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Abstract In the present study, a three-dimensional parachute system in supersonic flow is numerically
simulated using a ssimple “immersed boundary technique” together with the fluid-structure coupling scheme. The
parachute system employed here consists of a capsule and a canopy, where the suspension lines are applied to
connect them. The abjective of this study is to investigate the effects of suspension lines on the complex unsteady
flow structures around the parachute system, and the performance of the supersonic parachute at different angles
of attack. As aresult, since the distance between the capsule and canopy is rather small, the aerodynamic interac-
tions around the parachute system exhibit more apparent asymmetric flow/shock features when the angle of attack
increases, and the suspension line shocks on the upper/lower surfaces are formed at different time. As the angle of
attack is increased, the suspension line shocks are postponed to form, and become weaker. In addition, because of
the coupling effects of the angle of attack and suspension line shocks, the time-averaged pressure distribution on
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the canopy inner surface becomes smallest at 5 degree of angle of attack, and reaches to be greatest at 10 degree;
however, the drag coefficient increases with the angle of attack increment.
Key words supersonic parachute; suspension line; angle of attack; numerical simulation; Landing
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Fig.1 Supersonic parachute system in the present study
1
Tab.1 Specifications for the different parachute systems
X/mm d/mm D/mm al ° Xvd d/D
57 24 120 0,5, 10 2.375 0.2
2
Tab.2 Free stream conditions employed in this study
Ma /mt /kPa /kPa /K
2.0 2.04x107 166 21.0 298
2.2
1
Navier—Stokes
SHUS Simple High-resolution Upwind
Scheme [24 Van Albada MUSCL
TVD Runge—Kutta
2
- - Mass-Spring-Damping  MSD
[13,15, 22-23]
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Fig.2 Fluid-structure coupling method Fig.3 Weak coupling scheme
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Fig.4 The representation instantaneous flow fields (density gradient) at angle of attack of 5 degree
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Fig.5 The representation instantaneous flow fields (density gradient) at angle of attack of 10 degree
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Fig.6 Time-averaged pressure distribution of the canopy inside surface with different angles of attack
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Fig.7 Average drag coefficient for the parachute with different angles of attack
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