasible. To see this, it suffices to show
that Trace(BI) > 0, since then one may set M I equal to a suitable multiple of the identity
matrix, and thus one gets a strictly feasible solution to (5.29). Indeed, the matrix BI is positive
semidefinite since, for any scalars gβ,

∑

β,γ

gβgγB
I
β,γ =

∫

[−1,1]n

(∑

β

gβTβ
)2∏

i∈I
(1 − x2

i ) ν(dx) > 0.

Thus, Trace(BI) > 0 and, moreover, Trace(BI) > 0 since BI is nonzero.
Moreover, the dual problem (5.30) is also feasible, since λ = ̺min is a feasible solution. This

follows from the fact that the polynomial f − ̺min is non-negative over [−1, 1]n, which implies
that the matrix AI − ̺minBI is positive semidefinite. Indeed, using the same argument as above
for showing that BI < 0, we have

∑

β,γ

gβgγ(AI − ̺minBI)β,γ =
∫

[−1,1]n
(f(x) − ̺min)

(∑

β

gβTβ
)2∏

i∈I
(1 − x2

i ) ν(dx) > 0.

Since the primal problem is strictly feasible and the dual problem is feasible, there is no duality
gap and the dual problem attains its supremum. The result follows.

5.5 Numerical examples

We examine the polynomial test functions which were also used in [dKLS16] and [dKLLS15],
and are described in Appendix 5.C.
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The numerical examples given here only serve to illustrate the observed convergence behavior
of the sequence ϑhd as compared to the theoretical convergence rate. In particular, the computa-
tional demands for computing ϑhd for large d are such that it cannot compete in practice with
the known iterative methods referenced at the beginning of the chapter.

For the polynomial test functions we list in Table 5.1 the values of ϑhd for d up to d = 24,
obtained by solving the generalized eigenvalue problem in Theorem 5.14 using the eig function
of Matlab. Recall that for step d of the hierarchy the polynomial density function h is of
Schmüdgen-type and has degree 2d.

For the examples listed the computational time is negligible, and therefore not listed; recall
that the computation of ϑhd for even n requires the solution of 2n generalized eigenvalue problems
indexed by subsets I ⊂ [n], where the order of the matrices equals

(n+⌊d−|I|⌋
n

)
; cf. Theorem 5.14.

Table 5.1 – The upper bounds ϑhd for the test functions.

d Booth Matyas Motzkin Three-Hump
Styblinski-Tang Rosenbrock
n = 2 n = 3 n = 2 n = 3

3 145.3633 4.1844 1.1002 24.6561 -27.4061 157.7604
4 118.0554 3.9308 0.8764 15.5022 -34.5465 -40.1625 96.8502 318.0367
5 91.6631 3.8589 0.8306 9.9919 -40.0362 -47.6759 68.4239 245.9925
6 71.1906 3.8076 0.8098 6.5364 -47.4208 -55.4061 51.7554 187.2490
7 57.3843 3.0414 0.7309 4.5538 -51.2011 -64.0426 39.0613 142.8774
8 47.6354 2.4828 0.6949 3.3453 -56.0904 -70.2894 30.3855 111.0703
9 40.3097 2.0637 0.5706 2.5814 -58.8010 -76.0311 24.0043 88.3594
10 34.5306 1.7417 0.5221 2.0755 -61.8751 -80.5870 19.5646 71.5983
11 28.9754 1.4891 0.4825 1.7242 -63.9161 -85.4149 16.2071 59.0816
12 24.6380 1.2874 0.4081 1.4716 -65.5717 -88.5665 13.6595 49.5002
13 21.3151 1.1239 0.3830 1.2830 -67.2790 11.6835
14 18.7250 0.9896 0.3457 1.1375 -68.2078 10.1194
15 16.6595 0.8779 0.3016 1.0216 -69.5141 8.8667
16 14.9582 0.7840 0.2866 0.9263 -70.3399 7.8468
17 13.5114 0.7044 0.2590 0.8456 -71.0821 7.0070
18 12.2479 0.6363 0.2306 0.7752 -71.8284 6.3083
19 11.0441 0.5776 0.2215 0.7129 -72.2581 5.7198
20 10.0214 0.5266 0.2005 0.6571 -72.8953 5.2215
21 9.1504 0.4821 0.1815 0.6070 -73.3011 4.7941
22 8.4017 0.4430 0.1754 0.5622 -73.6811 4.4266
23 7.7490 0.4084 0.1597 0.5220 -74.0761 4.1070
24 7.1710 0.3778 0.1462 0.4860 -74.3070 3.8283

We note that the observed rate of convergence seems in line with the O( 1
d2 ) error bound.

As a second numerical experiment, we compare the upper bound ϑhd to the upper bound
ϑmom
d of the Lasserre hierarchy defined in (1.18) with ν(dx) = dx; see Table 5.2. Recall that

the bound ϑmom
d corresponds to using sum-of-squares density functions of degree at most 2d.

As shown in [dKLS16], the computation of ϑmom
d with ν the Lebesgue measure may be done

by solving a single generalized eigenvalue problem with matrices of order
(n+⌊d−|I|⌋

n

)
. Thus, the

computation of ϑmom
d is significantly cheaper than that of ϑhd .

It is interesting to note that, in almost all cases, ϑhd > ϑmom
d . Thus, even though the measure

ν(dx) and the Schmüdgen-type densities are useful in getting improved error bounds, they
mostly do not lead to improved upper bounds for these examples. This also suggests that it
might be possible to improve the error result ϑmom

d − ̺min = O( 1√
d
) in [dKLS16], at least for the

case K = [−1, 1]n. To illustrate this effect we graphically represent the results of Table 5.2 in

Figure 5.3. Note that the bound Dfn
3

(2d+1)2 of Theorem 5.12 would lie far above these graphs. To give



86 Chapter 5. Improved convergence rates for Lasserre-type hierarchies

Table 5.2 – Comparison of the upper bounds ϑhd and ϑmom
d for Booth, Matyas,

Three–Hump Camel, and Motzkin functions.

d
Booth function Matyas function

Three–Hump
Camel function

Motzkin polynomial

ϑmom
d

ϑh

d
ϑmom

d
ϑh

d
ϑmom

d
ϑh

d
ϑmom

d
ϑh

d

3 118.383 145.3633 4.2817 4.1844 29.0005 24.6561 1.0614 1.1002
4 97.6473 118.0554 3.8942 3.9308 9.5806 15.5022 0.8294 0.8764
5 69.8174 91.6631 3.6894 3.8589 9.5806 9.9919 0.8010 0.8306
6 63.5454 71.1906 2.9956 3.8076 4.4398 6.5364 0.8010 0.8098
7 47.0467 57.3843 2.5469 3.0414 4.4398 4.5538 0.7088 0.7309
8 41.6727 47.6354 2.0430 2.4828 2.5503 3.3453 0.5655 0.6949
9 34.2140 40.3097 1.8335 2.0637 2.5503 2.5814 0.5655 0.5706
10 28.7248 34.5306 1.4784 1.7417 1.7127 2.0755 0.5078 0.5221
11 25.6050 28.9754 1.3764 1.4891 1.7127 1.7242 0.4060 0.4825
12 21.1869 24.6380 1.1178 1.2874 1.2775 1.4716 0.4060 0.4081
13 19.5588 21.3151 1.0686 1.1239 1.2775 1.2830 0.3759 0.3830
14 16.5854 18.7250 0.8742 0.9896 1.0185 1.1375 0.3004 0.3457
15 15.2815 16.6595 0.8524 0.8779 1.0185 1.0216 0.3004 0.3016
16 13.4626 14.9582 0.7020 0.7840 0.8434 0.9263 0.2819 0.2866
17 12.2075 13.5114 0.6952 0.7044 0.8434 0.8456 0.2300 0.2590
18 11.0959 12.2479 0.5760 0.6363 0.7113 0.7752 0.2300 0.2306
19 9.9938 11.0441 0.5760 0.5776 0.7113 0.7129 0.2185 0.2215
20 9.2373 10.0214 0.4815 0.5266 0.6064 0.6571 0.1817 0.2005

an idea for the value of the constants Df we calculated them for the Booth, Matyas, Three-Hump
Camel, and Motzkin functions: DBooth ≈ 2.6 · 105, DMatyas ≈ 9.9 · 103, DThreeHump ≈ 3.5 · 107,
and DMotzkin ≈ 1.1 · 105.

Finally, it is shown in [dKLS16] that one may obtain feasible points corresponding to bounds
like ϑhd through sampling from the probability distribution defined by the optimal density
function. In particular, one may use the method of conditional distributions (see e.g., [Law07,
Section 8.5.1]). For K = [0, 1]n, the procedure is described in detail in [dKLS16, Section 3].

Appendix

5.A Proof of Lemma 5.4

We give here a proof of Lemma 5.4. We repeat the statement of the Lemma for convenience.

Lemma 5.4. For any fixed integer k > 1, one has

max
06i6k−1

|u(k)
i | 6 max

06i6k
|t(k)
i | = 2k−1−2ψ(k) k(k − ψ(k) − 1)!

ψ(k)!(k − 2ψ(k))!
, (5.14)

where ψ(k) = 0 for k 6 4 and ψ(k) =
⌈

1
8

(

4k − 5 −
√

8k2 − 7
)⌉

for k > 4. Moreover, the

right-hand side of the equation increases monotonically with increasing k.
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(b) Matyas function

5 10 15 20
0

5

10

15

20

25

30

d

(c) Three-Hump Camel function
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Figure 5.3 – Graphical representation of Table 5.2 to illustrate the comparison of the upper
bounds ϑmom

d and ϑhd . The values ϑmom
d are marked with circles connected by a dashed line and

ϑhd with squares connected by a solid line.

Proof. We recall the representation of the Chebyshev polynomials in the monomial basis:

Tk(x) =
k∑

i=0

t
(k)
i xi =

k

2

⌊k/2⌋
∑

s=0

(−1)s
(k − s− 1)!
s!(k − 2s)!

(2x)k−2s, k > 0,

Uk−1(x) =
k−1∑

i=0

u
(k)
i xi =

⌊ k−1
2 ⌋
∑

s=0

(−1)s
(k − s− 1)!
s!(k − 1 − 2s)!

(2x)k−1−2s, k > 1.

So, concretely, the coefficients are given by

t
(k)
k−2s = (−1)s · 2k−1−2s · k(k − s− 1)!

s!(k − 2s)!
, k > 0, 0 6 s 6

⌊
k
2

⌋

,

u
(k)
k−1−2s = (−1)s · 2k−1−2s · (k − s− 1)!

s!(k − 1 − 2s)!
, k > 1, 0 6 s 6

⌊
k−1

2

⌋

.

It follows directly that t(k)
k−2s = k

k−2su
(k)
k−1−2s, and thus |t(k)

k−2s| > |u(k)
k−1−2s| for s < k

2 and all k > 1
which implies the inequality on the left-hand side of (5.14).

Now we show that the value of max06s6⌊k/2⌋ |t(k)
k−2s| is attained for s = ψ(k). For this we
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examine the quotient

|t(k)
k−2(s+1)|
|t(k)
k−2s|

=
(k − 2s)(k − 2s− 1)
4(s+ 1)(k − s− 1)

=
k2 − 4sk + 4s2 + 2s− k

4sk − 4s2 − 8s+ 4k − 4
. (5.31)

Observe that this quotient is at most 1 if and only if s1 6 s 6 s2, where we set s1 =
1
8

(

4k − 5 −
√

8k2 − 7
)

and s2 = 1
8

(

4k − 5 +
√

8k2 − 7
)

. Hence, the function s 7→ |t(k)
k−2s| is

monotone increasing for s 6 s1 and monotone decreasing for s1 6 s 6 s2. Moreover, as
⌊s1⌋ 6 s1, we deduce that |t(k)

k−2⌈s1⌉| > |t(k)
k−2⌊s1⌋|. Observe furthermore that s1 > 0 if and only if

k > 4, and s2 > k
2 for all k > 1.

Therefore, in the case k > 4, max06s6⌊k/2⌋ |t(k)
k−2s| is attained at ⌈s1⌉ = ψ(k), and thus it is

equal to |t(k)
k−2ψ(k)|. In the case 1 < k 6 4, max06s6⌊k/2⌋ |t(k)

k−2s| is attained at s = 0, and thus it

is equal to |t(k)
k | = 2k−1.

Finally, we show that the rightmost term of (5.14) increases monotonically with k. We show
the inequality |t(k)

k−2ψ(k)| 6 |t(k+1)
k+1−2ψ(k+1)| for k > 4. For this we consider again the sequence of

Chebyshev coefficients, but this time we are interested in the behavior for increasing k, i.e., in
the map k 7→ |t(k)

k−2s|. So, for fixed s, we consider the quotient

|t(k+1)
k+1−2s|
|t(k)
k−2s|

=
2k−2s(k + 1)(k − s)! s! (k − 2s)!

2k−1−2sk(k − s− 1)! s! (k + 1 − 2s)!
= 2 · k + 1

k
· k − s

k + 1 − 2s
,

which is equal to 2 if s = 0, and at least 1 if s > 0 since every factor is at least 1. Thus, for
s = ψ(k), we obtain

|t(k)
k−2ψ(k)| 6 |t(k+1)

k+1−2ψ(k)|. (5.32)

Consider the map φ : [4,∞) → R, k 7→ φ(k) = 1
8

(

4k − 5 −
√

8k2 − 7
)

, so that ψ(k) = ⌈φ(k)⌉.

The map φ is monotone increasing, since its derivative φ′(k) = 1
8

(

4 − 16k
2
√

8k2−7

)

=
√

8k2−7−2k
2
√

8k2−7

is positive for all k > 4. Hence, we have ψ(k) 6 ψ(k + 1). Then, in view of (5.31) and the
comment thereafter, we have |t(k+1)

k+1−2s| 6 |t(k+1)
k+1−2(s+1)| for s 6 ψ(k + 1), and thus

|t(k+1)
k+1−2ψ(k)| 6 |t(k+1)

k+1−2ψ(k+1)|. (5.33)

Combining (5.32) and (5.33), we obtain the desired inequality |t(k)
k−2ψ(k)| 6 |t(k+1)

k+1−2ψ(k+1)|.

5.B Useful identities for the Chebyshev polynomials

First, recall the notation ν(dx), denoting the Lebesgue measure with density function
(
∏n
i=1 π

√

1 − x2
i

)−1

. In order to compute the matrices AI and BI we need to evaluate the

following integrals:

〈Tα, TβTγ
∏

i∈I
(1 − x2

i )〉 =

∏

i∈I

∫ 1

−1
Tαi

(xi)Tβi
(xi)Tγi

(xi)(1 − x2
i ) ν(dxi) ·

∏

i6∈I

∫ 1

−1
Tαi

(xi)Tβi
(xi)Tγi

(xi) ν(dxi).
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Thus we can now assume that we are in the univariate case. Suppose we are given integers
a, b, c > 0 and the goal is to evaluate the integrals

∫ 1

−1
Ta(x)Tb(x)Tc(x) ν(dx) and

∫ 1

−1
Ta(x)Tb(x)Tc(x)(1 − x2) ν(dx).

We use the following identities for the (univariate) Chebyshev polynomials:

TaTb = 1
2(Ta+b + T|a−b|), TaTbTc = 1

4(Ta+b+c + T|a+b−c| + T|a−b|+c + T||a−b|−c|),

so that

TaTbTcT2 = 1
8(Ta+b+c+2 + T|a+b+c−2| + T|a+b−c|+2 + T||a+b−c|−2|

+T|a−b|+c+2 + T||a−b|+c−2| + T||a−b|−c|+2 + T|||a−b|−c|−2|).

Using the orthogonality relation
∫ 1

−1 Ta ν(dx) = δ0,a, we obtain that

∫ 1

−1
TaTbTc ν(dx) = 1

4(δ0,a+b+c + δ0,a+b−c + δ0,|a−b|+c + δ0,|a−b|−c).

Moreover, using the fact that 1 − x2 = 1−T2
2 , we get

∫ 1

−1
TaTbTc(1 − x2) ν(dx) = 1

2

∫ 1

−1
TaTbTc(1 − T2) ν(dx)

= 1
2

∫ 1

−1
TaTbTc dν(x) − 1

2

∫ 1

−1
TaTbTcT2 ν(dx),

and thus
∫ 1

−1
TaTbTc(1 − x2) ν(dx) = 1

8(δ0,a+b+c + δ0,a+b−c + δ0,|a−b|+c + δ0,|a−b|−c)

− 1
16(δ0,a+b+c−2 + δ0,|a+b−c|−2 + δ0,|a−b|+c−2 + δ0,||a−b|−c|−2).

5.C Test functions

Here, we list the test functions used for the numerical examples in Section 5.5. Besides giving
the functions in the monomial and Chebyshev basis, we state their minimal value ̺min, the
minimizer(s), their range on the unit box, and the number of variables n for which we used them.
Note that we scaled the functions to fit the unit box.

Booth function (n = 2, ̺min = f(0.1, 0.3) = 0, f([−1, 1]2) ≈ [0, 2 500]):

f(x) = (10x1 + 20x2 − 7)2 + (20x1 + 10x2 − 5)2

= 250(T2(x1) + T2(x2)) + 800T1(x1)T1(x2) − 340T1(x1) − 380T1(x2) + 574.

Matyas function (n = 2, ̺min = f(0, 0) = 0, f([−1, 1]2) ≈ [0, 100]):

f(x) = 26(x2
1 + x2

2) − 48x1x2 = 13(T2(x1) + T2(x2)) − 48T1(x1)T1(x2) + 26.
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Motzkin polynomial (n = 2, ̺min = f(±1
2 ,±1

2) = 0, f([−1, 1]2) ≈ [0, 80]):

f(x) = 64(x4
1x

2
2 + x2

1x
4
2) − 48x2

1x
2
2 + 1 = 4(T4(x1) + T4(x1)T2(x2)

+ T2(x1)T4(x2) + T4(x2)) + 20T2(x1)T2(x2) + 16 (T2(x1) + T2(x2)) + 13.

Three-Hump Camel function (n = 2, ̺min = f(0, 0) = 0, f([−1, 1]2) ≈ [0, 2 000]):

f(x) = 56

6 x
6
1 − 54 · 1.05x4

1 + 50x2
1 + 25x1x2 + 25x2

2

= 56

192 T6(x1) + 1625
4 T4(x1) + 58725

64 T2(x1) + 25T1(x1)T1(x2) + 25
2 T2(x2) + 14525

24 .

Styblinski-Tang function (n = 2 and n = 3, ̺min = −39.17 · n, f([−1, 1]2 ≈ [−70, 200]):

f(x) =
n∑

j=1

312.5x4
j − 200x2

j + 12.5xj =
n∑

j=1

(
625
16 T4(xj) + 225

4 T2(xj) + 25
2 T1(xj) + 275

16

)

.

Rosenbrock function (n = 2 and n = 3, ̺min = 0, f([−1, 1]2) ≈ [0, 4 000]):

f(x) =
n−1∑

j=1

100(2.048 · xj+1 − 2.0482 · x2
j )

2 + (2.048 · xj − 1)2

=
n−1∑

j=1

[

12.5 · 2.0484 T4(xj) − 100 · 2.0483 T2(xj)T1(xj+1)

+ (0.5 + 50 · 2.0482)2.0482 T2(xj) + 50 · 2.0482 T2(xj+1) − 4.096T1(xj)

−100 · 2.0483 T1(xj+1) + 1 + 2.0482(37.5 · 2.0482 + 50.5)
]

.
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