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Abstract

The normalized maximum likelihood (NML) distribution has an important
position in minimum description length based modelling. Given a set
of possible models, the corresponding NML distribution enables optimal
encoding according to the worst-case criterion. However, many model classes
of practical interest do not have an NML distribution. This thesis introduces
solutions for a selection of such cases, including for example one-dimensional
normal, uniform and exponential model classes with unrestricted parameters.
The new code length functions are based on minimal assumptions about the
data, because an approach that would be completely free of any assumptions
is not possible in these cases. We also use the new techniques in clustering,
as well as in density and entropy estimation applications.
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viii 0 Original Publications and Contributions

In Papers I, III and IV we develop new NML based criteria for model
selection. From these three papers only Paper III contains a limited number
of experimental tests. Papers II and V are somewhat more application-
oriented. The main contributions of all the papers are listed below.

Paper I: We introduce normalized maximum likelihood based code lengths
for model classes with uniform distributions, considering arbitrary one
and two-dimensional balls, and origin-centred balls in any dimension.
Our main contribution is to generalize the NML codes for situations
where the range of the maximum likelihood parameters is not known
before seeing the data.

Paper II: We derive an NML based code length for mixtures with several
normal components and one uniform component. We also introduce
a search heuristic for finding the best clustering of this type with an
unknown number of clusters.

Paper III: We extend the idea of a histogram by allowing a wider selection
of components other than just the uniform one. The approach is based
on clustering, and the component type is selected using an NML based
criterion.

Paper IV: We calculate the NML distribution of a multinomial model class
in the restricted case when it is known that the maximum likelihood
parameters are always positive. This case is relevant for clustering
applications.

Paper V: We compare empirically different penalized maximum likelihood
based methods for density and entropy estimation. One of the NML
based methods is a novel variant of the MDL histogram introduced in
[18]. We also examine how the risk bounds used by statisticians can
be applied to the original MDL histogram.

The contribution of the present author is substantial in all the five papers,
and he is the main contributor in Papers I–IV.

In Paper IV, the proof of Theorem 2 is by Kerkko Luosto. In Paper V,
the idea of the new variant of the MDL histogram (NML-2) is due to the
current author, who is also responsible for the experimental evaluation of
the methods, described in Section 5 of the paper.

After the publication of Paper IV, it came to the knowledge of the authors
that Theorem 1 was proved earlier in [26] (see Addendum to Paper IV).
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Chapter 1

Introduction

Imagine that you should describe a mushroom growing in the nearby forest
to someone else in writing. If you and the other person know the local fungi
well enough, it would be practical and effective to start the description by
stating the species of the fungus. The word pair “Russula paludosa”1 does
not tell what exact shape, size or colour the mushroom has, but once you
know the species, you have an idea how the mushroom is likely to look.
Also, describing individual details of a specific mushroom is then much
easier than starting from scratch. A correct determination of the species is
not necessarily needed, because a mere resemblance with the stated species
makes the description simpler and shorter.

This thesis is about finding the quintessence from data, using information
theory [7] and more specifically the minimum description length (MDL)
principle [11, 35, 36] as a tool. The phrasing should be understood in a
very specific context, in which the meaning of the word “quintessence” has
a well-defined and quite commonplace character. In this thesis, numerical
data sets are fungi, and probability distributions are names of fungus species.
We associate data with a distribution that enables a short description of the
data points. The matching distribution, called the model, is the quintessence
of the data sample. The model alone does not specify any particular point
of the data, but it implies how the data set is likely to be. The logics of
the MDL principle do not require an assumption that the data were indeed
generated by some distribution. The model is just the essential information
that can be extracted from the data within our framework. With that
knowledge we can then accomplish such practical tasks as clustering and
density estimation, which are the subject of Chapter 4.

We can sharpen the illustration with mushrooms and probability distri-

1In Finnish punahapero.
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2 1 Introduction

butions a little. Think now of a set of probability distributions corresponding
to a name for a mushroom species. Such a set is called a model class and
its elements are typically distributions of a same type but with different
parameters. In the mushroom world, equivalents for the parameters could be
weight and dimensions of a certain mushroom species. All the finer details –
irregularities and worm holes – must be described in another form, as they
cannot be captured by a few numbers only. To use statistical language, they
are random. The so called model selection problem2, is about choosing a
suitable model class. That is useful knowledge about the data, as it is useful
to recognize the species of a mushroom in a forest.

In our mushroom example, it is essential to choose a correct or an
otherwise matching species name to keep the textual description of the
mushroom short. The number of known fungus species is naturally finite,
but there are infinitely many sets with probability distributions. It is
important to notice that the model selection process is feasible only when
the sets of possible model classes and models are restricted in a suitable
way. If little is known about the data, the first question is what kind of
distributions we should consider? The answer is very case-dependant, and
as such out of the scope of the thesis. However, the MDL principle can
help us to choose a suitable model class from a heterogeneous selection. For
example, our clustgram (Section 4.2) generalizes the common histogram and
provides a method for selecting the best matching distribution types for a
mixture density from a small fixed selection.

A common issue in model selection arises in a situation where the
model classes have different complexities, like mixtures with two or twenty
components. A naive maximum likelihood method overfits, that is, it favours
complex models and is thus useless for applications. The complexity of a
model class can be penalized easily, but it should not be done arbitrarily
since we want to avoid underfitting as well. The MDL has proven to be a
valuable criterion for model selection. Especially, it seems to handle the
uncertainty caused by small samples in a satisfactory way.

Normalized maximum likelihood (NML) is one of the most important
MDL related techniques. It has important optimality properties, but straight-
forward computations of NML code lengths are sometimes unfeasible in
practice. Section 3.1 shows how a complex sum needed for a particular
NML distribution can be calculated efficiently after suitable mathematical
manipulations. The NML can often be succesfully approximated as well,
but we do not discuss approximation methods in this thesis.

A central problem for the thesis are model classes that do not have

2Or more correctly: model class selection problem.
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NML distributions. Computing an NML code length involves calculating a
normalizing term, which measures the complexity of a model class. If the
model class is rich enough, the normalizing term can be infinite, and there
is no corresponding NML distribution. One option in this situation is to
redefine either the model class or the set of possible data sequences. Even if
a true NML probability measure could be achieved this way, the approach
may be problematic in practice. In particular, if we have only little prior
information about the data, arbitrary assumptions may have a strong effect
on the code lengths. Section 2.5 illustrates the problem by examples.

An alternative solution to the problem of infinitely complex model classes
is to keep the model class and domain of the data unaltered and to choose
another coding method having roughly similar good properties as the NML
distributions. Our contributions to the topic are presented in Section 3.2.
We develop a method that performs well with the data we consider probable.
In turn we accept slowly weakening performance when the data gets more
unlikely. Prior information about the data is thus needed but the data
analyst is given more flexibility when crucial assumptions about the data
and models are made.

Clustering is a natural application for our NML based methods, which
make it possible to find correspondences between model classes and clustering
structures. The basic idea is to find a good clustering for every model class,
and then to pick the clustering having the shortest code length. We say “a
good clustering” instead of “optimal” here, because it is typically very hard
to find an optimal solution given a model class. The one-dimensional case
forms an exception under certain conditions, that is why we pay special
attention to it in Chapter 4. We extend traditional histograms to clustgrams
with several component types, and use them for one-dimensional density
and entropy estimation.

The thesis is structured as follows. In Chapter 2, which serves as a
technical introduction, model selection using normalized maximum likelihood
is described and a central research topic, the infinite parametric complexity,
is presented. The next two chapters relates to the main contribution of
the thesis: in Chapter 3 we discuss code word lengths for certain model
classes, and in Chapter 4 we introduce clustering and density estimation
applications that utilize the new code word lengths. Chapter 5 includes
concluding remarks.
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Chapter 2

Model Selection with Normalized
Maximum Likelihood

This chapter introduces concepts and techniques that are central for the thesis.
We start by describing the model selection problem as it is encountered in
our work. After a short introduction to the minimum description length
principle in Section 2.2, we discuss in Section 2.3 the normalized maximum
likelihood, which is one of the most important constructs in modern MDL
research. Section 2.4 returns to the model selection problem, now from
the NML point of view. In Section 2.5, we portray a difficult problem
relating to the application of the NML in many cases: the infinite parametric
complexity. We conclude the chapter by outlining various approaches to
this major research problem in Section 2.6. Our contributions related to the
infinite parametric complexity are discussed in the next chapter.

2.1 Model Selection Problem

Let D ⊂ (Rd)n be the domain of the data. Here d is the dimension of a data
point, and n is the number of data points. We call the set M = {p(·; θ) |
θ ∈ Θ} a model class, where Θ ⊂ Rk is a parameter space and p(·; θ) is a
probability measure with parameter vector θ and support D. Additionally,
we call the possibly finite collection of model classes M = {M1,M2, . . . }
a model family. Given a data sample x ∈ D, a fundamental problem is
to select fromM the model class that is the most plausible description of
the properties of x. Once the model class is chosen, the preferred model
(probability measure) for x is usually the one that maximizes the probability.
The combined problem of model class and model selection is commonly

5



6 2 Model Selection with Normalized Maximum Likelihood

called simply the model selection problem.1

The previous terminology is somewhat loosely defined to be useful as
such. Therefore we present next an example with normal mixtures, which we
shall use in this and later sections for illustrating some typical difficulties in
model selection. We point out that Paper II concentrates on hard clustering
of normal mixtures, but in the presence of an additional uniform noise
component. As a part of a more versatile context, also Paper III comes close
to the problematics of clustering normal mixtures.

We start by defining the product densities of one-dimensional normal
mixtures with 1 to N components. In this case, the elements of a data vector
x = (x1, x2, . . . , xn) ∈ Rn are scalars. Let µa, µb ∈ R, σ2a, σ2b ∈ ]0,∞[, and
for all k ∈ {1, 2, . . . N}, let the parameter space be Θk = ∆k−1 × [µa, µb]

k ×
[σ2a, σ

2
b ]k, where ∆k−1 = {(w1, . . . , wk) ∈ ]0, 1]k |∑k

j=1wj = 1}. (Restricting
the mean and the variance may seem somewhat arbitrary here. It is indeed a
problematic subject, and we explain its relevance for the NML in Section 2.5.)
The definition of a mixture with k components is now pk : Rn → ]0,∞[,

pk(x; θk) =

n∏

i=1

k∑

j=1

wj ϕ(xi; µj , σ
2
j ) ,

where θk = (w1, . . . , wk, µ1, . . . , µk, σ
2
1, . . . σ

2
k) ∈ Θk is a parameter vector

and ϕ(·; µ, σ2) is the density function of a one-dimensional normal distribu-
tion with mean µ and variance σ2.

Now we can define for all k ∈ {1, 2, . . . , N} a model classMk = {pk(·; θ) |
θ ∈ Θk}. In this context, a classical machine learning problem is to ask:
What is the most plausible model class Mk ∈ {M1,M2, . . . ,MN} for the
data x ∈ Rn, and which distribution in Mk fits the data best? It is well-
known that simply picking the pair (k, θ) that maximizes pk(x; θ) leads to
over-fitting, i.e., the chosen model class has too many components. “Too
many” is not only an intuitive concept. The misbehaviour of the naive
strategy can be verified for example by producing a data sample according
to a known mixture of normals, and comparing then the structures of the
original source and the recovered mixture. In this case when the source
is known, we can also examine how far the recovered mixture density is
from the source using such measures as Kullback-Leibler distance or squared
Hellinger distance.

If Mk is given, it is reasonable to maximize the likelihood, that is, to
choose the parameter vector θ that maximizes density pk(x; θ). Therefore,

1The reader should be aware that some writers refer to M using the term “model” and
call M a “model class”.



2.2 Minimum Description Length Principle 7

most methods for model class selection rely on a function C(Mk) with which
the maximum likelihoods are scaled. The strategy is then to select the
k ∈ {1, 2, . . . , N} maximizing

C(Mk) · pk(x; θ̂Mk
(x)) (2.1)

where θ̂Mk
(x) is the maximum likelihood parameter vector and thus

pk(x; θ̂Mk
(x)) = max{pk(x; θ) | θ ∈ Θk} .

Model class selection criteria of the form (2.1) can be called penalized
maximum likelihood (PML) methods. The Akaike information criterion
[2] and the Bayesian information criterion (BIC) [41] are two well-known
examples, both from the 1970s. The normalized maximum likelihood is a
modern PML method for model class selection with appealing optimality
properties, and it is in the focus of this thesis. Paper V compares empirically
the behaviour of five different PML methods in one-dimensional density and
entropy estimation. Three of the methods are based on the NML, one is
a variant of the BIC, and one has its roots in an approach that strives to
minimize the upper bound for the statistical risk.

2.2 Minimum Description Length Principle

The minimum description length (MDL) principle [11, 35, 36] has evolved
over the years [29, 32, 31], but in its all forms, it is based on the same idea:
finding useful information in the data is equated with compressing the data,
as only regularities of the data make compression possible. The expressions
“useful information” and “regularities of the data” have to be considered with
regard to a collection of models, that is, probability measures. How to choose
an appropriate selection of models is up to a human expert, because the
MDL theory only operates within a given framework of model classes. On
the other hand, it is exactly this limitation that makes the MDL principle a
practical machine learning tool. Solomonoff’s algorithmic information theory
[44, 45, 23] treats learning in its most general form, where the objective is
to find the shortest computer program that outputs the given data sample.
However, it is easy to prove that the problem is uncomputable. Even in its
restricted and feasible forms, the generality of the algorithmic information
theory makes its practical use very difficult.
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Partly because of historical reasons, the term “MDL principle” is used
in connection with quite different techniques. However, the key idea of the
MDL principle is to find the optimal way of communication with the help
of a model class collection (we explain the optimality criterion in the next
section). First, we determine an optimal code for each model class. Then,
given a sample of data, we choose the model class that is associated with
the shortest code length for the sample. When the main interest is model
selection, not real communication, it is sufficient to know the lengths of the
code words, and there is no need to choose the actual code words.

Coding according to a fixed distribution is always based on a fundamental
result of information theory. Let p be a probability mass function. According
to Kraft’s inequality [7, Section 5.2], a valid code exists when the code word
length for every possible data sequence x is− log p(x), assuming for simplicity
that this choice yields integer code lengths. Those lengths are also optimal.
More precisely, they minimize the expected code word length when the
expectation is taken over the distribution p. The average word length equals
then the entropy of the distribution. The negative logarithms of probabilities
are not necessarily integers, but it is easy to choose the lengths so that
there is at most one bit overhead in expectation compared to the entropy [7,
Section 5.4], which is always the lower bound. For our modelling purposes,
the integer constraint is not relevant, and we always simply call − log p(x) a
code length.

We also follow a common convention of calling negative logarithms of
the densities code lengths, which is reasonable if the densities of a model
class are well-behaving enough. In practice, problematic densities are seldom
used; we give in the following some intuition about the situation. For
concrete communication according to a density, continuous values of the
data domain have to be discretized first. For example, set (Rd)n can be
partitioned into half-open hypercubes each having a volume ε, the centre
of a hypercube being the approximation for any point inside it. Let x be
a centre of such a hypercube. The ideal code word length for x would be
the negative logarithm of the probability mass P in the hypercube. But if
volume ε is small enough and the density f in question is continuous, the
quantity − log(f(x) · ε) = − log f(x)− log ε is in turn a good approximation
of − logP . When comparing which density of two alternatives produces the
shorter code for x, the constant term − log ε can be thus ignored. Also such
discontinuity that occurs at the edges of the domain of a uniform distribution
over an interval, is not a problem for the terminology, because we can still
discretize the interval in a sensible way.
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2.3 Normalized Maximum Likelihood

The normalized maximum likelihood (NML) code, sometimes also called the
Shtarkov code [43], has a special position in MDL research because of its
optimality properties. We shall give the basic optimality property below,
for a more thorough discussion, see [34]. We start by giving the definition
of the NML distribution when the model class consists of probability mass
functions, and the data are discrete. Let M = {p(·; θ) | θ ∈ Θ)} be a
model class, where p(·; θ) : D → ]0, 1] is a probability mass function for all
θ ∈ Θ. We consider here only encodable data, or data points in set D. Let
θ̂M : D → Θ be the maximum likelihood parameter estimator.

The shortest code length for x ∈ D according to any member of M is
− log p(x; θ̂M (x)), because θ̂M (x) maximizes the likelihood by definition.
The mapping x 7→ p(x; θ̂M (x)) cannot be used for encoding for the simple
reason that it is not a density function unless the case is trivial. But it
still makes sense to compare the regret, i.e., the difference REGM (q,x) =
− log q(x)− (− log p(x; θ̂M (x)) between the code length of x according to
probability mass function q and the shortest possible code length according
to any element in M . All forms of the MDL principle strive to minimize the
regret. Because the MDL principle deliberately avoids any assumptions about
how the data were actually generated, this means specifically minimizing
the worst-case regret. The minimization problem is well-defined if the sum

C(M,D) =
∑

x∈D
p(x; θ̂M (x)) (2.2)

is finite. It is easy to see that the solution is then the normalized maximum
likelihood

pNML
M,D(x) =

p(x; θ̂M (x))

C(M,D)
,

because for all x ∈ D regret REGM (pNML
M,D,x) = logC(M,D) is constant.

We can formulate that

inf
q∈Q

sup
x∈D

REGM (q,x) = logC(M,D) , (2.3)

where Q is the set of all density functions that are defined in D. The NML
probability is called minimax optimal, as it is the minimizing distribution in
(2.3). Given M and D, the code length − log pNML

M,D(x) is called the stochastic
complexity of x, and the quantity logC(M,D) is called the parametric
complexity. Hence, the stochastic complexity describes the complexity of
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x in this context, whereas the parametric complexity is a property of the
model class only.

The NML can be generalized for densities in a straightforward way by
replacing the sum in (2.2) with an integral. In that case, let M = {f(·; θ) |
θ ∈ Θ} be a model class, where f(·; θ) : D → ]0, ∞[ is a density function
for all θ ∈ Θ. Then the normalization term for the NML density is

C(M,D) =

∫

D
f(x; θ̂(x)) . (2.4)

Unfortunately, all model classes do not have corresponding NML distri-
butions, and even if the distribution exists, its calculation or approximation
may be difficult. Our example with mixtures of normal distributions from
Section 2.1 illustrates another notable problem of the NML. Also in this case
the calculation of the NML is very difficult, because finding the maximum
likelihood parameters for a particular data vector in a multi-component mix-
ture is already problematic. But in addition to that, defining the parameter
space Θk using µa, µb, σ2a, and σ2b as in our example is not possible in many
real-world applications without making arbitrary decisions. These problems
and some solutions to them are discussed in Sections 2.5 and 2.6 as well in
Papers I, II and III.

2.4 Model Class Selection by Complete MDL

We saw in the previous section that given a model class with a finite
parametric complexity, the corresponding NML distribution is the most
effective encoding method in the worst-case sense. It is also easy to see how
the NML can be used for model class selection according to the penalized
maximum likelihood criterion in (2.1). However, the criterion in (2.1) is in
its general form an ad hoc method, and until this point, we have not given
a precise rationale behind the use of NML for model class selection.

The term complete minimum description length2 [36] refers to the code
length in NML encoding, either in the connection to a “normal” model class
as in the previous section, or corresponding to a model class with NML
distributions. The latter case shows how the information theoretic goal of
minimizing the code length in the worst case can be applied to the model
class selection problem.

We start with some familiar definitions. Let the domain of the data be
D. LetM = {Mk | k ∈ I} be a family of model classes, where I ⊂ N is an

2In contrast, incomplete or general MDL refers in [36] to the older, more general MDL
principle as defined in [29].
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index set and for all k ∈ I model class Mk = {fk(·; θ) | θ ∈ Θk} consists of
probability density functions. We let θ̂k : D → Θk denote the ML parameter
estimator for all k ∈ I. In order to simplify our notation, we write the NML
density according to the model class Mk as

f̂(x; k) =
fk(x; θ̂k(x))

C(Mk, D)
(2.5)

where C(Mk, D) =
∫
D fk(y; θ̂k(y)). We assume that the NML distributions

exist, that is, parametric complexity C(Mk, D) is finite for all k ∈ I.
Let us consider the NML densities from a communication point of view.

The definition in (2.5) provides us with a code book for each model class Mk,
and given data x, it seems reasonable to select the model class, the code
book of which contains the shortest code word length for x. However, if the
receiver does not know which code book to use, the communication scheme
is still incomplete. There is a correspondence with the problem of choosing
a code given a model class Mk. We had an optimal parameter estimator
θ̂k for all k ∈ I, and the NML density gave us the worst-case optimal code.
Now, given the model familyM and data x, we determine a code that uses
all the code books in an worst-case optimal way.

We start by defining a model class of M ′ = {f̂(·; k) | k ∈ I} containing
the previously defined NML distributions. We define the corresponding ML
parameter estimator as

k̂(x) = min
{
k | k ∈ I, f̂(x; k) = max{f̂(x; j) : j ∈ I}

}
. (2.6)

Assume that k̂ is well-defined and that

C(M ′, D) =

∫

D
f̂(y; k̂(y)) (2.7)

=
∑

j∈I

∫

{y |y∈D, k̂(y)=j}
f̂(y; j) (2.8)

is finite. Then it is possible to define an NML distribution corresponding to
the model class M ′. Its density function is

f̂(x) =
f̂(x; k̂(x))

C(M ′, D)
. (2.9)

In this case, an optimal model class selector exists, and it is indeed k̂.
Notice that if I is finite, we see from (2.8) that C(M ′, D) ≤ |I|, and

therefore
∫
D(1/|I| · f̂(y; k̂(y)) ) ≤ 1. Thus a two-part code, in which code
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book index k is encoded with a uniform code and data x with f̂(·; k), is
usually inefficient. However, for our model selection problem the actual
value of parametric complexity C(M ′, D) has no effect as long it is finite.

If C(M ′, D) is infinite, a constant regret cannot be achieved, and the
situation is much more complicated. We can assume I = N. The most
straightforward solution is still to use k̂ for model selection. A simple
corresponding coding strategy would be to choose the code lengths according
to the density

g(x) = p(k̂(x))
f̂(x; k̂(x))∫

{y|y∈D, k̂(y)=k̂(x)} f̂(y; k̂(x))
, (2.10)

where p : N→ [0, 1] is a suitably chosen probability mass function.
In (2.10) we have as a coefficient an NML density on the condition that

k̂(x) is known. Unfortunately, calculating the normalizing integral can be
unfeasible in practice, making it very difficult to quantify the regret. But it
is easy to see that we have an upper bound REGM (g,x) ≤ − log p(k̂(x)).

If we can control the upper bound so that the regret is fairly uniform
and not too large in the set of essential model classes (defined e.g. by prior
knowledge), choosing the model class simply by k̂(x) might be justified. A
reasonable candidate for p is Rissanen’s prior for integers [30]. It decreases
however quite unevenly with first few values and assigns a relatively large
amount of probability mass for the small k. Luckily, fixing these shortcomings
for practical applications is not difficult. The main topics of this thesis do
not include infinite model families, but Section A.1 contains the derivation
of a probability mass function that is closely related to Rissanen’s prior for
integers but without its minor faults.

Let us consider lastly a simple model selection strategy that is based
on maximizing the density g1(x; k) = p(k)f̂(x; k). This two-part code is
inefficient in the normal case where one data sequence has non-zero densities
in several model classes.

Roos et. al report in [38] that using just k̂ with a very large number of
model classes led to poor results an image denoising application. However,
the most important thing in that particular case was probably that the model
family had a natural inner structure. Taking it into account in the coding
improved the performance of the denoising algorithm. The structure of the
uppermost model family was M = {M1,M2, . . . ,Mn}, and for all model
class indices i such that Mi ∈Mj ∈M the authors let p(i) = 1/n · 1/|Mj |,
thus penalizing model classes in large model families. This can be seen
as a simplified alternative of determining the NML distributions for each
Mj ∈M.
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2.5 Infinite Parametric Complexity

A notable problem by the use of NML for model selection is that many model
classes of practical interest have an infinite parametric complexity, and they
thus lack a corresponding NML distribution. In the previous section, we
considered a special example of such a problem: the model class consisted of
NML distributions and the only parameter to be estimated was the index of
a distribution. If the distributions in a model class have continuously valued
parameters, we have in practice more options to handle the problem. For
example, it is sometimes possible to find a similar but less general model
class that suits our purposes, or to restrict the domain of the data. In this
section, we illustrate these simple options using an example with geometric
distributions. For an example with one-dimensional normal distributions,
see [10]. Section 2.6 is devoted to more advanced methods.

In our example we discuss product densities of n independent and
identically-distributed geometric random variables. Let N+ = {1, 2, . . . }
and let the probability of a sequence x = (x1, x2, . . . , xn) ∈ Nn+ with the
parameter θ ∈ ]0, 1] be p(x; θ) =

∏n
i=1(1−θ)xi−1θ (we use here the notational

convention 00 := 1). Let the model class be M = {p(·; θ) | θ ∈ ]0, 1]}. Given
x, the ML estimate of the parameter θ is θ̂M (x) = n/

∑n
i=1 xi. We get a

lower bound of the normalization sum for M as follows:

C(M,Nn+) =
∑

x∈Nn+

p(x; θ̂M (x)) (2.11)

=
∑

x∈Nn+

n∏

i=1

(
1− n∑n

i=1 xi

)xi−1 n∑n
i=1 xi

=

∞∑

s=n

∑

x∈Nn+,∑n
i=1 xi=s

(
1− n

s

)s−n (n
s

)n

=
∞∑

s=n

(
s− 1

n− 1

)(
1− n

s

)s−n (n
s

)n

≥
∞∑

s=n

(
s− 1

n− 1

)n−1 (
1− n

s

)s−n (n
s

)n

=
nn

(n− 1)n−1

∞∑

s=n

(
s− 1

s

)n−1 (
1− n

s

)−n (
1− n

s

)s 1

s
. (2.12)

Because ((s− 1)/s)n−1(1− n/s)−n(1− n/s)s → 1 · 1 · e−n when s→∞, the
terms in the sum (2.12) approach the terms of a harmonic series multiplied
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by a constant, and thus C(M,Nn+) =∞. A direct consequence is that for
all probability mass functions f : Nn+ → [0, 1] the regret REGM (f,x) is
unbounded in Nn+.

2.5.1 Restricting the parameter range

A potential solution is to modify the model class so that all ML parameter
estimates are not possible. Let θ0 ∈ ]0, 1[. The parametric complexity of the
model class Mθ0 = {p(·; θ) | θ ∈ [θ0, 1]} is finite, since

C(Mθ0 ,N
n
+) =

bn/θ0c∑

s=n

∑

x∈Nn+,∑n
i=1 xi=s

(
1− n

s

)s−n (n
s

)n
(2.13)

+
∞∑

s=bn/θ0c+1

∑

x∈Nn+,∑n
i=1 xi=s

(1− θ0)s−nθn0 , (2.14)

= 1 +

bn/θ0c∑

s=n

(
s− 1

n− 1

)((
1− n

s

)s−n (n
s

)n
− (1− θ0)s−nθn0

)
.

We can hence encode every sequence in Nn+ with the corresponding NML
distribution pNML

Mθ0
,Nn+

. But even if REGMθ0
(pNML
Mθ0

,x) is constant for all x ∈
Nn+, the meaningfulness of the model class Mθ0 depends on the relationship
between the parameter θ0 and the data. The regret with regard to the
original model classM is plotted in Figure 2.1. By making θ0 smaller we can
increase the size of the set in which this regret is constant. In the same time,
the code lengths for sequences with a large ML parameter estimate increase.
In practice, we should have some prior knowledge about the data in order
to be able to choose θ0 so that the event of seeing a sequence x ∈ Nn+ with
θ̂M (x) < θ0 becomes unlikely enough.

2.5.2 Restricting the data

An alternative to restricting the model class is to restrict the data. In this
case, we might consider instead of Nn+ the set D = {x ∈ Nn+ | θ̂M (x) ≥ θ0}
where θ0 ∈ ]0, 1[. Taking advance of the calculations in (2.13)–(2.14), in
which the second summation goes over probabilities over a single distribution,
we see that 0 < C(Mθ0 ,Nn+)−C(M,D) < 1. In addition, because C(M,D) ≥
1, the code length difference − log2 p

NML
Mθ0

,Nn+
(x)− (− log2 p

NML
M,D(x)) ≤ 1, when

x ∈ D. In other words, the encoding of sequences in D is only slightly more
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effective using pNML
M,D than with pNML

Mθ0
,Nn+

. Encoding of elements in Nn+ \D is of
course impossible with pNML

M,D. One might ask, whether the model class M is
a good choice when we assume that the data belong to D, as the domain of
the probabilities in M is whole Nn+. But apart from the philosofical aspect,
a model class in which the distributions would be normalized for the domain
D would be considerably more difficult to handle in calculations than M .

For our example, we shall consider yet another and possibly more natural
way to restrict the data. Imagine that a single element in the data sequence
comes from a test in which the number of Bernoulli trials needed to get the
first “success” is recorded. It is then reasonable to assume that before the
tests an upper limit m− 1 ≥ 1 was set for the number of trials in a single
test, and if no success was seen in the first m − 1 trials, the value of the
test was recorded as m. That is, we limit the domain of the data through
single elements of the sequence, not through the sum of the sequence’s
elements. Interpreting value m as an indicator of the event “success did not
occur before the trial number m”, the probability mass function for a single
outcome is p1 : {1, 2, . . . ,m} → [0, 1],

p1(x; θ) =

{
(1− θ)x−1θ if x ∈ {1, 2, . . . ,m− 1}
(1− θ)m−1 if x = m.

Then the probability of sequence x ∈ {1, 2, . . . ,m}n is

pn(x; θ) =
(
(1− θ)m−1

)k · (1− θ)s−km−(n−k)θn−k

= (1− θ)s−n θn−k

where k =
∑n

i=1 1(xi = m) and s =
∑n

i=1 xi. Let the model class be M ′ =
{pn(·; θ) | θ ∈ [0, 1]}. Simple calculations yield that θ̂M ′(x) = (n−k)/(s−k)
where k and s are defined as functions of x similarly as above.

The normalizing term is thus

C(M ′, {1, 2, . . . ,m}n)

=
∑

x∈{1,...,m}n
pn(x; θ̂M ′(x))

=

n∑

k=0

(
n

k

) (n−k)(m−1)∑

t=n−k



n−k∑

j=0

(−1)j
(
n− k
j

)(
t− j(m− 1)− 1

n− k − 1

)


·
(

1− n− k
t+ km− k

)t+km−n( n− k
t+ km− k

)n−k
.
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Again, k denotes the number of occurrences of m in sequence x. The
second summation goes over all possible values for t =

∑n
i=1 xi1(xi < m) =∑n

i=1 xi − km. In the brackets is the size of the set {(y1, y2, . . . , yn−k) ∈
{1, 2, . . . ,m − 1}n−k | ∑n−k

i=1 yi = t}, in other words, it is the number of
compositions of t into n− k terms such that each term belongs to the set
{1, 2, . . . ,m− 1} [1, Equation (3.2 E)]. For convenience, we use above the
notational convention

(
0
0

)
=
(−1
−1
)

= 1.
In general, if there is only very little prior information about the domain

of the data, arbitrarily restricting the domain or the model class are hardly
reasonable solutions to the problem of infinite parametric complexity. In
the next section we mention more suitable alternatives.

2.6 Infinite Parametric Complexity and a Variable
Regret

In the last section we saw how the problem of infinite parametric complexity
can be circumvented by restricting either the parameter space directly or
by restricting the domain of the data. Both methods require some prior
information of the data. Too broad bounds for the parameters, or for the
data, lead to large parametric complexities of model classes, which may be
a problem in practice. Let us consider the clustering scheme of Paper III
as an example. If we use NML code for the encoding of the data given the
clustering, the code length of every cluster subsequence includes a constant
that depends only on the bounds. For all data sets, it is possible to make
that constant so large that the total code length is minimized by putting all
data elements into one cluster.

The need to avoid pitfalls of arbitrary assumptions has recently led to
more flexible encoding schemes for model classes with an infinite parametric
complexity. Using the terminology of Grünwald, important examples are
meta-two-part coding, renormalized maximum likelihood, NML with luck-
iness, and conditional NML [11, Chapter 11]. Next we describe the four
methods briefly, but only NML with luckiness is relevant for this thesis. We
do not cover sequential methods like the sequentially normalized maximum
likelihood (SNML) [36, Chapter 9][13] here.

The meta-two-part coding [32] is a simplistic method. There we carve the
parameter space to pieces that correspond to model classes with well-defined
NML distributions and decide an encoding scheme for them. The code length
is the minimized sum of the code for a model class Mi and the NML code
length of the data according to Mi. As with any two-part code, it is easy to
show that it is usually not the shortest code, because it is typically possible
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to encode the data according to two different model classes. But probably
the most difficult problem is to decide how to carve up the parameter space
in a sensible way.

Renormalized maximum likelihood (RNML) [33] introduces hyperpara-
meters that bound the parameter space and which are then treated like
normal parameters in the NML calculations. The idea is to find after possibly
several renormalizations a code length function in which the hyperparameters
do not affect the model selection task any more. However, the strategy does
not work well with all model selection problems.

NML with luckiness tries to achieve an acceptable regret that is a function
of the ML parameters only. The main difference to the previous methods is
that NML with luckiness concentrates directly on the regret and pays less
attention to the encoding strategies as such. The word “luckiness” refers to
fact that using an adequate coding, the regret is not too large with most
data, and if we are lucky, we can get an even shorter regret. We discuss
details of this method in Section 3.2. The code lengths for various model
classes in Papers II and III fall mostly in the NML with luckiness category.
There exists also a variant of NML with luckiness, in which one replaces the
original model class M = {f(·; θ) | θ ∈ Θ} with M ′ = {q(θ)f(·; θ) | θ ∈ Θ},
where q is a density of the parameter vector [16]. This is a departure from
the basic idea of MDL, as we were originally interested in minimizing the
worst-case regret with regard to M , not M ′.

Conditional NML refers in Grünwald’s terminology to a technique where
a part of the data, perhaps just a few first points, are not encoded in an
optimal way – or they are assumed to be known by the receiver. After the
initial data, the rest can be encoded using NML.



Chapter 3

Codes for Model Classes

We may encounter at least two kinds of problems when designing an NML
based code for a model class. Sometimes the main difficulty is to calculate the
code length efficiently enough so that it can be used in practical applications.
Section 3.1 covers encoding of a clustering sequence, which is a good example
of this kind of challenge: the parametric complexity of a multinomial model
class with restricted data can be calculated using a recurrence relation, and
finding the relation is best done using generating functions as a tool.

In Section 3.2, we discuss the infinite parametric complexity case, in
which the very meaning of “a good code” is somewhat ambiguous. A code
minimizing the worst-case regret simply does not exist, and we must find
a satisfying compromise. Our approach can be categorized as NML with
luckiness, as we concentrate on the aspect of how the regret behaves as a
function of the maximum likelihood parameter estimates.

3.1 Encoding of a Clustering Sequence

In Paper IV we give an effective way to calculate the NML for a model
class with multinomial distributions in a situation when the ML parameters
are known to be positive. The case is relevant for clustering, and the
corresponding NML is a more natural choice than the general multinomial
NML in applications like those in Paper III. In this section, we give some
background and outline the code length calculations. The interested reader
is advised to consult Paper IV for technical details.

A natural presentation for a clustering of a data sequence is a sequence of
labels, in which the actual label values are irrelevant. The only information
we are interested in is which elements of the sequence have the same labels.
In this context, (�, �, #, �, �) and (1, 1,−10, 314, 314) are just different

19
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presentations of the same information. From now on, we call such a label
sequence a clustering sequence.

When choosing model classes and families, we aim to capture regularities
of the data. If our code uses many bits for describing something that we
consider simple, we have perhaps not chosen an appropriate model family,
or some reason necessitates the use of simplified models. Let us illustrate
the situation with a bit vector example. Let M = {p(·; θ) | θ ∈ [0, 1]}
where p : {0, 1}n → [0, 1] is the probability mass function of a sequence
of n independently and identically-distributed Bernoulli variables. The
Kolmogorov complexity of the sequence S = 010101 . . . 010101 is small, but
if we define its complexity by means of the model class M , sequence S is
maximally random.

In our encoding scheme for clustering sequences we assume that the
elements are independent and identically-distributed. Although such models
do not capture patterns where the order of elements is relevant, they are
widely used because of their simplicity. One should also notice that the
independence assumption applies only to cluster labels: the cluster data
subsequences may still be modelled e.g. using Markov chains.

A clustering sequence represents a partition of the data. We point out,
that the use of distributions on partitions is an important advance in non-
parametric Bayesian modelling (see e.g. [27]), and the so called Chinese
Restaurant Process with two parameters is the best known method in that
area. The corresponding distributions could be used in an NML based
approach too, if we are able to find the ML estimates for the parameters
[6]. However, as we shall see later, our approach has a characteristic that
matches the MDL philosophy well: we consider all choices for the number of
clusters equally probable.

We take one of the simplest ways to model clustering sequences, using
model classes with multinomial distributions. Let us consider one example,
in which we write the length of the sequence as n and the number of distinct
labels as k. If we know that k = 1, there is only one possible sequence (which
has of course different representations). And on the condition that k = n,
there is also no uncertainty about the sequence. Therefore, it is natural to
require from the coding strategy that the clustering sequences (1, 1, . . . , 1)
and (1, 2, . . . , n) have short code lengths when the number of distinctive
labels is known. But if we use the general multinomial NML (e.g. [17]), the
code length is short only in the first case, because the parametric complexity
of the model classes grows monotonically as a function of k.

Before inspecting multinomial NML, we start with some formal defin-
itions. We can assume without loss of generality that in a clustering se-
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quence x = (x1, x2, . . . , xn) it holds that x1 = 1 and if xi 6= xj for all
j ∈ {1, 2, . . . , i− 1}, then xi = 1 + max{xj | j < i}. Let D ⊂ {1, 2, . . . , k0}n
denote the set consisting of all such n-sequences with at most k0 different
labels, and let Dk = {x ∈ D | max(x) = k} for k ∈ {1, 2, . . . , k0}. Let the
parameter space for multinomial distributions with k parameters be ∆k−1 =
{(p1, p2, . . . , pk) ∈ [0, 1]k |∑k

i=1 pi = 1}, and let p = (p1, p2, . . . , pk) ∈ ∆k−1.
The probability of sequence y = (y1, y2, . . . , yn) ∈ {1, 2, . . . }n is Pk(y;p) =∏n
i=1 pyi if y ∈ {1, 2, . . . , k}n, and Pk(y; p) = 0 otherwise.
For all k ∈ {1, 2, . . . , k0}, let

Mk = {Pk(·; p) | p ∈ ∆k−1} (3.1)

be a model class. The maximum likelihood value according to Mk is for
x ∈ Dk

Pk(x; p̂k(x)) =

k∏

i=1

(
ni(x)

n

)ni(x)
(3.2)

where ni(x) is the number of occurrences of the element i in x, and p̂k(x) =
(n1(x), n2(x), . . . , nk(x))/n is the ML parameter estimator (we use again
the convention 00 ≡ 1). It would have been possible to scale Pk so that the
resulting probability mass function sums up to 1 over the set Dk. However,
we prefer the simpler notation because the scaling would have had no effect
on the NML distribution.

At this point, it is useful to briefly compare the modelling problem
at hand to a more typical instance. Consider the model class selection
problem with normal mixture models in Section 2.1 for comparison. In
that case every possible data sequence has a positive ML density in all the
model classes, and the ML density of a data sequence tends to increase
when we change to a model class with more components. Let then x ∈ Dm

be a clustering sequence, and let {M1,M2, . . . ,Mk0} be a collection of
model classes defined as in (3.1). The maximum likelihood of x is 0 in the
model classes M1,M2, . . . ,Mm−1. Moreover, the ML of x is equal according
to all the model classes Mm,Mm+1, . . . ,Mk0 . It is awkward to consider
{M1,M2, . . . ,Mk0} as a model family, since the supports of the distributions
in the model classes are not equal. The usual overfitting problem does not
exist, and the choice of the “best” model class is trivial. That is why we first
divide the problem into smaller parts and study the encoding of elements
in Di according to the model class Mi. Then we put the distributions with
separate domains together to achieve a distribution over D.

For x ∈ Dk, where k ∈ {1, 2, . . . , k0}, the NML distribution is PNML

Mk,Dk
:
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Dk → [0, 1],

P
NML

Mk,Dk
(x) =

Pk(x; p̂k(x))

C(Mk, Dk)
(3.3)

=
Pk(x; p̂k(x))∑

y∈Dk Pk(y; p̂k(y))

=
Pk(x; p̂k(x))

(1/k!)
∑

y∈D′
k
Pk(y; p̂k(y))

.

where D′k = {y ∈ {1, 2, . . . , k}n | n1(y), . . . , nk(y) ≥ 1}. Paper IV repres-
ents a recurrence relation, with which the normalization factor C(Mk, Dk)
can be calculated efficiently. Using the notation of the paper, we write

C1(k, n) = k!C(Mk, Dk) =
∑

y∈{1,2,...,k}n,
n1(y),...,nk(y)≥1

Pk(y; p̂k(y)) . (3.4)

Let n ∈ {3, 4, . . . , }. It holds for all k ∈ {1, 2, . . . , n − 2} (see [26] and
Paper IV) that

C1(k + 2, n) + 2C1(k + 1, n) =
(n
k
− 1
)
C1(k, n) . (3.5)

With recurrence (3.5) we can calculate C(Mk, Dk) in O(n) time.
Inside each Dk, the NML distribution gives now high probabilities for

intuitively simple sequences. For example, PNML

Mn,Dn
((1, 2, . . . , n)) = 1. The

separate NML distributions can be combined by normalization, and writing
m(x) = max(x), we obtain P : D → [0, 1],

P (x) =
P

NML

Mm(x), Dm(x)
(x)

∑
y∈D P

NML

Mm(y), Dm(y)
(y)

(3.6)

=
P

NML

Mm(x), Dm(x)
(x)

∑k0
i=1

∑
y∈Di P

NML

Mi, Di
(y)

=
1

k0
P

NML

Mm(x), Dm(x)
(x) .

The result is thus an NML distribution according to the model class {PNML

Mi,Di
|

i ∈ {1, 2, . . . , k0}} and the domain D.
In Paper IV we prove that C1(k, n) is maximized with a fixed n when

k = bn/4c + 1 or k = dn/4e + 1 (Figure 3.1). Figure 3.2 illustrates the



3.2 Model Classes with Infinite Parametric Complexity 23

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

0 10 20 30 40 50 60 70 80 90 100
+++++++++++++

+
+
+
+

+

+

+

+

+

+

+
+++

+

+

+

+

+

+

+
+
+
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Figure 3.1: C1(k, n) from (3.4) as a function of k when n = 100.

difference between the parametric complexities of the general multinomial
and the constrained model class. The normalizing sum is in the general case

C0(k, n) =
∑

y∈{1,2,...,k}n,
n1(y),...,nk(y)≥0

Pk(y; p̂k(x)) . (3.7)

In classical clustering applications, it is assumed that the number of clusters
is a small constant compared to the sample size. Then, the difference
log C0(k, n)− log C1(k, n) is small, and the choice of the multinomial model
class has probably little effect on the clustering method. But if the number
of clusters is a growing function of the sample size – new components arise
when the time passes, but each component produces only a constant number
of points – the difference can be significant.

3.2 Model Classes with Infinite Parametric Com-
plexity

In Papers I and II we present codes for uniform and Gaussian model classes,
including some multidimensional cases, and we propose practical solutions
to the problem of infinite parametric complexity in these cases. Paper III
introduces also codes for shifted exponential, Laplace and shifted half-normal
distributions in one dimension. In this section, we take the perspective of
Paper III and discuss what kind of requirements a code (or the corresponding
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Figure 3.2: The parametric complexities for two types of multinomial model
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density) should fill if the NML distribution does not exist, and how our
codes fulfil these requirements.

All the distributions that we cover in this section belong to the location-
scale family of distributions (see Table 3.1, page 27). In the one-dimensional
case, the density function of such a distribution can be written in the
form f(·; α, β) : R → [0,∞[, where α ∈ R is the location parameter and
β ∈ ]0,∞[ the scale parameter. Density f(·; α, β) can be shifted in the
sense that f(x; α, β) = f(x + ∆; α + ∆, β) for all x,∆ ∈ R. Let x =
(x1, x2, . . . , xn) ∈ Rn be a data sequence, and let α̂(x) and β̂(x) be the
maximum likelihood parameter estimates for x. Assume that the elements
of a sequence are independent and identically-distributed. With all the
distributions in Table 3.1, the maximum likelihood value of a sequence
x = (x1, x2, . . . , xn) ∈ {y ∈ Rn | min(y) 6= max(y)} depends only on the
ML scale parameter in the following sense: fn(x; α̂(x), β̂(x)) = gML(β̂(x)),
where fn(x; α, β) =

∏n
i=1 f(xi; α, β) and gML : ]0,∞[→ [0,∞[.

Let T denote the model class type (uniform, exponential etc.), and let
the model class of type T be MT = {fT (·; α, β) | α ∈ R, β ∈ ]0,∞[ }. When
the data domain is D = {x ∈ Rn | α̂T (x) ∈ [α1, α2], β̂T (x) ∈ [β1, β2]},
where α1 < α2 and 0 < β1 < β2, the normalizing factor

C(MT , D) =

∫

D
fT (x; α̂T (x), β̂T (x))

is finite and it can be calculated in a straightforward way (Table 3.4). The
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corresponding NML density serves as a technical starting point for the code
derivations in the case D = Rn in Papers I, II and III. We pass the details
but discuss the intuitive properties that density f̃ corresponding to model
class MT and data domain Rn should have.

The obvious requirement is that f̃ is positive everywhere in Rn. It is
also natural to assume that f̃ is continuous, and that it is a function of
α̂(x) and β̂(x) only, in other words, that for all x,y ∈ Rn the identity
(α̂T (x), β̂T (x)) = (α̂T (y), β̂T (y)) implies f̃(x) = f̃(y). The maximum
likelihood densities of the distributions we consider are proportional to
β̂T (x)−n, and they are thus not defined when β̂(x) = 0 (Tables 3.2 and
3.3). Because of the requirement that f̃ should be continuous and positive
everywhere, it is inevitable that regret REGMT

(f̃ ,x) grows unbounded as
β̂(x) approaches 0 from above. In practice, the data are given with some
fixed maximum precision. Therefore it is natural to allow the regret to be
unbounded in the set {x ∈ Rn | β̂T (x) < ε}, where ε > 0 is a constant.
But even then, the regret has to grow as a function of |α̂T (x)|, so that f̃
would integrate to unity over Rn. When a data sequence x is shifted away
from the origin, |α̂(x)| grows and gML(β̂(x)) remains unchanged. In this
context, a condition that is conceptually somewhat similar to minimizing the
worst-case regret, is to require that the regret grows asymptotically slowly
as a function of |α̂(x)|.

In Paper III we derive densities that have the form

f̃(x) =

{
gML(β̂(x)) dn ε p(α̂(x)) if β̂(x) ≥ ε
gML(ε) dn ε p(α̂(x)) if 0 ≤ β̂(x) < ε .

The coefficient dn depends on the model class (see Table 3.5), and p : R→ R+

is a continuous density function that gets positive values everywhere. As
before, gML(β̂(x)) = f(x; α̂(x), β̂(x)) denotes the maximum likelihood value
in the model class. In all the cases we consider, gML ◦ β̂ is a continuous
function.

The simple requirements for f̃ – positivity, continuity and dependence
on x only through α̂(x) and β̂(x) – are clearly fulfilled. When β̂(x) ≥ ε, the
regret is − log(dnε)− log p(α̂(x)). We have parameterized p with parameter
a ∈ R+ in Paper III so that density p(α̂(x)) is constant when α̂(x) ∈ [−a, a].
Thus the regret is constant in set {x ∈ Rn | α̂(x) ∈ [−a, a], β̂(x) ≥ ε}.
Because our p, which is based on Rissanen’s prior for integers [30], has
longer tails than any commonly used density function, the regret grows
asymptotically very slowly as a function of |α̂(x)|. The amount of probability
mass in the tails of p can be further controlled with another parameter.

In Paper II, we have derived a density that resembles f̃ but depends on a
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technical prior for the scale parameter as well as for the location parameter.
From the perspective of the MDL principle this seems somewhat problematic,
as the regret changes when either α̂(x) or β̂(x) change. Moreover, when
β̂(x) ≥ ε, the contribution of β̂(x) to the regret is e.g. in the case of the
uniform model class −2 log β̂(x)− log pβ(β̂(x)). Even if it is impossible to
find a code for a model class with an infinite parametric complexity without
assuming something about the data, it is in our opinion advisable to keep
the assumptions as simple as possible. The cleaner approach of Paper III
requires that we should choose only an effective lower bound ε for β̂(x),
and a density p that determines how much we favour data centered in the
vicinity of the origin.
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Distribution Density fT (x; α, β) Support

Uniform 1/2β [α− β, α+ β]
Exponential 1/β · exp(−(x− α)/β) [α,∞[
Mirrored exponential 1/β · exp(−(α− x)/β) ]−∞, α]
Laplace 1/2β · exp(−|x− α|/β) R
Normal 1/

√
2πβ2 · exp(−(x− α)2/2β2) R

Half-normal
√

2/πβ2 · exp(−(x− α)2/2β2) [α,∞[

Mirrored half-normal
√

2/πβ2 · exp(−(x− α)2/2β2) ]−∞, α]

Table 3.1: One-dimensional distributions of the location-scale family.

Distribution ML estimate β̂(x) ML density
fT (x; α̂(x), β̂(x))

Uniform (max(x)−min(x))/2 1/(2β̂(x))n

Exponential (1/n)
∑n

i=1(xi −min(x)) 1/(eβ̂(x))n

Mirrored exponential (1/n)
∑n

i=1(max(x)− xi) 1/(eβ̂(x))n

Laplace (1/n)
∑n

i=1 |xi − xdn/2e| 1/(2eβ̂(x)n

Table 3.2: Maximum likelihood scale-parameter estimates and ML densities
for a sequence with n identically and independently-distributed elements.

Distribution ML estimate β̂2(x) ML density
fT (x; α̂(x), β̂(x))

Normal (1/n)
∑n

i=1(xi − (1/n)
∑n

i=1 xi)
2 1/(2πeβ̂2(x))n/2

Half-normal (1/n)
∑n

i=1(xi −min(x))2 (2/πeβ̂2(x))n/2

Mirrored half-normal (1/n)
∑n

i=1(xi −max(x))2 (2/πeβ̂2(x))n/2

Table 3.3: Maximum likelihood estimates for squared scale-parameter estim-
ates and ML densities for a sequence with n identically and independently-
distributed elements.
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Model class type Normalizing factor / (α2 − α1)(β
−1
1 − β−12 )

Uniform n(n− 1)

2

(Mirrored) Exponential
1

(n− 2)!

(n
e

)n

Laplace
n− 1

(dn/2e − 1)! (n− dn/2e)!
( n

2e

)n

Normal
2√

π Γ((n− 1)/2)

( n
2e

)n/2

(Mirrored) Half-normal 4
√
n√

π Γ((n− 1)/2)

( n
2e

)n/2

Table 3.4: Normalizing factors divided by (α2 − α1)(β
−1
1 − β−12 ) in the

NML density when the domain of the data is D = {x ∈ Rn | α̂(x) ∈
[α1, α2], β̂(x) ∈ [β1, β2]}.

Model class type Coefficient dn

Uniform 2

n2

(Mirrored) Exponential en(n− 1)!

nn+1

Laplace (2e)n
(dn/2e − 1)!(n− dn/2e)!

nn+1

Normal
√
π

2

(
2e

n

)n/2 n− 1

n
Γ

(
n− 1

2

)

(Mirrored) Half-normal
√
π

4

(
2e

n

)n/2 n− 1

n3/2
Γ

(
n− 1

2

)

Table 3.5: Coefficient dn in f̃(x) = gML(β̂(x))dnε p(α̂(x)) for x ∈ {y ∈ Rn |
β̂(y) ≥ ε}.



Chapter 4

Applications

The number of existing practical applications based on the NML is relatively
small compared to applications using some other form of the MDL. Especially
taking account the important position of the NML in the current MDL
research, the reasons are presumably mostly related to the problems we have
discussed earlier in this thesis. To name some examples of the practical
use of the NML, there are applications in bioinformatics [20, 21, 22, 46, 47],
data clustering [19] and wavelet denoising [33, 39, 38].

In this chapter we introduce some applications of the NML distributions
derived in the previous chapter. A common theme is clustering, either in
one or multidimensional spaces. The cluster assignments are always binary
– that is, every point belongs to exactly one cluster – which simplifies the
scheme significantly. We choose the number of clusters, the clustering itself
and the types of the clusters by maximizing the density

f(k, c, t,x) =
1

K
pNML
k (c)

1

T k

k∏

i=1

fti(yi) (4.1)

where k ∈ {1, 2, . . . ,K} is the number of clusters, c ∈ {1, 2, . . . , k}n is the
clustering sequence, t = (t1, t2, . . . , tk) ∈ {1, 2, . . . , T}k are the types of
the clusters, x ∈ (Rd)n is the data sequence, and yi is the subsequence
corresponding to cluster number i. We discussed the NML probability mass
function pNML

k in Section 3.1, and the densities for different model class types
fti in Section 3.2.

4.1 Gaussian Clusters and Noise

Finding clusters that are modelled with normal distributions is one of the
most fundamental clustering problems. We concentrate here and in the

29
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following sections on hard clustering, in which every point is assigned to
exactly one cluster in contrast to the probabilistic assignments of a soft
clustering. Choosing an appropriate number of clusters is a typical example
of a model class selection problem. A practical issue is that models with
Gaussian clusters do not often fit real world data very well, and a number
of attempts has been made to augment the usability of such models, in
particular to make them more robust for noisy data (see e.g. [8]).

In Paper II we increase the robustness of the model with a classical
method: by adding a component with a uniform distribution. However, the
criterion that is used for model selection is novel, and it uses the type of NML
based densities that were discussed in Section 3.2. The normal distributions
in the model classes were either axis-aligned (with independent coordinates)
or spherical. We do not consider the more complicated setting with general
normal distributions, but we refer the interested reader to [12, 13] for NML
calculations for restricted data in that case. The multinomial NML for a
clustering sequence from Section 3.1 would be a correct choice in this context,
but Paper II, as well as Paper III, uses the older, general multinomial NML.

To demonstrate the performance of our MDL criterion, we also made
experiments with synthetic data using our search heuristic, which is described
below. Even if the heuristic is simple, it was effective in finding the intuitively
correct clustering when the data were generated according to a mixture
distribution with several normal components and one uniform component.
During the search procedure the number of clusters diminished from a
predetermined number to one, and the model class selection is done during
that process. This is a major difference for example to the famous expectation
maximization (EM) algorithm [9] which operates within one model class.

The basic idea of the heuristic is that when the data consist of k dense
clusters and relatively uniform background noise, running the EM algorithm
with more than k components often results in a clustering in which the
original clusters are captured quite well but the noise component is covered
with several clusters. Then it is possible to prune the inessential clusters
and assign their points to a single uniform noise cluster. The outline of the
search method is the following:

1. Find an initial clustering with m clusters.

2. If the model does not have a uniform component, add an empty uniform
cluster.

3. Sort the points according to ascending density in the current model.
Let the sorted sequence be (y1, y2, . . . , yn).

4. For all i ∈ {1, 2, . . . , n}:
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(a) Move yi to the uniform cluster.

(b) Update the parameters of the clusters that were changed; if a
cluster became empty, decrement the number of clusters in the
model by one. Do not change the cluster assignments of other
points than yi.

(c) Calculate and store the MDL of the new clustering.

5. Return the clustering that had the smallest MDL.

The initial clustering can be found with any clustering method. We used
a hard clustering variant of the EM algorithm, experimenting with different
numbers of normal components and either one or zero uniform components.
It is commonly known that the EM algorithm is sensitive to the choice of
initial clusters at the very beginning of the algorithm. For that purpose we
used a random seeding algorithm from [3]. But because that seeding method
is designed for the k-means clustering algorithm, there is probably place
for improvement. Because of the randomness of the seeding, we repeated
the whole clustering procedure 20 times for each data set and parameter
combination and picked finally the clustering with the smallest MDL.

The number of the components m in the initial clustering affects the
outcome, and there are many possible strategies for trying out different
values. In our experiments with data that were generated from a source
corresponding one of the model classes, the quality of the final clustering was
not sensitive to the choice of m in the beginning, as long as m was suitably
large compared to the number of components in the generating model. This
is an advantage compared to the regular EM algorithm, as less repeats with
different values of m are needed for finding a good clustering.

There are several ways how the basic search algorithm could be further
varied. Firstly, for reasons of computational efficiency, we used a fixed order
in which the points were moved to the uniform cluster. An interesting
variation would be to update the order according to the changed model.
Secondly, the finite support of the uniform cluster can cause difficulties
that could presumably be avoided by using some other flat distribution. As
described above, if the initial clustering did not have a uniform component,
we did not force in the beginning of step 4 that the points determining the
smallest enclosing box of the data should belong to the uniform cluster. The
addition of a single point to the uniform cluster at some point during step 4
can potentially increase the code length for the points of the uniform cluster
by a large amount. Because the uniform cluster never shrinks, the method is
sensitive to the initial clustering that dictates the order in which the points
are handled in step 4.
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4.2 Clustgrams: an Extension to Histograms

Density estimation [42, 14] is a fundamental problem in statistical inference
and machine learning. One of simplest and most widely-used methods is
a histogram. Given a sample of one-dimensional observations x ∈ Rn, the
goal of histogram density estimation is to learn a piecewise constant density
that fits the data best according some criterion. We seldom assume that the
data are actually produced by a data generating source with an underlying
histogram density. Especially when the sample size is small, there are thus
some obvious problems with the histogram model. For example, the support
of a histogram density is finite, and there is always a discontinuity between
two adjacent histogram bins, which can make the estimated density rough.

A natural way to extend histograms is to allow more bin types beside
the uniform one. Our clustgram framework from Paper III allows arbit-
rary densities as components, if we are able to calculate the code lengths
corresponding to data in the clusters. In Paper III our density selection
includes seven one-dimensional densities types from the location-scale family
(see Section 3.2). As a model class selection criterion we use the length
of the code word that describes the number of clusters, the assignments
of points to clusters, the types of the clusters and the data. The form
of the corresponding density is given in Equation (4.1). As we operate
in one-dimensional space, we can use an efficient search algorithm. If the
number of clusters is in the set {1, 2, . . . ,K}, and the length of the data
sample is n, we can find the optimal non-overlapping clustering in O(Kn2)
time with a simple dynamic programming algorithm (using the principle
described in [15, Section 4.1]). By non-overlapping we mean the following: it
holds for all pairs of clusters (i, j), where i 6= j, that either all the points in
i are smaller than the points in j, or vice versa. It should be noted, however,
that our criterion for model selection in itself is applicable to overlapping
cluster assignments too.

4.3 Density and Entropy Estimation Using Histo-
grams

We compare empirically different penalized maximum likelihood methods
for density and entropy estimation in Paper V. Here, we give first a slightly
more detailed description of the new NML density than in the original paper.
Then in Subsection 4.3.2 we discuss the results of the empirical tests.
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4.3.1 NML Histogram With k Non-Empty Bins

Kontkanen and Myllymäki have introduced an NML histogram [18] in which
the number and locations of cut points between histogram bins are optimized.
Each model class is associated with k cut points between a fixed minimum
and maximum. Depending on the data, some of the k+1 bins in the resulting
histogram may be empty. We design in Paper V a more clustering-oriented
NML histogram selection criterion. There we optimize the borders of non-
empty bins instead of cut points between the bins. Thus a histogram model
class with k non-empty bins can be considered as a constrained collection of
mixture densities that have k uniform components with non-zero weights.
We also included the grid determining the set of potential bin borders to
the optimized elements.

Let x = (x1, x2, . . . , xn) ∈ Rn be a data sequence. Assume that min(x) <
max(x), and let a = min(x) and c = max(x). For all m ∈ {1, 2, . . . }, let
a regular grid with m intervals be Gm = {a, a + w, a + 2w, . . . , c − w, c}
where w = (c − a)/m. Let G = {Gi | i ∈ J} be the set of possible grids,
where J ⊂ {1, 2, . . . }. Let us now fix the number of grid intervals m and
study histograms defined on the grid Gm. We can define the choice of k
non-empty bins on Gm by giving the bin borders (b2j−1, b2j) ∈ Gm × Gm
for every bin index j ∈ {1, 2, . . . , k}. Note that here b1 = a and b2k = c.
We assume that b2j−1 < b2j for all j ∈ {1, 2, . . . , k} and b2j ≤ b2j+1 for
all j ∈ {1, 2, . . . , k − 1}. Using the length w as unit, the width of bin j
is wj = (b2j − b2j−1)/w, and the width of the interval between bins j and
j + 1 is ej = (b2j+1− b2j)/w. As we know that

∑k−1
i=1 (wi + ei) +wk = m, or

equivalently
∑k−1

i=1 (wi + (ei + 1)) +wk = m+ k − 1, the number of different
choices of k non-empty bins on Gm is the same as the number of different
compositions of the number m+ k − 1 into 2k − 1 positive terms, which is
given by the binomial coefficient

(
m+k−2
2k−2

)
.

We give next the joint density of the grid Gm ∈ G, the number of non-
empty bins k ∈ {1, 2, . . . ,min{m,n}}, the bin borders b = (a, b2, b3, . . . ,
b2k−1, c) ∈ (Gm)2k, and the data x. Assume that a < b2 ≤ b3 < b4 ≤
· · · ≤ b2k−1 < c. Let the intervals corresponding to the non-empty bins
be I1 = [a, b2[, I2 = [b3, b4[, . . . , Ik = [b2k−1, c]. For all j ∈ {1, 2, . . . , k}, let
vj = b2j − b2j−1 be the bin width and let nj =

∑n
i=1 1Ij (xi) be the number

of points falling into bin j. Finally, let c = (c1, c2, . . . , cn) ∈ {1, 2, . . . , k}n
denote the sequence of bin assignments. Notice that because of the bin
encoding scheme, c contains now more information than the clustering
sequences we discussed in Section 3.1. Especially, it can now be that c1 6= 1.

Using the notation from Section 3.1, the NML density of the sequence x
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given the histogram b with k non-empty bins is

fNML(x; b) =
Pk(x; p̂k(x))∑

y∈D′
k
Pk(y; p̂k(y))

k∏

i=1

(
1

vi

)ni

=
1

C1(k, n)

k∏

i=1

(
ni
n

1

vi

)ni

if
∑k

i=1 ni = n, and fNML(x; b) = 0 otherwise. Probability mass function
Pk was defined in (3.2) and normalizing constant C1(k, n) in (3.4), and
D′k = {y ∈ {1, 2, . . . , k}n | n1(y), . . . , nk(y) ≥ 1}. A significant difference
to the clustering applications in Sections 4.1 and 4.2 is that the clusters in a
histogram cannot overlap.

We model the parameter combination (Gm, k,b) using uniform distribu-
tions over the corresponding sets. Thus, we define the density of (Gm, k,b,x)
as

f(Gm, k,b,x) =
1

|G|
1

min{m,n}

(
m+ k − 2

2k − 2

)−1
fNML(x; b) . (4.2)

Finding the best histogram requires finding the optimal number of non-
empty bins for each grid Gm ∈ G and choosing then the one maximizing the
density in (4.2).

Optimizing the places of non-empty bins instead of cut points also has a
slight benefit for a practical implementation. In order to achieve O(Kn2)
complexity in the dynamic programming algorithm (see Subsection 4.2), we
must build a table containing information of all possible single bins that can
exist in the optimal solution. The grid determines where the bin borders can
be put, setting also a minimum width for a single bin. When the number of
data points is n, there are at most n+ (n−1) + · · ·+ 1 = (n2 +n)/2 possible
non-empty bins that have to be considered for an optimal histogram. The
limit is achieved when all the data points belong to different grid intervals.
However, when the places of cut points are optimized as in [18], a table built
in a straightforward way can contain as many as (2n−1)+(2n−2)+· · ·+1 =
2n2 − n entries.

We have used in both cases the fact that the bins of an optimal histogram
are in a certain sense as compact as possible. Let us call a grid interval
empty if no data point belongs to that interval. In a histogram with optimal
non-empty bins, it is clear that in bin [c, d[ the first and last grid intervals are
non-empty. In other words, intervals [c, c+ v[ and [d− v, d[ are non-empty,
where v is the length of a grid interval.
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When cut points are optimized, the cut points are as close as possible
to the data points in the following sense: If cut point y lies between two
empty grid intervals in an optimal histogram, then y lies between two empty
histogram bins as well. There is a simple proof for this in Appendix A.2.

4.3.2 Empirical Comparison of Four Methods

In Paper V we compare empirically the performance of four histogram meth-
ods and the clustgram (Subsection 4.2) in density and entropy estimation.
The histogram methods are

• Method NML-1, the NML histogram by Kontkanen and Myllymäki
[18],

• Method NML-2, the new NML histogram variant (Subsection 4.3.1),

• Method RMG by Rozenholc, Mildenberger and Gather [40],

• Method MRT by Menez, Rendas and Thierry [25].

When there is no prior information about the range of the data, many
authors suggest building the histogram between the minimum and maximum
of the data [18, 5, 40]. We follow that simplistic convention, even if the
approach is slightly problematic in information-theoretic sense. An assump-
tion that the receiver would know the minimum and maximum values of the
data with great precision before seeing the message is usually unrealistic.
Of course, the range of the data could be transmitted as the first part of a
traditional two-part message. Then, it would be possible to optimize the
precision of the parameters, because using more bits for parameters allows
more effective encoding of the rest of the message. Our intuition is that the
performance improvements which could be gained by this optimization would
in practice often not be significant enough to compensate the additional
complexity of the method. However, in [37] it is assumed that min(x) = 0,
and the maximum of the histogram range is explicitly encoded.

The methods can be divided into two groups based on the grid they
use. Methods NML-1 and NML-2 use a regular grid between the minimum
and maximum values, methods RMG and MRT use the data points as a
grid. In the latter approach, the data points (x1, x2, . . . , xn) determine a
set A = {[y1, y2], ]y2, y3], . . . , ]ym−2, ym−1], ]ym−1, ym]} where y1, y2, . . . , ym
are the elements of set {x1, x2, . . . , xn} in ascending order. The histogram
bins are then formed by combining adjacent intervals from A. A direct
consequence is that every bin produced by methods RMG and MRT includes
at least one data point.
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Another categorization criterion for the methods is whether cut points or
non-empty clusters are optimized. Note for example that when the minimum
and maximum points are know, a histogram with four bins has three cut
points and from two to four non-empty clusters. NML-1, RMG and MRT
optimize the places of cut points, whereas NML-2 and the clustgram optimize
the borders of non-overlapping clusters (the search algorithm does not find
overlapping clusters even if the cost function of the clustgram would allow
them).

NML-1 requires choosing the grid as a parameter, and the clustgram
method has an accuracy parameter ε as well as parameters a and b for the
prior density of the location. Although these two methods do not seem to be
very sensitive to the choice of parameters, and reasonable values can thus be
found relatively easily in practice, their dependency on parameters can still
be seen as a weakness compared to the parameterless methods RMG and
MRT. Method NML-2, which chooses the best grid from a given set, lies in
the middle of parameter-dependent and parameter-free methods. Modifying
NML-1 to optimize the grid similarly to NML-2 would be trivial (see (4.2)).
Still, we implemented NML-1 using the original code length from [18]. For
more details about choosing the parameters for the testing procedure, we
refer to Paper V.

For evaluation of the methods, synthetic data were drawn randomly from
50 different distributions, which are listed in Appendix A.3 and illustrated
in Figures A.3–A.12. They include the 15 normal mixtures from [24], 2
normal mixtures from [18], mixtures with normal, exponential, uniform and
triangular components, as well as different unimodal distributions. The
accuracy of density estimation was measured by integrating numerically the
squared Hellinger distance h2(f, g) =

∫
(
√
f(x)−

√
g(x) )2 dx between the

known source distribution f and the found model g. The entropy of the
source and the model were computed analytically if possible, otherwise by
numerical integration.

Method MRT favoured solutions with relatively few bins, which often led
to slightly worse estimates compared to other methods. The performance of
clustgram method was twofold: if the mixtures consisted of clearly separated
components that matched the component types of the clustgram, clustgram
often clearly outperformed other methods in density estimation. However,
the estimation accuracy of the clustgram was with some strongly overlapping
distributions only moderate. Method RMG was a solid performer that tended
to choose solutions with more bins than the other histogram methods.

All methods behaved soundly in the sense that the estimation accuracy
improved as the sample size increased. There were only two notable excep-
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tions to that rule. One was clustgram method with a symmetric triangular
distribution as the data source (density no. 9 in Appendix A.3, Example 3
in Paper V). The second case, which was apparently caused by the imple-
mentation, was NML-1 and NML-2 with a heavy-tailed Pareto distribution
(density no. 6, see explanation in Appendix A.3).

Interestingly, when we let the set of possible grids for NML-2 to include
only one grid with interval length 0.02, method NML-2 was almost always
worse in density estimation than NML-1 with the same grid. But using
the grid optimization procedure described in Paper V, the results improved
significantly. The estimates of NML-2 were especially good with many ragged
multimodal distributions that seemed to cause difficulties for the other
methods. Interesting examples in particular from the entropy estimation
point of view include densities 21, 41, 47, and 48.
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Chapter 5

Conclusion

The contributions of this thesis are related to normalized maximum likelihood
distributions and their applications. One of the most difficult problems with
the NML is the infinite parametric complexity of many relevant model classes.
The most obvious solutions, limiting the range of the parameters or the
data, induces practical problems. What should we for example do if we
unexpectedly encounter a sample that we do not have a code word for? If
we do not want to discard the sample completely, we have to change the
code book. That leads to an idea of having a library of code books and a
separate code for the code book names. However, that system has some
obvious problems. One weakness of the design is the concept of discrete
code books which usually leads to a discontinuous code length function.

In order to provide a better alternative, we constructed in Papers I, II
and III distributions enabling the encoding of all possible data in a sensible
way with several model classes: normal, half-normal, uniform, exponential,
and Laplace. The distributions of these model classes have simple closed-
form maximum likelihood parameter estimators, which is essential for the
derivation of the results. If nothing is known about the data and the model
classes are not restricted in any way, the NML distributions do not exist in
these cases. Although there are thus no regret-minimizing distributions, we
still considered the regret as the main criterion for our code design. Our
distributions are based on the assumption that we have some very general
preconceptions about how the data will be. The preconceptions are expressed
with three parameters, and the regret grows very slowly when we encounter
data that are more and more surprising. All data are encodable with our
density, which makes it more practical than the pure NML.

In addition to the contributions related to the infinite parametric com-
plexity problem, we showed in Paper IV how to calculate efficiently the
NML distribution for the multinomial model class in a configuration that is
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natural for clustering applications (it turned out later that the main result
of Paper IV was published previously in [26]). In most applications, we do
not expect that using this particular model class definition instead of the
general multinomial model class would lead to noticeably different results.
However, the calculation of the corresponding NML distribution is equally
demanding in both cases, so there are no practical disadvantages for using
the newer code length function.

Another contribution of theoretical nature, which is not directly linked to
other contents of the thesis, is in explained in Appendix A.1. The unsmooth
diminishing of the well-known prior for integers may be considered as a
small flaw for applications. Therefore, we propose a variant of the original
prior with more regular behaviour.

The qualities of the new code lengths were demonstrated with clustering-
based applications, for which Section 4 was dedicated. In Paper II we
discussed a group a clustering methods that took advantage of the NML
based code lengths. A common feature for the methods was that the
number of clusters and thus the complexity of the model changed during the
clustering process. In tests with synthetic data, the new clustering heuristics
were successful in finding the original cluster structure.

The clustgram from Paper III is an extension to the histogram and
a straightforward application of the new code lengths. Its performance
in density and entropy estimation was evaluated in Paper V against two
NML histograms, one of which was a novel contribution, and two other
penalized histogram methods. The variety of different component types in
the clustgram was a major benefit for density estimation in some cases. On
the other hand, the clustgram was generally not among the best methods in
entropy estimation. The new computationally demanding NML histogram
(called “NML-2” in the paper) performed especially well with complex ragged
mixture densities.
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A.1 Code Lengths for Natural Numbers

How to encode integers in the set N+ = {1, 2, . . . } is a fundamental coding
problem. It can arise for example in model selection problems when the
number of model classes is infinite: we may want to encode the index of the
model class explicitly without favouring any class too strongly. If the index
set were finite, our choice would be most likely the uniform distribution.
But what distribution over a countably infinite set could be a conceptual
counterpart of the uniform distribution?

We propose a modified version of Rissanen’s prior for encoding of positive
integers. In the original distribution, the probabilities of the first few integers
diminish at an uneven rate, which we want to avoid. Our modified prior
also has a parameter with which the distribution of probability mass can be
tuned. Notice that there are also other codes that share the same kind of
assymptotic properties as Rissanen’s prior: the codes for decision trees in
[28] and [48] can be used for coding of integers as well.

In the following, we let log denote logarithm to base 2. Rissanen proposes
in [30] the following probability for encoding of integers: P0 : N+ →]0, 1[,
P0(n) = (con · h(n))−1 where c0 ≈ 2.865064 is a normalizing constant and

h(x) =

{
1 if log x ≤ 1

(log x) h(log x) if log x > 1 .

The choice of P0 is motivated by the fact that it is hard to find practical
probability mass functions that would diminish asymptotically as slowly
as P0. Rissanen calls P0 a universal prior for the integers, and Grünwald
adopts the terminology in [11]. One should note that the probabilities which
P0 assigns to different integers are not “universal” themselves. As we shall
soon see, there are an infinite number of probability mass functions that
could be called universal priors for integers as well as P0.
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There are some regularity properties that would be advantageous for an
integer prior P . First, we expect P to be monotonically decreasing in N+.
Then, at least, it would be desirable if the mapping n 7→ − logP (n+ 1)−
(− logP (n)) were monotonically decreasing as well (or n 7→ P (n+ 1)/P (n)
were monotonically increasing). This kind of smoothness ensures that P
does not cause artificial thresholds in model class selection.

Rissanen’s prior P0 clearly fails to fulfil the second condition. Let
the right-associative operator x ↑ y denote xy. Let x ↑↑ 0 = 1, and let
x ↑↑ y = x ↑ x ↑ . . . ↑ x︸ ︷︷ ︸

y copies of x

for x > 0, y ∈ N+. If we write L0(n) = − logP0(n),

it is easy to verify that the condition L0(n+ 1)−L0(n) < L0(n)−L0(n− 1)
is false when n ∈ {2, 4, 16, 65536} = {2 ↑↑ 1, 2 ↑↑ 2, 2 ↑↑ 3, 2 ↑↑ 4}. The
increase of the code lengths for the first few integers is therefore quite uneven
(see Figures A.1 and A.2). The problem could be circumvented for example
by shifting the origin and renormalizing accordingly.

Instead of directly manipulating P0, we derive a new probability mass
function for the natural numbers by integrating a related density for the
non-negative real numbers. The resulting function is smoother than P0 and
it has one parameter. In Paper II we made a parameterized version of the
prior for reals from [30]. We use here our prior for reals but with a slightly
simpler parameterization, which we explain next.

For x ∈ [0,∞[, we define the density

fR+(x; k) =
1− ln 2

(ln 2)k
1

(x+ b)h(x+ b)

where k ∈ N+ and b = 2 ↑↑ (k − 1). Note that the derivative of fR+(·; k)
is discontinuous at (2 ↑↑ m) − b, m ∈ {k, k + 1, . . . }. Now we can derive
our prior for the natural numbers by integrating fR+ . We write a multiple
logarithm as

log(k) x := log log . . . log︸ ︷︷ ︸
k copies

x

and we let

log� x := max
{
{0} ∪ {k ∈ N+ | log(k) x > 1}

}

denote a logarithmic order of magnitude of x. Let n ∈ {b + 1, b + 2, . . . }
and let m = log� n. It follows that (2 ↑↑ m) + 1 ≤ n ≤ 2 ↑↑ (m + 1). If
n− 1 < x < n, then 2 ↑↑ m < x < 2 ↑↑ (m+ 1) and

Dx

(
(ln 2)m+1 log(m+1) x

)
=

1

xh(x)
.
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Thus, we get the integral
∫ n

n−1

1

xh(x)
dx = (ln 2)m+1

(
log(m+1) n− log(m+1)(n− 1)

)
.

This yields the desired prior for all n ∈ N+,

PN+(n; k) =

∫ n

n−1
fR+(x; k) dx

=

∫ n

n−1

1− ln 2

(ln 2)k
1

(x+ b)h(x+ b)
dx

=
1− ln 2

(ln 2)k

∫ n+b

n+b−1

1

y h(y)
dy

= (1− ln 2)(ln 2)j+1−k
(

log(j+1)(n+ b)− log(j+1)(n+ b− 1)
)

where b = 2 ↑↑ (k − 1) and j = log�(n+ b).
Figure A.2 illustrates that PN+(·; k) decreases more smoothly than P0

with the first few integers even if we do not achieve the condition that
n 7→ PN+(n + 1; k)/PN+(n; k) were monotonically increasing everywhere.
Parameter k controls the heaviness of the tails of PN+ (see Figure A.1). This
addition seems to be necessary for many applications when we think of the
fact that P0(1) + P0(2) > 1/2.

A.2 Optimal Cut Point Placement Between Two
Histogram Bins

We prove here a simple result that is essential for an efficient implementation
of Kontkanen’s and Myllymäki’s NML histogram [18]. The grid on which
the histogram is built can be fine and contain more intervals than there are
data points. However, it is not necessary to consider all possible intervals
of the grid as potential bins. We show that if cut point y lies between two
empty grid intervals in an optimal solution with a fixed number bins, then
y is a cut point between two empty histogram bins. By merging these two
adjacent empty bins, we have a solution with less bins and a shorter code
length.

Let y be located between two empty grid intervals in an optimal histogram.
Assume first that exactly one of the bins adjacent to y is empty. Now we
can replace cut point y with cut point y′ so that the non-empty bin becomes
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Figure A.1: Code lengths for integers 1, 2, . . . , 19 according to Rissanen’s
prior for integers P0 and the new integer prior PN+ .
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Figure A.2: Code length differences L(n+ 1)− L(n) for n ∈ {1, 2, . . . , 19}.
Comparison between Rissanen’s integer prior P0 and the new prior PN+ .
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narrower. That clearly makes the likelihood of the histogram larger, which
leads to a contradiction.

Let us next consider the placement of a cut point between two non-
empty bins. Assume that there are r points in the interval [a, b[, 0 points
in the interval [b, c[, and s points in the interval [c, d[, where r, s,≥ 1 and
a < b < c < d. We want to find the optimal cut point y ∈ [b, c] so that the
intervals [a, y[ and [y, d[ form two histogram bins. Let n be the total number
of points (where possibly r + s 6= n). The contribution of the two bins to
the likelihood of the histogram is as a function of the cut point

g(y) =

(
r

n
· 1

y − a

)r ( s
n
· 1

d− y

)s

=
rrss

nr+s
· 1

(y − a)r
1

(d− y)s
.

The derivative of g is

g′(y) =
rrss

nr+s
· rd+ sa− (r + s)y

(y − a)r+1 (d− y)s (y − d)
.

It is easy to see that the denominator of g′(y) is negative and that rd+ sa−
(r + s)y decreases as y grows. So the sign of g′(y) can change only once
between b and c, and in that case g′(b) < 0 and g′(c) > 0. Therefore, the
maximum value of g in the interval [b, c] is either g(b) or g(c). By choosing
b and c in a suitable way, it follows easily that an optimal cut point between
two non-empty bins cannot lie between two empty grid intervals.

A.3 Histogram Methods: Results to Section 4.3.2

Random samples for the evaluation of the methods in Section 4.3.2 were
generated from 50 distributions listed below. We use the following notations:

• normal distribution with mean µ and variance σ2:

ϕ(µ, σ2)(x) =
1√

2πσ2
exp

(−(x− µ)2

2σ2

)

• shifted exponential distribution with origin α and mean β:

Exp+(α, β)(x) =
e−(x−α)/β

β

if x ≥ α, otherwise Exp+(α, β)(x) = 0
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• shifted mirrored exponential distribution with origin α and mean β:

Exp−(α, β)(x) =
e−(α−x)/β

β

if x ≤ α, otherwise Exp−(α, β)(x) = 0.

• uniform distribution in the interval [a, b], where a < b:

U([a, b])(x) =
1

b− a
if x ∈ [a, b], otherwise U([a, b])(x) = 0.

The densities are listed below. They are also illustrated beside the
test results graphs in Figures A.3–A.12. The averages of squared Hellinger
distances between the known source density and the estimated densities in
100 test runs are presented in the middle column of Figures A.3–A.12. In
the rightmost column, the centre point of an error bar indicates the average
estimated entropy in 100 runs, and the total height of a bar corresponds
to two sample deviations. The horizontal line indicates the entropy of the
source distribution. Nats are used as units for the entropy. The sample sizes
on the x axis of the test result graphs are 50, 100, 200, 400, 800, 1600 and
3200.

We comment some striking results here. The estimation accuracy of
NML-1 and NML-2 worsens with the Pareto distribution (density no. 6) and
the largest sample size probably because of an implementation level detail.
With both NML methods, the grid is determined by dividing the range of
the data into intervals of fixed length. In the program however, the number
of these intervals between the minimum and maximum point was limited to
2 147 483 646, which was the C programming language constant INT_MAX
- 1 in our system. That means, if the range of the data was large enough,
the implementation changed the length of the grid intervals. Because of the
long tails of the density and the fairly large sample size, the limit was hit in
43% of the test runs with NML-1. NML-2 chose in 10% of the runs a grid
in which the number of grid intervals was limited in this way. When these
cases were not considered, the estimation accuracy of NML-1 and NML-2
improved with the largest sample size in a similar way as with density no. 5,
a Pareto distribution with lighter tails.
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List of source distributions

Simple unimodal distributions

1. Standard normal distribution (density no. 1 in [24]): f = ϕ(0, 12).

2. Normal distribution with µ = 0, σ2 = 102: f = ϕ(0, 102).

3. Chi-squared distribution with 2 degrees of freedom: f(x) = 1/2 ·
exp(−x/2) for x ≥ 0.

4. Chi-squared distribution with 10 degrees of freedom: f(x) = 1/768 ·
x4 exp(−x/2) for x ≥ 0.

5. Pareto distribution: f(x) = x−2 for x ≥ 1.

6. Pareto distribution: f(x) = 1/2 · x−3/2 for x ≥ 1.

7. Cauchy distribution with location 0 and scale 1: f(x) = π−1(1+x2)−1.

8. Cauchy distribution with location 0 and scale 2: f(x) = (2π)−1(1 +
(x/2)2)−1.

9. Symmetric triangular distribution, positive in ]− 1, 1[, maximum at 0.

10. Triangular distribution, positive in ]− 5, 15[, maximum at 0.

11. Uniform distribution: f = U([−1, 1]).

12. Uniform distribution: f = U([−20, 20]).

13. Exponential distribution with mean 1: f = Exp+(0, 1).

14. Exponential distribution with mean 10: f = Exp+(0, 10).

15. Laplace distribution with mean 0 and scale 1: f(x) = 1/2 · exp(−|x|).

16. Laplace distribution with mean 0 and scale 8: f(x) = 1/16·exp(−|x|/8).

Mixtures of normal and exponential densities

17. Mixture of 2 shifted exponential distributions, one of them mirrored:
f = 0.333 · Exp−(−2, 2) + 0.667 · Exp+(2, 2).

18. Mixture of 2 shifted exponential distributions, one of them mirrored:
f = 0.333 · Exp+(−2, 2) + 0.667 · Exp−(−2, 2).
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19. Mixture of 4 shifted exponential distributions: f = 1/4 ·Exp+(−5, 1) +
1/4 · Exp+(−3, 2) + 1/4 · Exp+(0, 1/2) + 1/4 · Exp+(5, 4).

20. Mixture of 4 shifted exponential distributions, two of them mirrored:
f = 4/10 · Exp+(−3, 3) + 2/10 · Exp−(−1, 2) + 1/10 · Exp+(0, 1/2) +
3/10 · Exp−(5, 4).

21. Mixture of 8 shifted exponential distributions: f = 1/12·Exp+(−8, 1)+
1/6 · Exp+(−6, 2) + 1/12 · Exp+(−4, 1) + 1/6 · Exp+(−2, 2) + 1/12 ·
Exp+(0, 1) + 1/6 · Exp+(2, 2) + 1/12 · Exp+(4, 1) + 1/6 · Exp+(6, 2).

22. Mixture of 8 shifted exponential distributions, four of them mirrored:
f = 1/12 ·Exp−(−8, 1)+1/6 ·Exp+(−6, 2)+1/12 ·Exp−(−2, 1)+1/6 ·
Exp+(−1, 2)+1/12 ·Exp−(0, 1)+1/6 ·Exp+(1, 2)+1/12 ·Exp−(2, 1)+
1/6 · Exp+(3, 2).

23. Mixture of a shifted exponential and a normal distribution: f =
1/5 · Exp+(−10, 5) + 4/5 · ϕ(5, 32).

24. Mixture of a shifted exponential and a normal distribution: f =
2/5 · Exp+(3, 3) + 3/5 · ϕ(10, 32).

25. Mixture of 2 shifted exponential and 2 normal distributions: f =
1/10·Exp−(−20, 1)+3/10·ϕ(−10, 32)+4/10·ϕ(0, 22)+2/10·Exp+(8, 5).

26. Mixture of 2 shifted exponential and 2 normal distributions: f =
1/10 ·Exp−(−8, 1)+4/10 ·ϕ(−6, 32)+3/10 ·ϕ(1, 22)+2/10 ·Exp+(2, 5).

27. Mixture of 4 shifted exponential and 4 normal distributions: f =
0.125 · Exp−(−15, 2) + 0.125 · ϕ(−14, 12) + 0.125 · ϕ(−10, 22) + 0.07 ·
Exp+(−7, 1) + 0.18 ·Exp−(−3, 4) + 0.15 ·ϕ(0, 32) + 0.1 ·ϕ(5, (1/2)2) +
0.125 · Exp−(10, 2).

28. Mixture of 4 shifted exponential and 4 normal distributions: f = 0.08 ·
Exp−(−14, 2)+0.17·ϕ(−14, 12)+0.125·ϕ(−9, 22)+0.07·Exp+(−9, 1)+
0.18 ·Exp+(−6, 3)+0.15 ·ϕ(7.5, 22)+0.1 ·ϕ(10, 12)+0.125 ·Exp−(15, 3).

Normal mixtures from [24]

29. Mixture of 3 normal distributions (density no. 2 in [24], “skewed unim-
odal”): f = 1/5 ·ϕ(0, 12) + 1/5 ·ϕ(1/2, (2/3)2) + 3/5 ·ϕ(13/12, (5/9)2).

30. Mixture of 8 normal distributions (density no. 3 in [24], “strongly
skewed”): f = 1/8 ·∑7

j=0 ϕ(3 · ((2/3)j − 1), ((2/3)j)2).
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31. Mixture of 2 normal distributions (density no. 4 in [24], “kurtotic
unimodal”): f = 2/3 · ϕ(0, 12) + 1/3 · ϕ(0, (1/10)2).

32. Mixture of 2 normal distributions (density no. 5 in [24], “outlier”):
f = 1/10 · ϕ(0, 12) + 9/10 · ϕ(0, (1/10)2).

33. Mixture of 2 normal distributions (density no. 6 in [24], “bimodal”):
f = 1/2 · ϕ(−1, (2/3)2) + 1/2 · ϕ(1, (2/3)2).

34. Mixture of 2 normal distributions (density no. 7 in [24], “separated
bimodal”): f = 1/2 · ϕ(−3/2, (1/2)2) + 1/2 · ϕ(3/2, (1/2)2).

35. Mixture of 2 normal distributions (density no. 8 in [24], “skewed
bimodal”): f = 3/4 · ϕ(0, 12) + 1/4 · ϕ(3/2, (1/3)2).

36. Mixture of 3 normal distributions (density no. 9 in [24], “trimodal”):
f = 9/20 ·ϕ(−6/5, (3/5)2) + 1/10 ·ϕ(0, (1/4)2) + 9/20 ·ϕ(6/5, (3/5)2).

37. Mixture of 6 normal distributions (density no. 10 in [24], density no.
23 in [4], “claw”): f = 1/2 · ϕ(0, 12) + 1/10 · ϕ(−1, (1/10)2) + 1/10 ·
ϕ(−1/2, (1/10)2) + 1/10 ·ϕ(0, (1/10)2) + 1/10 ·ϕ(1/2, (1/10)2) + 1/10 ·
ϕ(1, (1/10)2).

38. Mixture of 9 normal distributions (density no. 11 in [24], “double
claw”): f = 49/100 · ϕ(−1, (2/3)2) + 49/100 · ϕ(1, (2/3)2) + 1/350 ·∑6

j=0 ϕ((j − 3)/2, (1/100)2).

39. Mixture of 6 normal distributions (density no. 12 in [24], “asymmetric
claw”): f = 1/2 · ϕ(0, 1) +

∑2
j=−2(2

1−j/31)ϕ(j + 1/2, (2−j/10)2).

40. Mixture of 8 normal distributions (density no. 13 in [24], “asym-
metric double claw”): f = 46/100 ·∑1

j=0 ϕ(2j − 1, (2/3)2) + 1/300 ·∑3
j=1 ϕ(−j/2, (1/100)2) + 7/300 ·∑3

j=1 ϕ(j/2, (7/100)2).

41. Mixture of 6 normal distributions (density no. 14 in [24], density no.
24 in [4],“smooth comb”):

f =
1

63
·
(

32ϕ(−31/21, (32/63)2) + 16ϕ(17/21, (16/63)2)

+ 8ϕ(41/21, (8/63)2) + 4ϕ(53/21, (4/63)2)

+ 2ϕ(59/21, (2/63)2) + ϕ(62/21, (1/63)2)
)
.
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42. Mixture of 6 normal distributions (density no. 15 in [24], “discrete
comb”):

f = 2/7 ·
(
ϕ(−15/7, (2/7)2) + ϕ(−3/7, (2/7)2) + ϕ(9/7, (2/7)2)

)

+ 1/21 ·
(
ϕ(16/7, (1/21)2) + ϕ(18/7, (1/21)2) + ϕ(20/7, (1/21)2)

)
.

Other mixtures

43. Mixture of 5 normal distributions (from the author of [18]): f = 0.2 ·
ϕ(1, 12)+0.15 ·ϕ(1.75, 0.8062)+0.25 ·ϕ(3, 1.4142)+0.1 ·ϕ(5.5, 1.5812)+
0.3 · ϕ(8, 0.3872).

44. Mixture of 8 normal distributions (from the author of [18]: f = 0.1 ·
ϕ(1, 0.5922)+0.1·ϕ(3, 0.9492)+0.2·ϕ(4, 0.6712)+0.1·ϕ(7, 0.9222)+0.1·
ϕ(9, 0.7422)+0.1·ϕ(12, 0.9492)+0.15·ϕ(13, 1.0952)+0.15·ϕ(16, 0.9492).

45. Mixture of 2 normal distributions (density no. 21 in [4], “marronite”):
f = 1/3 · ϕ(−20, (1/4)2) + 2/3 · ϕ(0, 12).

46. Mixture of 3 uniform distributions (density no. 26 in [4], “trimodal uni-
form”): f = 1/4 ·U([−20.1,−20]) + 1/2 ·U([−1, 1]) + 1/4 ·U([20, 20.1]).

47. Mixture 10 triangular distributions (density no. 27 in [4], “sawtooth”):
f = 1/10 ·∑9

j=0 T (−10 + 2j,−8 + 2j) where T (a, b) is a symmetric
triangular distribution in interval [a, b].

48. Mixture of 5 uniform distributions: f = 1/5·∑4
j=0 U([−9+4j,−7+4j]).

49. Mixture of 10 normal distributions: f = 1/10 ·∑9
j=0 ϕ(9j, 12).

50. Mixture of 9 triangular distributions: f =
∑2

j=0 (1/6 · T (12j, 12j + 2)
+1/18 · T (12j + 4, 12j + 6) + 1/9 · T (12j + 8, 12j + 10)) where T (a, b)
is a symmetric triangular distribution in interval [a, b].



A.3 Histogram Methods: Results to Section 4.3.2 51

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-4 -3 -2 -1  0  1  2  3  4

 1e-05

 0.0001

 0.001

 0.01

 0.1

 25  50  100  200  400  800  1600  3200

NML-1

NML-2

CG

RMG

MRT

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

n = 50 n = 100 n = 200 n = 400 n = 800 n = 1600 n = 3200

NML-1

NML-2

CG

RMG

MRT

1.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

-40 -30 -20 -10  0  10  20  30  40

 1e-05

 0.0001

 0.001

 0.01

 0.1

 50  100  200  400  800  1600  3200

NML-1

NML-2

CG

RMG

MRT

 3.5

 3.55

 3.6

 3.65

 3.7

 3.75

 3.8

 3.85

 3.9

n = 50 n = 100 n = 200 n = 400 n = 800 n = 1600 n = 3200

NML-1

NML-2

CG

RMG

MRT

2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  2  4  6  8  10

 0.0001

 0.001

 0.01

 0.1

 50  100  200  400  800  1600  3200

NML-1

NML-2

CG

RMG

MRT

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

n = 50 n = 100 n = 200 n = 400 n = 800 n = 1600 n = 3200

NML-1

NML-2

CG

RMG

MRT

3.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  5  10  15  20  25  30

 0.001

 0.01

 0.1

 50  100  200  400  800  1600  3200

NML-1

NML-2

CG

RMG

MRT

 2.6

 2.65

 2.7

 2.75

 2.8

 2.85

 2.9

 2.95

 3

n = 50 n = 100 n = 200 n = 400 n = 800 n = 1600 n = 3200

NML-1

NML-2

CG

RMG

MRT

4.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12

 0.001

 0.01

 0.1

 1

 50  100  200  400  800  1600  3200

NML-1

NML-2

CG

RMG

MRT

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

n = 50 n = 100 n = 200 n = 400 n = 800 n = 1600 n = 3200

NML-1

NML-2

CG

RMG

MRT

5.

Figure A.3: Density and entropy estimation test results for densities 1–5.
The colours for the methods: NML-1, NML-2, CG, RMG, MRT.
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Figure A.4: Density and entropy estimation test results for densities 6–10.
The colours for the methods: NML-1, NML-2, CG, RMG, MRT.
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Figure A.5: Density and entropy estimation test results for densities 11–15.
The colours for the methods: NML-1, NML-2, CG, RMG, MRT.
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Figure A.6: Density and entropy estimation test results for densities 16–20.
The colours for the methods: NML-1, NML-2, CG, RMG, MRT.
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Figure A.7: Density and entropy estimation test results for densities 21–25.
The colours for the methods: NML-1, NML-2, CG, RMG, MRT.
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Figure A.8: Density and entropy estimation test results for densities 25–30.
The colours for the methods: NML-1, NML-2, CG, RMG, MRT.
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Figure A.9: Density and entropy estimation test results for densities 31–35.
The colours for the methods: NML-1, NML-2, CG, RMG, MRT.
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Figure A.10: Density and entropy estimation test results for densities 36–40.
The colours for the methods: NML-1, NML-2, CG, RMG, MRT.
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Figure A.11: Density and entropy estimation test results for densities 41–45.
The colours for the methods: NML-1, NML-2, CG, RMG, MRT.
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Figure A.12: Density and entropy estimation test results for densities 46–50.
The colours for the methods: NML-1, NML-2, CG, RMG, MRT.



B Erratum

In Paper II at the end of Section 5, the definition of fR+ in the integral is
not correct. The calculation of the integral should be

∫ ε

0
fR+(x; b) =

∫ ε

0

1− ln 2

(ln 2)k
1

1 + log δ(ln 2− 1)

1

(x+ b)h(x+ b)
dx

=
1− ln 2

(ln 2)k
1

1 + log δ(ln 2− 1)

∫ b+ε

b

1

y h(y)
dy

=
1− ln 2

(ln 2)k
1

1 + log δ(ln 2− 1)

/ b+ε

y=b

(ln 2)k log(k) y

=
(1− ln 2)(logα− log δ)

1 + log δ(ln 2− 1)
,

and therefore

c =

(
1− (1− ln 2)(logα− log δ)

1 + log δ(ln 2− 1)
+
fR+(ε; b)

n− 1
ε

)−1
.

The error does not affect the tests of the paper, because they use the
parameter setting b = 4. It implies k = 3, δ = 1, and c gets the correct value
despite of the error.
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