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Abstract

Recent experimental measurements showed that there exist a population of nanobubbles

with different curvature radii, while both computer simulation and theoretical analysis indicat-

ed that the curvature radii for different nanobubbles should be the same at a given supersatu-

ration. To resolve such inconsistency, we perform molecular dynamics simulations on surface

nanobubbles that are stabilized by heterogeneous substrates in either geometrical heterogene-

ity model (GHM) or chemical heterogeneity model (CHM), and propose that the inconsistency

could be ascribed to the substrate-induced nanobubble deformation. We find that, as expected

from theory and computer simulation, for either GHM or CHM there exists a universal upper
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limit of contact angle for the nanobubbles, which is determined alone by the degree of super-

saturation. Through analyzing the shape evolution of nanobubbles as a function of substrate

hydrophobicity that is controlled here by the liquid-solid interaction, two different origins of

nanobubble deformation are identified. For substrates in GHM that the contact line is pinned

by surface roughness, variation in the liquid-solid interaction only changes the location of

contact line and the measured contact angle, without causing the change of the nanobubble

curvature. For substrates in CHM, however, the liquid-solid interaction exerted by the bottom

substrate can deform the vapor-liquid interface, resulting in variation of both the curvature of

vapor-liquid interface and the contact angle.

Introduction

Surface nanobubbles formed on heterogeneous substrates are known for their potential applica-

tions in flotation,1 boundary slip in fluid,2,3 fabrication of bubble-templated nanomaterials4,5 and

adsorption of macromolecules,6–8 all of which entail the initial formation of bubbles with con-

trolled morphology and stability. For instance, stable nanobbubles are desirable to be used as

antifouling agents to remove proteins.6 Therefore, it is of great interest for generating nanobubbles

with controllable shape parameters, including radius of curvature, contact angle and height.

While the formation of nanobubbles is experimentally realized in an oversaturated environmen-

t,9–11 the substrate heterogeneity is crucial for both formation and stability of nanobubbles.9,12,13

With numerical simulations,14 we have previously demonstrated that surface nanobubbles as well

as nanodroplets can be stabilized on a geometrically heterogeneous substrate, on which physical

roughness provides the pinning force on nanobubble contact line.15,16 Meanwhile, Maheshwari

et. al.17 have shown that stable surface nanobubble can also form on a chemically heterogeneous

substrate, with equilibrium contact angle positively correlated to the supersaturation level of gas

molecules. On the other hand, nanobubble collapse could be induced by shock wave, and its dam-

age on solid substrates has also been investigated.18,19

The shape of nanobubbles poses a number of challenges in understanding their physical behav-

2

Page 2 of 30

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http
://

dsp
ac

e.i
m

ec
h.ac

.cn



iors.20–23 In particular, whether neighboring nanobubbles have the same curvature radius or not is

still an open question today. Recent experimental measurements revealed that there exist a pop-

ulation of nanobubbles with different curvature radii,24–31 while both computer simulations12,14

and theoretical analysis9 indicated that the curvature radii for different nanobubbles should be the

same at a given supersaturation. To resolve this inconsistency, in this work we perform molecular

dynamics simulations to show that surface nanobubbles can be stabilized by substrate heterogene-

ity, either geometrical and chemical, and propose that the inconsistency could be ascribed to the

substrate-induced nanobubble deformation.

Simulation method

Model

We performed molecular dynamics simulations of surface nanobubbles formed on solid substrates.

For all intermolecular interactions, the Lennard-Jones (LJ) 12− 6 interaction was employed. In-

stead of describing interaction between the particles with the LJ constants ε and σ , here we used

parameters A and B to separate the LJ potential into repulsive and attractive contributions, which

is written as:

Ui j =
Ai j

r12
i j

−
Bi j

r6
i j
, (1)

where Ai j = 4εσ12 and Bi j = 4εσ6 denote respectively the strength of the repulsive and attractive

interaction between two particles i and j, and ri j is their distance. In our study, ε and σ were

chosen as the reduced units for energy and distance, respectively. In the following description we

used reduced units, and see Table 1 for the full list of the reduced units.

Quasi-two dimensional box with a size of 73.99×13.15×h (in unit of σ ) was used in this work,

as shown in Fig. 1. Periodic boundary conditions were implemented only in x and y directions. In

z direction, two restraining substrates that consist of frozen solid molecules in FCC lattice, were

placed on the top and bottom of the simulation box. While the bottom substrate was fixed during
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Table 1: Table of reduced units.

Quantity Reduced unit
Energy ε
Distance σ
A 4εσ12

B 4εσ6

Temperature ε/kB
Pressure ε/σ3

Mass M
Time

√
Mσ2/ε

the simulations, an external force along z direction was uniformly exerted on the top substrate to

control the pressure. Therefore, the height of the box, h, could fluctuate at a given external pressure

Pex.

Figure 1: (a) Geometrical heterogeneity model (GHM). (b) Chemical heterogeneity model (CHM).

Two types of substrate heterogeneity were considered here. For the solid substrates with phys-

ical roughness (the geometrical heterogeneity model, GHM), a square pore with a width of 18.91

and a depth of 9.86 was introduced on the substrate to pin the contact line of nanobubbles, see

Fig. 1(a). For the solid substrate having chemical heterogeneity (the chemical heterogeneity mod-

el, CHM), the square pore was replaced with a cube of more hydrophobic solid that was used to

stabilize the nanobubbles, see Fig. 1(b). For both models, the introduced substrate heterogene-
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ity can provide the required pinning force to generate steady-state nanobubbles with uniform and

symmetrical interface.

As illustrated in Fig. 1, the vapor-liquid interface of nanobubbles is defined as the locations

at which the fluid density is equal to half of the bulk liquid density, which can be fitted by circle

approximation:

x2 +(z− z0 +Rcosθ)2 = R2, (2)

where z0 is the height of liquid-solid interface, R the curvature radius and θ the contact angle.

Then, with the obtained vapor-liquid interface, the height of the nanobubble, H, is given by

H = R(1− cosθ). (3)

Simulation details

The simulations were performed in NPzzT ensemble, with fixed number of molecules N = 38160.

As mentioned above, an external force along z direction was exerted to maintain the given pressure

Pex. Such method has frequently been used in the study of the bubble nucleation and proven to be

efficient.9,14,32 The length of the time step dt = 0.0023 was carefully chosen, and the Nose-Hoover

thermostat with a time constant of 100dt was used to control the temperature of fluids.

All the initial configurations were prepared as follows. First, N f = 23760 fluid particles were

uniformly distributed on FCC crystal lattice between the two substrates to prevent particles from

overlapping. The system was then compressed in z direction and quenched to the desired pressure

and temperature. Additional long run (at least 8×107 simulation steps) was performed to ensure

that the system was equilibrated. The data for density distributions were collected by averaging

over 1000 output configurations separated by 6× 104 simulation steps. Unless specified, in this

work we fix T = 0.845 and Pex =−0.024.
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Results and discussion

GHM

Our simulations show that depending on the substrate hydrophobicity, there exist three different

states: vapor, nanobubble, and Wenzel states. The obtained phase diagram for the geometrical

heterogeneity model (GHM) in the Als−Bls plane is presented in Fig. 2(a) for Pex = 0 and Fig. 2(b)

for Pex = −0.024. Note that except the liquid-solid interaction parameters, including Als and Bls,

all the other parameters for the simulations in the figure kept unchanged, see Table 2. As is shown

in Fig. 2(a) and Fig. 2(b), nanobubbles are found to form only when the liquid-solid interactions are

moderately hydrophobic. The system would vaporize when the repulsive interaction dominates,

and the fluid particles would fill the square pore to form a Wenzel state (i.e., there exists no stable

nanobubble) when the attractive interaction becomes sufficiently strong. We also find that as Pex

decreases from 0 to −0.024, the phase boundary for the Bubble-to-Wenzel transition is barely

changed.

Table 2: Table of parameters for the Lennard-Jones interaction between different molecules used
in GHM.

i− j Ai j Bi j
Liquid-liquid (l − l) 4 4
Liquid-solid (l − s) Var. Var.
Solid-solid (s− s) 0 0

Then, we fix Bls = 4 and plot the time-averaged density distributions of liquid particles for

different values of Als (Fig. 3). At the rim of pore, the spatial deformation of surface nanobubbles

was found due to the interaction between the substrate and the vapor-liquid interface, in a good

agreement with AFM measurement by Walczyk et. al.23 But far from the substrate, the interface

can be well described by spherical fitting of Eq. 2. In contrast to our expectation that the contact

line is pinned at a fixed position, we observe that the contact line position shows obvious move-

ment as Als changes. When Als = 7, the attractive force dominates so that the contact line moves

downwards and the liquid partially penetrates into the rough substrate. With the increase of the
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Figure 2: Phase diagram for the state of fluid in Als −Bls plane with T = 0.845 for GHM, where
(a) Pex = 0 and (b) Pex =−0.024. The red square, blue sphere and black triangle symbols represent
the Wenzel, bubble and vapor states, respectively.

repulsion between liquid and solid molecules, the contact line moves upwards along the pore wall

until a new force balance is attained. When Als = 12, the contact line stops at the mouth of the

square pore. Although the curvature radius in this case is almost the same as that for Als = 7,

the moving of contact line causes the increase of the nanobubble height H and thus increases the

measured contact angle θ according to Eq. 2. When Als is further increased to 18, the contact line

of the nanobubble even moves slightly across the mouth of the pore (see Fig. 3). Further increasing

Als would induce the depinning of contact line and the nanobubble becomes unstable.

Figure 3: The two-dimensional density distributions of liquid particles for GHM with different
values of Als and fixed Bls = 4. The blue solid line gives the density contour for ρ = ρb/2 with
ρb/2 the density of the bulk liquid, which is nearly indistinguishable from the vapor-liquid interface
fitted from Eq. 2 (the red dashed line). The black region represents the substrate, and the black
dashed line indicates the position of liquid-solid interfaces far from the nanobubble.

For substrates in GHM, the deformation of nanobubbles induced by the variation of liquid-
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solid interaction is illustrated in Fig. 4(a). The most important point is that the contact line shows

obvious movement as the fluid-solid interaction changes. With the increase of Als, the vapor-liquid

interface moves upwards (from circle α to circle γ), but the curvature radius of the interface almost

remains constant. Therefore, neglecting the movement of contact line would induce a deviation

of the measured shape parameters of surface nanobubbles from their actual values. Note that the

invariance of nanobubble curvature depends on pore width: when pore size is so small that the

deformation from opposite contact lines meet, namely the pore size is comparable with the range

of liquid-solid interaction, a Cassie state appears instead,14 with a curvature radius significantly

deviated from that of nanobubbles.

Figure 4: Sketch of nanobubbles deformation due to the increase of repulsion between liquid and
solid molecules in fluids for (a) GHM, and (b) CHM.

To further explore the dependence of the bubble shape on liquid-solid intermolecular interac-

tions, Fig. 5(a) and Fig. 5(b) respectively shows the H −
√

Als/Bls and θ −
√

Als/Bls relations for

different values of Bls. Since nanobubbles can appear only within a narrow range of thermodynam-

ic states as shown in Fig. 2(b), we only investigated the relations for 0.6 <
√

Als/Bls < 1.2. We

find that H increases monotonically from 1.30 to 3.85 and θ from about 21.77◦ to 37.24◦ with the

increase of the repulsive interaction between liquid and solid molecules, and the rate of increase is

almost invariant for different Bls. Moreover, the upper limits for bubble height Hc = 3.85, and that

for contact angle θc = 37.24◦, depend solely on the external pressure Pex, but are independent of

Bls.
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In general, for nanobubble deformation in GHM, although both H and θ increase with the in-

crease of the repulsive interaction, the value of curvature radius R is kept unchanged. Moreover,

upper limits for bubble height and contact angle are observed, which are, as expected theoretical-

ly,9,12,14 independent of fluid-solid interaction and depend solely on the degree of supersaturation

(external pressure in this work).
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Figure 5: The dependence of (a) nanobubble height H, and (b) contact angle θ , on
√

A/B, at
different values of B in bubble state for GHM.

CHM

For the chemical heterogeneity model (CHM) of substrates that are featured with chemical hetero-

geneity, we fixed Als and Bls, and investigated how the height H, the contact angle θ and curvature

radius R depend on the repulsive strength between liquids and the more hydrophobic part of the

solid at the bottom of the nanobubble, Als∗ (see Fig. 4(b)). The complete set of the parameters for

Lennard-Jones interaction used in this subsection are summarized in Table 3.

Table 3: Table of parameters used in CHM.

i− j Ai j Bi j
l − l 4 4
l − s See Fig. 7(a) See Fig. 7(a)
Liquid-hydrophobic solid (l − s∗) Var. 1
s− s 0 0
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The time-averaged density distributions of liquid particles at Bls∗ = 1 and different Als∗ are

plotted in Fig. 6. When Als∗ = 2, the nanobubble is pinned at the contact line along which solid

parts of different hydrophobicity meet. Different from nanobubbles on substrates in GHM, in this

case the curvature radius changes significantly as the fluid-solid interaction, Als∗ , changes. In the

case of small Als∗ (e.g. Als∗=2), the contact angle θ is small and the curvature radius R is relatively

large. When Als∗ is increased to 4, the bubble was still pinned at the interface, but we obtain a

larger θ and smaller R. However, when Als∗ is further increased, for example, to 24, the liquid-

solid contact line of the bubble moves outwards. At this point, while θ and the nanobubble height

H still increases with Als∗ , the value of R is nearly unchanged. Such tendency of nanobubble

deformation is sketched in Fig. 4(b).

Figure 6: The two-dimensional density distributions of liquid particles for CHM with different
liquid-solid interactions. The superscript s∗ in Als∗ denotes the more hydrophobic part of the solid
at the bottom (colored in red). Here we fixed Bls∗ = 1.

When the nanobubble is pinned at the solid surface, the interaction between the bottom solid

surface and the vapor-liquid interface becomes significant at place where their separation distance

is small (normally less than 10 nm), in particular near the corner of the bubble where the triple phas-

es meet. The varied interaction in reality may arise from nonspecific intermolecular interactions

between charged/uncharged particles over the interacting interfaces, which makes the vapor-liquid

interface deviate from the ideal state and leads to the change of curvature radius in experiments.

This is in accord with our numerical simulations that, by changing the liquid-solid interaction, the

curvature of vapor-liquid interfaces changes and the shape of nanobubbles varies.

Fig. 7(a) shows the R− Als∗ as well as θ − Als∗ relations for CHM. For any given Als and
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Bls, we observe that, when Als∗ < 15, the increase of the hydrophobicity of the solid substrate

below the nanobubbles, i.e., Als∗ , causes the decrease of R and the increase of θ . When Als∗ >

15, however, the values of R and θ become almost constant. Interestingly, the average values

for Als∗ > 15, i.e., R = 18.64 and θ = 37.41◦, as illustrated in Fig. 7(a), are almost identical

to the corresponding critical values for GHM, that is, Rc = 19.22 and θc = 37.24◦, at the same

thermodynamic conditions. This further confirms that the universal limit of shape parameters for

nanobubble is determined alone by the degree of supersaturation (Pex in this work).

Figure 7: (a) The dependence of curvature radius R, and contact angle θ on Als∗ , for CHM with
fixed Bls∗ = 1. The green and red dashed lines give the average value of R = 18.64 and θ = 37.41◦

for Als∗ > 15, respectively. (b) The dependence of R and nanobubble height H on θ , for both GHM
and CHM with different interaction parameters. The green star represents the expected critical
values for curvature radius Rc and contact angle θc, while the red one represents the critical bubble
height Hc.

Such consistency leads us to anticipate that both GHM and CHM may share the same shape

of the nanobubbles near the critical point (i.e., without nanobubble deformation). We then give R

and H as a function of θ for both GHM and CHM in Fig. 7(b). We find that nanobubbles have

larger R and H in CHM than in GHM at the same θ , especially when θ < 34◦. However, if the

liquid-solid repulsive interaction is further increased (θ > 34◦), the shape of bubbles for GHM and

CHM would converge. Therefore, as expected, the upper limits of H and θ , and lower limit of R

for CHM are quite close to our previous observation of the critical values (i.e., Hc, Rc and θc) for

GHM, as illustrated in Fig. 7(b).
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A heterogeneous model combining GHM and CHM

In reality the effects from GHM and from CHM may be superimposed. Here, we introduced a

heterogeneous substrate model combining both GHM and CHM, in which the hydrophobic patch

of the substrate in CHM was placed beside a pore in GHM, to analyze the coupling effect. The

complete set of the parameters for LJ interaction used here are summarized in Table 4.

Table 4: Table of parameters used for the combined model.

i− j Ai j Bi j
l − l 4 4
l − s 2 2
Liquid-hydrophobic solid (l − s∗) Var. 1
s− s 0 0

Fig. 8(a) shows a typical averaged density distribution of liquid particles obtained from the

simulations at Als∗ = 30 and Bls∗ = 1. Obviously, non-spherical shaped nanobubbles were observed

due to the asymmetric nature of the pore characteristics. For comparison, we fit the left and right

parts of the vapor-liquid interface with Eq. 2, respectively, and the difference between the simulated

interface and the fitted one from the opposite part clearly indicates the non-spherical shape of

nanobubbles.

Figure 8: (a) The two-dimensional density distributions of liquid particles for the combined model,
with fixed Als∗ = 30 and Bls∗ = 1. The red and margarita dashed lines respectively give the spherical
fit for the left and right side of the vapor-liquid interface. (b) The dependence of contact angle θ
on Als∗ for the combined model, with Bls∗ = 1. The θ −Als∗ relation for CHM is also plotted
for comparison. The margarita dashed line gives the contact angle of same interaction parameters
θGHM = 29.62◦ for GHM.
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To quantitatively analyze how the shape of nanobubbles deforms when both GHM and CHM

are superimposed, the corresponding θ −Als∗ relations from our simulations is shown in Fig. 8(b).

The contact angle from the right side fluctuates around 30◦, which is very close to that obtained

from GHM with the same interaction parameters (θGHM = 29.62◦). The contact angle from the

left side of the pore, however, increases significantly with the increase of liquid-solid repulsion

for Als∗ < 5, and increases slightly for Als∗ > 5 until reaching the critical contact angle for CHM

(θCHM ∼ 37.41◦). In principle, the contact angle from left side is dominated by CHM while that

from right side is dominated by the GHM, but the coupling effect of the superimposed substrate

would bridge the gap between θGHM and θCHM by slightly enlarging or reducing θ of both sides.

Conclusion

To sum up, we have demonstrated that the curvature radii of nanobubbles can change with the

liquid-solid interactions in a wide range. We considered here two models of surface heterogeneity

that provides the pinning force for stabilizing nanobubbles: geometrical heterogeneity model (GH-

M) and chemical heterogeneity model (CHM). Our molecular dynamics simulations demonstrate

that the deformation of nanobubbles is induced by substrate hydrophobicity that is controlled by

the liquid-substrate interaction. Through analyzing the shape evolution of nanobubbles, two dif-

ferent origins of nanobubble deformation are identified. For the substrate in GHM that the contact

line is pinned by surface roughness, variation in the liquid-solid interaction causes the change of

the location of contact line, but not the nanobubble curvature, as long as the pore size is sufficiently

larger that the range of liquid-solid interaction. For the substrate in CHM, however, the liquid-solid

interaction exerted by the bottom substrate would deform the vapor-liquid interface of nanobubbles

when the interface is within the range of the interaction, resulting in a curvature deviated from that

for nanobubbles free of deformation. Our simulations also show that the height and contact angle

of the bubble are positively correlated to the liquid-solid interaction, with the universal upper limits

determined both for CHM and GHM.
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Our simulation results can be used to interpret the inconsistency between experimental observa-

tions and theoretical investigations: experiments showed that there exist a population of nanobub-

bles with different curvature radii, while both computer simulation and theoretical analysis indicat-

ed that the curvature radii for different nanobubbles should be the same at a given supersaturation.

Here we ascribe the inconsistency to the difference of nanobubble deformation caused by geomet-

rical heterogeneity and chemical heterogeneity. Further, since it is experimentally applicable to

control the chemical or geometrical distribution of the substrate, our results may prove useful in

fabricating nanobubbles for the adsorption of macromolecules and the self-assembly of materials

with specific curvature.
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